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Preface

Cities all over the world are gradually implementing plans to ban gasoline and diesel-
powered vehicleswithin the next decade or so. To achieve this goal, the concept of last
mile is one of the key problems that should be addressed in various measures taken
by administrators. The last mile is that distance traveled between the termination of
public transport and one’s destination. For example, your office might be as far as
a mile away from the nearest bus stop. Even taking the bus to and from work, you
have to conquer the final mile with portable urban transportation if you don’t want
to walk.

Themobilewheeled inverted pendulum (MWIP) is a typical underactuated robotic
system, which is widely used in modern urban transportation vehicles aiming at
solving the last mile problem. This kind of urban transportation vehicle includes the
Segway PT, Toyota Winglet, Honda U3-X, and so on. In the real-world application
scenarios, theMWIP suffers frommany internal/external uncertainties, e.g., different
road conditions, the random user, or wind load. Besides, the system identification of
MWIP parameters is also difficult due to the complex structure andmultiple degrees-
of-freedom (DOFs). The conventional model-based control method is thus hard to
fulfill the high-performance control tasks of MWIP. Therefore, the advanced robust
and intelligent control of MWIP is vital, and this motivates us to write the current
monograph.

Since the dynamic model of MWIP is the prerequisite for its control design, this
book firstly introduces the modeling procedure of MWIP, in both two-dimensional
and three-dimensional cases. Second, to deal with the internal/external uncertainties,
we lumped the uncertainties into a single disturbance term and designed a novel high-
order disturbance observer (HODO) to online estimate this disturbance term.With the
compensation of disturbance, a new high-order disturbance observer-based sliding
mode control (HODOSMC) strategy is proposed. Third, considering the chattering
problem in sliding mode control (SMC), this book introduces two approaches for
the MWIP. One is the adaptive super-twisting algorithm, which is a second-order
SMC strategy and able to efficiently alleviate the chattering phenomenon. The other
is the terminal sliding mode control (TSMC), which can ensure that all variables
converge to the expected value in a limited time. Next, to better model and cope
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vi Preface

with uncertainties, the interval type-2 fuzzy sets (IT2 FSs) are introduced to design
a new fuzzy controller for the MWIP system. The proposed controller can control
its balance, position, and direction simultaneously. Finally, all the proposed control
approaches are implemented in a physical MWIP platform. Various experiments are
conducted, and the results demonstrate that these approaches are effective to solve
the uncertainty problems in controlling MWIP.

This bookmainly presents theoretical explorations for controllingMWIP systems.
Readers can systematically study the MWIP system, including its modeling,
controller design, stability analysis, numerical simulation, and experimental plat-
form construction. The book is primarily intended for researchers and engineers in
the robotics and control community. It can also serve as complementary reading
for nonlinear system theory and underactuated robotic control techniques at the
postgraduate level.

Wuhan, China
Wuhan, China
Nagoya, Japan

Jian Huang
Mengshi Zhang
Toshio Fukuda
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Chapter 1
Introduction

1.1 An Overview of MWIP Robots

As early as 1987, Kazuo Yamafuji, professor of the University of Electro Com-
munications, began to study the two-wheeled balance control technology, which is
considered as the ideological origin of two-wheeled self-balancing robot [1]. As
shown in Fig. 1.1, the small lever on the wheel acted as a sensor to detect the inclina-
tion of the car body, and the rectangular control motor drives the inverted pendulum
tomaintain the overall balance of the robot itself. However, due to the low technology
of computer and sensor at that time, this technology did not receive much attention.

Grasser et al. [2] of the Swiss Federal University of Technology have developed
a two-wheeled self-balancing car named as JOE, as shown in Fig. 1.2. This self-
balancing car can realize zero radius and U-shaped rotation; furthermore, remote
control of the movement speed and direction also has been achieved.

American scientist David P. Anderson developed a two-wheeled self-balancing
vehicle model nBOT based on inverted pendulum, as shown in Fig. 1.3 [3]. By mea-
suring the tilt angle and angular speed of the inverted pendulum and the position and
speed of the chassis, the controller outputs the torque which is directly proportional
to the motor voltage, so as to realize the self-balance and movement of the car. nBOT
can not only realize zero radius rotation, move indoors and outdoors, but also choose
the route to bypass the obstacles and continue to move after encountering obstacles.

In 2001, Segway company of the USA invented a new type of convenient two-
wheeled vehicle Segway [4]. After several improvements, Segway Pt has become a
practical, mature, and self-balancing modern transportation technology product, as
shown in Fig. 1.4. Segway users can start, accelerate, decelerate, and stop the vehicle
by regulating the position of the gravity center. Under the condition of keeping
balance, the users can drive conveniently on various roads. Its appearance fully
demonstrates the flexibility and practicability of two-wheeled self-balancing mobile
robot and arouses people’s attention to the future traffic.
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