Practical Spring
Cloud Function

Developing Cloud-Native Functions
for Multi-Cloud and Hybrid-Cloud
Environments

Banu Parasuraman

ApPress’

Practical Spring
Cloud Function

Developing Cloud-Native
Functions for Multi-Cloud

and Hybrid-Cloud
Environments

Banu Parasuraman

Apress’

Practical Spring Cloud Function: Developing Cloud-Native Functions for
Multi-Cloud and Hybrid-Cloud Environments

Banu Parasuraman
Frisco, TX, USA

ISBN-13 (pbk): 978-1-4842-8912-9 ISBN-13 (electronic): 978-1-4842-8913-6
https://doi.org/10.1007/978-1-4842-8913-6

Copyright © 2023 by Banu Parasuraman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar
Cover image by Aamyr on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8913-6

Iwould like to dedicate this book to my wife Vijaya and
my wonderful children Pooja and Deepika,
who stuck with me through the trials and
tribulations during the writing of this book.
I also dedicate this to my mom,
Kalpana Parasuraman.

Table of Contents

About the AUthOrccscemmssmnmssnsmmsssnmmsssssssssssssssnsssssnsssssnnssssnnssssnnsns xi
About the Technical REVIEWETsscesssssmssssansssssnsssssnsssssnsssssasssssnnss xiii
Acknowledgments.......cccuuussssssssssnnmmmsssssssssnnsnnnssssssssssssnnsnnsnssssssssnnnnnns XV
INtroduction.........ccccmnemmmssnmmsssnnmssssnmsssnsssssnsssssnnssssnnssssnnssssnnnnssnnnnnns Xvii
Chapter 1: Why Use Spring Cloud Functionc.ccusemmmmnsssnnnmmssssssnsnns 1
1.1. Functions as a Service (FaasS)..........cuourrmrerrnrenmrnsesnsesssesesssesessesessssessssesenns 1
1.1.1. Implementation of an Enterprise Applicationcccoevvrvrinniniennen 2
1.1.2. Migration ROI for a Portfolio of Applicationccceevvrvnininnincennen 3
1.1.3. The Serverless Functions Conceptcccvvvvvninininnnnnsensesssensenenns 4
1.1.4. Applying the Serverless Functions Concept to an Enterprise
APPHICALION......coveiccerre e ———————— 4
1.2. Code Portability ISSUES........cccvvererrerensenseresessessese e e sessessesessessessessssessessesees 8
1.2.1. Serverless Container Portability ISSUE........cccevvivirievnincnie e, 10
1.3. Spring Cloud Function: Writing Once and Deploying to Any Cloud............... 11
1.4. Project Knative and Portable Serverless CONtainers..........ocovvevverererserseraens 13
1.4.1. Containers, Serverless Platforms, and Knative............ccccevivvierinrnne. 15
1.4.2. What IS KNAtiVe? ... sessssssens 16
1.5. Sample Use Case: Payroll Application............cccvvevrnnvnennsnnnsenesnsensennens 17
1.6. Spring Cloud Function SUpport ... 19
1.6.1. Spring Cloud Function on AWS Lambda on AWScccccrivvninenne. 20
1.6.2. Spring Cloud Function on Knative and EKS on AWS..........cccccorvviernnne. 22
1.6.3. Spring Cloud Function on Cloud Functions on GCPccceeeevvennenne. 23

TABLE OF CONTENTS

1.6.4. Spring Cloud Function on Knative and GKE on GCP..........c..ceevvvrerennen 24
1.6.5. Spring Cloud Function on Azure Functions on Azure........cccceevvevverennes 26
1.6.6. Spring Cloud Function on Knative and AKS on AZUrec.cceeerevrerenes 27
1.6.7. Spring Cloud Function on VMware Tanzu (TKG, PKS)........ccecvrvrerrerienees 28
1.6.8. Spring Cloud Function on Red Hat OpenShift (OCP)cccevrvrerierieees 31
1.7, SUMMAIY.....cciieiee sttt e s b st e e p e e 32
Chapter 2: Getting Started with Spring Cloud Function.............ccceeuu.. 33
2.1. Setting Up the Spring Boot and Spring Cloud Function Locally 34
2.1.1. Step 1: Create the Spring Boot Scaffolding..........c.coccorerrrccrercnernnne. 35
2.1.2. Step 2: Create the Employee Model..........ccoovvrvrinrnnsniniennsencennens 40
2.1.3. Step 3: Write the CONSUMETcccovvrvrininnrrnere s 43
2.1.4. Step 4: Write the Supplier........ccvrrnininsrr e 44
2.1.5. Step 5: Write the Funclion ... 45
2.1.6. Step 6: Deploy and Run the Code Locally........cccoevereerermencrenscnerenerennes 46
2.1.7. Step 7: Test the Function ... 47
2.2. Setting Up Spring Cloud Function and AWS Lambdaccccovrererenerensenenns 49
2.3. Setting Up Spring Cloud Function and Google Cloud Functions................... 59
2.4. Setting Up Spring Cloud Function Azure Functions........cccoceeevverrevvnenceniennen 67
2.5. Setting Up Locally with Kubernetes and Knative and Spring Cloud
11T 0 o T 72
2.6. Setting Up AWS with EKS and Knative with Spring Cloud Function............. 82
2.7. Setting Up GCP with Cloud Run/GKE and Knative with Spring Cloud
FUNCLION ...ttt 89
2.8. Setting Up Azure with AKS and Knative with Spring Cloud Function........... 98
2.9. Setting Up VMware Tanzu TKG and Knativecccccvverievnneniersesinnensensennens 102
2.10. SUMMATY......ceeiieereer e se st se s e a s e ae e ae e se e neens 106

TABLE OF CONTENTS

Chapter 3: CI/CD with Spring Cloud Function.........ccccccnrnssnnnnnssssnnns 107
3.1. GItHUD ACHIONS......cov et 108
B I LV o S 111
3.3. Building a Simple Example with Spring Cloud Functionc..ccceevcniennns 120
3.4. Setting Up a CI/CD Pipeline to Deploy to a Target Platform.............cccoucnu... 122
3.5. Deploying to the Target Platform........cccocevvvrinevnincnie s senennens 124
3.5.1. Deploying to AWS Lambda...........cccevrverierennsenseniese s sessesessssessessees 124
3.6. Deploying to GCP Cloud FUNCHIONScocvvevvererenensereresessessessessesessessessens 129
3.7. Deploying to Azure FUNCHONS.........cccveriinnnie e 133
3.8. Deploying to Knative on Kubernetes..........cccocrevivninnnsnsnienienssensennens 138
3.9, SUMMAIY....coriiireerree s nr s 147
Chapter 4: Building Event-Driven Data Pipelines with
Spring Cloud FUNCRIONcccciieemmmmnsssnnmmssssssnmmssssnssssssssssssessssssnsssssnns 149
4.1. Data Event PIipelinesccocvvvvrinnninsin s s s s 149
0 Voo 11T =00 - SR 152
4.1.2. Store/INgest Data........c.ccvvvvevverrerennrensere s sne s 152
4.1.3. Transform Data..........coocerienninnn s 153
4.1.4.L0ad DALA ..o 153
4.1.5. Analyze Data.........ccoceveririnnenrrsn e 153
4.2. Spring Cloud Function and Spring Cloud Data Flow and
Spring Cloud STre@mSccorenrererene e 154
4.2.1. Spring Cloud Function and SCDF............ccccocvmininnnnnnnnnesssensessens 155
4.3. Spring Cloud Function and AWS GIUE...........ccerveererrenmreneressesessesesenesessesenns 172
4.3.1. Step 1: Set Up Kinesis ... sesses s ns 173
4.3.2. Step 2: Set Up AWS GIUE.......ccocererririrrerere e sse e 174
4.3.3. Step 3: Create a Function to Load Data into Kinesis.........cccceveerierienns 175
4.4. Spring Cloud Function and Google Cloud Dataflow.............cocueererenereniennnn 185
4.5, SUMMAIY....ccrierrirerrerserersesessessesessesessessesssssssessessessssessessesssssssessessesssssnsessens 197

vii

TABLE OF CONTENTS

Chapter 5: Al/ML Trained Serverless Endpoints with Spring

Cloud FUnClion........cccunsmmmmsmssssmsssmmsssssssssssssssssssssssssssnsssssnnsnsmssnsnsnnns 199
5.1, AI/ML in @ NUESREII ..o s 199
5.1.1. Deciding Between Java and Python or Other Languages
FOF AI/ML ... 206
5.2. Spring Framework and Al/MLccoveerennnsennesesesesesse e sessesenns 209
5.3. Model Serving with Spring Cloud Function with DJL.........ccccvevivrniniennens 210
5.3.1. WhaL IS DUL? ... 210
5.3.2. Spring Cloud Function With DJLcccerievnnnienenn s rereseseesesesaens 218
5.4. Model Serving with Spring Cloud Function with Google Cloud
Functions and TENSOrFIOW ... 225
5.4.1. TENSOIFIOW ... e 225
5.4.2. Example Model Training and Servingccceeveeevnverenenereserensenenns 228
5.5. Model Serving with Spring Cloud Function with AWS Lamhda and
=] 0150 TS 241
5.6. Spring Cloud Function with AWS SageMaker or AlI/MLccccvvvrerrnieren. 243
D7, SUMMAIY.....cririerterirserese s e s s e e s sre e e e s saesae e s e saesae s e e naesnens 251
Chapter 6: Spring Cloud Function and 10Tccccinnssennnmnsssannnnsssnnns 253
6.1. The State of 10T ... s 253
6.1.1. Example Spring Implementationccccocevvvnvninnnnsniennens s 255
6.1.2. An Argument for Serverless Functions On-Premisescccecevveruene 256
6.2. Spring Cloud Function on the Cloud with AWS 10T........ccccecvnierriencrenccnnn. 257
6.3. Spring Cloud Function on the Cloud with Azure 10Tccccovviniiininicnnens 270
6.3.1. Azure 10T EAQE DEVICEcccoereeereereeerere e 271
6.3.2. AZUFE 10T HUD ..o 271
6.4. Spring Cloud Function on Azure 10T EdQec.ccevevererrenmressesesesessenesensenenns 272
6.5. Spring Cloud Function On-Premises with loT Gateway on a
SaaS Provider (SMartSENSE).......ccvverererreriereresersessesesss s ssesessessesaeens 280
6.6. SUMMAIY.....ceerrereererierersesesserersessssessessesssssssessessessssessessesssssssessesasssssensessens 283

viii

TABLE OF CONTENTS

Chapter 7: Industry-Specific Examples with

Spring Cloud FUNCtioncccccmmmminnnssssssssssssmmmmsssssssssssssssssssssssssssnnnns 285
7.1. Oil/Natural Gas Pipeline Tracking with Spring Cloud Function and I0T......285
A I T 0 TSRS 287
7.1.2. 10T GALEWAY ...ccveerrrreerreeresesesse s ses s se s ses s sss e sessssenns 287
7.1.3. IBM Cloud FUNCLIONS......ccoveerereerreneressesesesesssse s sessesessssessssesesseenns 288
7.1.4. IBM Watson 10T PIatformcccceveernsernnesesssesesesessesessesessssesessenenns 288
7.1.5. IBM Watson loT Platform: Message Gatewaycccovrererenerensenenns 288
7.1.6. IBM Event Streams........ccooveevvenesesesnsssessesesssessssesessssessssessssesessenenns 289
7.1.7. IBM Cloudant DB..........ccccomeermrenerenmnssesessesessssessssesessssessssesssssssssesenns 289

7.2. Enabling Healthcare with Spring Cloud Function and Big
Data PIPEIINEScccvcerererirerere et sa s s 308
7.3. Conversational Al in Retail Using Spring Cloud Function..........ccceevveviernens 311
7.3.1. Components of Conversational Al SOIULIONS........cccevverrerierierenserserens 314
7.3.2. Watson Assistant Webhooks and Spring Cloud Function................... 315
7.3.3. Implementing the Watson Assistant with Spring Cloud Function......316
0 1T 1111 T 1O 333
INA@X . iiiiiissnnnnnnnnnninsssssssnnnnnnnnnssssssssnnnnnnnnnesssssssnnnnnnnnsesssssssnnnnnnnnnsnssssnnn 335

ix

About the Author

Banu Parasuraman is a cloud native
technologist and a Customer Success Manager
(CSM) at IBM, with over 30 years of experience
in the IT industry. He provides expert advice
to clients who are looking to move to the cloud
or implement cloud-native platforms such
‘ ‘ as Kubernetes, Cloud Foundry, and the like.

He has engaged over 25 select companies

spread across different sectors (including
retail, healthcare, logistics, banking, manufacturing, automotive, oil
and gas, pharmaceuticals, and media and entertainment) in the United
States, Europe, and Asia. He is experienced in most of the popular cloud
platforms, including VMware VCE, Pivotal PCFE, IBM OCP, Google GCP,
Amazon AWS, and Microsoft Azure. Banu has taken part in external
speaking engagements targeted at CXOs and engineers, including at
VMworld, SpringOne, Spring Days, and Spring Developer Forum Meetups.
His internal speaking engagements include developer workshops on
cloud-native architecture and development, customer workshops on
Pivotal Cloud Foundry, and enabling cloud-native sales plays and
strategies for sales and teams. Lastly, Banu has numerous blogs on
platforms such as Medium and LinkedIn, where he promotes the adoption
of cloud-native architecture.

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic
developer and researcher who enjoys learning
new technologies for his own experiments and
creating new integrations. Manuel won the
Springy Award 2013 Community Champion
and Spring Champion. In his little free time,
he reads the Bible and composes music on his
guitar. Manuel is known as dr_pompeii. He

has tech-reviewed numerous books, including
Pro Spring MVC with Webflux (Apress, 2020),
Pro Spring Boot 2 (Apress, 2019), Rapid Java Persistence and Microservices
(Apress, 2019), Java Language Features (Apress, 2018), Spring Boot 2
Recipes (Apress, 2018), and Java APIs, Extensions, and Libraries (Apress,
2018). You can read his detailed tutorials on Spring technologies and
contact him through his blog at www.manueljordanelera.blogspot.com.
You can follow Manuel on his Twitter account, @dr_pompeii.

xiii

http://www.manueljordanelera.blogspot.com

Acknowledgments

It has been a great privilege to write this book and help you understand
real-world implementations of Spring Cloud Function. Thank you for
reading it.

After my presentation at SpringOne 2020, I received a message on
LinkedIn from Steve Anglin at Apress. Steve asked me if I would be willing
to write a book about Spring Cloud Function. I was a bit hesitant at first,
given that I was occupied with many client engagements, which were
taking up most of my work hours. I was worried that I would not do the
subject justice, due to my preoccupation with my clients. But after a long
contemplation and a heartfelt discussion with my family, I decided to
take it on.

I want to thank Steve Anglin, Associate Editorial Director, for reaching
out to me and providing me this opportunity to write a book on Spring
Cloud Function.

Mark Powers, the Editorial Operations Manager, was instrumental
in helping me bring this book to close. With his incessant prodding and
nudging, he helped me reached the finish line. Thanks, Mark.

Manuel Jordan, the technical reviewer, was immensely helpful. His
comments kept me honest and prevented me from cutting corners. He
helped improve the quality of the solutions that I present in this book.
Thanks, Manuel.

I also want to thank Nirmal Selvaraj and others at Apress, who worked
to bring this book to fruition.

This book would not be possible without the help of my wife Vijaya and
daughters Pooja and Deepika, who provided the much-needed emotional
support through this journey.

Introduction

I entered the field of Information Technology (IT) 25 years ago, after
spending time in sales and marketing. I was an average programmer and
was never into hardcore programming. During my early life in IT, I worked
as part of a team that built a baseball simulator for the Detroit Tigers. I
helped build a video capture driver for that simulator using C++. Even
though this was a great project with a lot of visibility, it was never my real
passion to be a hard-core programmer.

I soon gravitated toward solution architecture. This seemed to
perfectly tie my marketing skills to my technology skills. I began looking
at solutions from a marketing lens. This approach formed the basis for
writing this book. Because, what good is a technology if we do not know
how to apply it in real life?

Functional programming was an emerging technology. Cloud
providers such as AWS, Google, and Azure created serverless
environments, with innovations such as Firecracker virtualization
techniques, that allowed infrastructure to scale down to zero. This allowed
customers to derive huge cost savings by not paying for resources that were
not in use and subscribing to a pay-per-use model.

Initially, development of these functions that run on serverless
environments were built on either Node]JS or Python. These functions
were also vendor-specific. Spring.io developed the Spring Cloud Function
framework, which allowed the functions to run in a cloud-agnostic
environment. The focus was on the “write once, deploy anywhere”
concept. This was a game changer in the cloud functions world.

xvii

INTRODUCTION

Prior to writing this book, I was a staunch evangelist of Pivotal Cloud
Foundry and Kubernetes. I promoted writing code that was portable.
When Knative came into being in 2018 as a joint effort between IBM and
Google, I was excited. Knative was designed as a serverless infrastructure
on top of Kubernetes and made the serverless infrastructure portable.
Combining the power and portability of Spring Cloud Function and
Knative, you have a true portable system with zero scale-down capabilities.

This was something that I wanted to write and evangelize about. But I
felt that writing about the technology and how it worked would not be that
exciting. I wanted to write about how people could use this technology in
the real world.

In this book, you will see how to program and deploy real-life
examples using Spring Cloud Function. It starts with examples of writing
code and deploying to AWS Lambda, Google Cloud Function, and
Azure Function serverless environments. It then introduces you to the
Knative on Kubernetes environment. Writing code and deploying is not
enough. Automating the deployment is key in large-scale, distributed
environments. You also see how to automate the CI/CD pipeline through
examples.

This books also takes you into the world of data pipelines, AI/ML,
and IoT. This book finishes up with real-world examples in oil and gas
(IoT), manufacturing (IoT), and conversational Al (retail). This book
touches on AWS, the Google Cloud Platform (GCP), Azure, IBM Cloud, and
VMware Tanzu.

The code for these projects is provided on GitHub at https://
github.com/banup-kubeforce. Itis also available at github.com/apress/
practical-spring-cloud-function. This allows you to get up to speed on
the technologies. So, after completing this book, you will have hands-on
experience with AI/ML, IoT, data pipelines, CI/CD, and of course Spring
Cloud Function.

I hope you enjoy reading and coding this book.

xviii

https://github.com/banup-kubeforce
https://github.com/banup-kubeforce

CHAPTER 1

Why Use Spring
Cloud Function

This chapter explores Spring Cloud Function using a sample use case—an
HRM (Human Resources Management) system. The focus is on systems
that reside in an enterprise. The chapter touches on the FaaS (Functions

as a Service) concept and explains how it is gaining momentum in the
enterprise. The chapter also digs deeper into its implementations in the
cloud. You will learn about some of the portability issues present at the
code and container level and read about concepts such as Knative on
Kubernetes, which includes container portability. You will also learn about
some high-level implementations of Spring Cloud Function on AWS, GCP,
Azure, VMware Tanzu, and Red Hat OpenShift.

1.1. Functions as a Service (Faa$S)

FaaS$ is a revolutionary technology. It is a great boon for developers and
businesses. Faa$ allows businesses to adapt to rapidly changing business
needs by enabling their development teams to develop products and
features at a “high” velocity, thereby improving their Mean Time To Market
(MTTM). Developers can develop functions without worrying about
setting up, configuring, or maintaining the underlying infrastructure. FaaS
models are also designed to use just the right quantity of infrastructure and

© Banu Parasuraman 2023 1
B. Parasuraman, Practical Spring Cloud Function,
https://doi.org/10.1007/978-1-4842-8913-6_1

https://doi.org/10.1007/978-1-4842-8913-6_1

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

compute time. They also can be scaled to fit exact demand, by focusing on
billing for the number of invocations as compared to billing for uptime.
FaaS has two parts, as shown in Figure 1-1.

e The function code encapsulates the business logic
in any language, such as Java, C#, Python, Node,
and so on.

e The underlying container hosts an application server
and an operating system.

Events
Cloud

Consumer Supplier

Function Code
App Server

(035

Container

Figure 1-1. FaaS component architecture

1.1.1. Implementation
of an Enterprise Application

Imagine all the infrastructure needed to run a single payroll application
on the cloud. This application may consume only 16GB of RAM and eight
vCPUs, but you are charged continuously for the entire duration that the
application is active. Using a simple AWS pricing formula, this works out
to around $1,000 per year. This cost is for the whole time the application

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

is hosted and active, regardless of use. Of course, you can cost-justify

it through a TCO (Total Cost of Ownership) calculation, which helps

you determine how your application can bring in revenue or value that
compensates for the expense. This revenue-generation model is more
suitable to applications that generate revenue for the company, such as
an ecommerce site. It is more difficult to prove the value that a supporting
application, running in the backend of an enterprise, brings to a company.

1.1.2. Migration ROI for a Portfolio of Application

The value equation gets more complex if you plan to migrate an extensive
portfolio of apps in your enterprise.

Let’s for a moment assume, as a CTO or CIO of a company, you have a
portfolio of about one thousand applications that you plan on migrating to
the cloud. The key factors to consider, among the many, include:

e What is the current infrastructure supporting the apps?
o What is the utilization of these apps?

The utilization of apps is an essential factor in determining the value of
the application. Consider this—after analyzing the utilization of apps, you
find that this portfolio includes the following distribution:

e 10% with 80% utilization
e 40% with 50% utilization
e 50% with 20% utilization

If you calculate the billing cost using an AWS cost calculator, you see
that you will spend $1 million per year. This spend is for applications
that are critical and highly utilized, as well as for applications that are
minimally utilized. This cost is due to the fact that the cloud providers
charge for the entire duration the application is active and consuming
the infrastructure. The key here is that the infrastructure is fully allocated

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

for the application’s life. Imagine how much you could save if the
infrastructure was allocated only for the duration that the application

was active and serving. This would be a great cost and resource saving
approach. Cloud providers have thought through this because they also
faced the pressure of finite infrastructure and considered the time needed
to provision additional infrastructure.

1.1.3. The Serverless Functions Concept

To work around the problem of finite infrastructure utilization, AWS
created Lambda serverless functions. This was a genius invention.
Subscribers to this service pay only for the time the application is invoked.
The infrastructure is unallocated when it is not invoked. This way, AWS can
save on infrastructure by repurposing the infrastructure for other needy
applications while transferring the cost savings to the customer. This is a
win-win. It's worth considering whether you can apply this same approach
to all the enterprise applications in your company today. You would be
able to save a lot of money. Also, if you were to bring this technology to the
datacenter, you would be able to reap the benefits that AWS realized. Isn’t
this wonderful?

1.1.4. Applying the Serverless Functions
Concept to an Enterprise Application

Let’s dig deeper into the concept of functions and how AWS realizes the
magic of infrastructure savings. Functions are tiny code pieces with a
single input and a single output, and a processing layer (a predicate) acting
as the glue. Compare this to enterprise apps, which are designed to do
many things. Take a simple payroll system, for example. A payroll system
has multiple input interfaces and multiple output interfaces. Here are
some of those interfaces:

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

Timecard system to get the hours employees worked
in a month

Performance evaluation system

Peer feedback system

Inflation adjustment calculator system
The outgoing interface to the IRS

The outgoing interface to the medical insurance
provider

An outgoing interface to the internal web portal where
employees can download their paystubs

Running this payroll application is not trivial. I have seen such a

payroll system use the following:

Fourteen dedicated middleware application servers
Two RDBMS database stores
Two integration tools such as message queues and FTP

Four dedicated bare-metal servers, with each server
configured with 128GB RAM, 32 CPUs, 4TB of HDD,
10TB of vSAN, and the like

The key factor in determining whether this application can be hosted

on a serverless functions infrastructure like Lambda is the time it takes for

the application to boot up (the startup time or cold start) and the time it

takes for the application to shut down (the shutdown time). The faster the

startup and shutdown times, the larger the cost savings.

It is also important that these times be quick so that they don’t cause

disruptions. If you were to research the startup times for large enterprise

applications like the payroll application, you would find that it is not

pretty. An average startup time is around 15 minutes for all components to

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

come up and another 15 minutes for the application to come down. This
would not fly. Imagine if you deployed this application to an AWS Lambda
serverless function. Thirty minutes of downtime for each invocation?
This will not work. Your users would abandon the application entirely. As
you can see, large applications cannot benefit from resource release and
resource reassignment because they take a long time to start up and shut
down, which would impact the general operation of the application.

Can you make this large payroll application behave in an expected way
for serverless functions? The answer is yes. A lot of refactoring is required,
but it can be done.

Serverless Function in the Cloud

All cloud providers have now incorporated the serverless functions into
their infrastructure offerings. AWS has Lambda Functions, Google has
Cloud Functions, and Azure has Azure Functions. These providers, in
the quest for making their customers captive, made sure to introduce
proprietary elements into their environments. The two components that
are essential to run the functions are:

e Serverless function code that serves the functions

o Serverless infrastructure (containers) that supports
the code

Why Is It Important for Serverless Functions
to be Non-Proprietary?

Enterprises are gravitating toward a multi-cloud, hybrid-cloud approach
to their cloud strategy. As you can see in Figure 1-2, the survey of 3,000
global respondents indicated that 76 percent already work in a multi-cloud
environment. This means they are not bound to one single cloud provider.
The adoption of a multi-cloud strategy alleviates the risk of vendor lock-in.

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

Cloud strategy for all organizations

—— Multiple public

Multiple private
Single
private

LI Multi-cloud

Single public Hybrid cloud

Flexera

Figure 1-2. Multi-cloud adoption report
Source: https://info. flexera.com/CM-REPORT-State-of-the-
Cloud?lead source=Website%20Visitor&id=Blog

In a multi-cloud world, it is essential that enterprises subscribe to
services that can be easily ported between clouds. This is especially
important for commodity services.

FaaS$, or serverless functions, have of late become a commodity with all
the providers having some services around FaaS. It is therefore imperative
that FaaS containers not have proprietary code.

Serverless functions become portable when they do not use
proprietary code. Portable serverless functions allow for workload mobility
across clouds. If, for instance, AWS Lambda functions are costly and Azure
Functions are cheap, enterprises can avail the cost savings and move that
Lambda workload to Azure Functions with very little effort.

The subsequent sections discuss in detail these portability issues and
explain how you can solve them.

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

1.2. Code Portability Issues

Listing 1-1 shows the sample AWS Lambda code written in Java. This

code was generated using the AWS SAM (Serverless Application Model)
template. When observing the code, you can see that the AWS-specific
library references and method calls bind the code to AWS. It is not much,
but it is potent. In an enterprise, you typically have hundreds if not
thousands of pieces of code that you must refactor if you want to move this
type of code to another cloud provider. This is a costly affair.

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

Listing 1-1. Sample Code Using the AWS SAM Framework

package helloworld;

import java.io.BufferedReader; E—
import java.io.I[OException;

import java.io.InputStreamReader;

import java.net.URL;

import java.util. HashMap;

import java.util Map; =— AWS SpecificCode ~
import java.util.stream.Collectors;

import com.amazonaws.services.lambda.runtime.Confext;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.evepts.APIGateway ProxyRequestEvent; —
import com.amazonaws.services.lambda.runtime.events. APIGatewayProxyResponseEvent;

AWS Specific Code

Ve
* Handler for requests to Lambda function.
7)

public class App implements RequestHandler<APIGatewayProxyRequestEvent, APIGatewayProxyResponseEvent> {

public APIGatewayProxyResponseEvent handleRequest(final APIGatewayProxyRequestEvent input, final Context
context) {
Map<String, String> headers = new HashMap<>();
headers.put("Content-Type", "application/json");

headers.put("X-Custom-Header", "application/json");

APIGatewayProxyResponseEvent response = new APIGatewayProxyResponseEvent()
.withHeaders(headers);
try {
final String pageContents = this.getPageContents("https://checkip.amazonaws.com");
String output = String.format("{ \"message\": \"hello world\", \"location\": \"%s\" }", pageContents);

return response
.withStatusCode(200)
.withBody(output);
} catch (IOException e) {
return response
.withBody("{}")
.withStatusCode(500);
}
}

private String getPageContents(String address) throws IOException{
URL url = new URL(address);
try(BufferedReader br = new BufferedReader(new InputStreamReader(url.openStream()))) {
return br.lines().collect(Collectors joining(System.lineSeparator()));
}
J
}

The following section explores the portability of the underlying
serverless container, which impacts how multi-cloud migrations are
conducted.

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

1.2.1. Serverless Container Portability Issue

What about Lambda’s underlying serverless framework? Is it portable?

If you deep dive into AWS Lambda, the virtualization technology used
is Firecracker. Firecracker uses KVM (a kernel-based virtual machine)
to create and manage microVMs. You can find more information on
Firecracker at https://aws.amazon.com/blogs/aws/firecracker-
lightweight-virtualization-for-serverless-computing/.

The minimalist design principle that Firecracker is built on allows
for fast startup and shutdown times. Google Cloud Functions, on the
other hand, use gVisor and are not compatible with Firecracker. gVisor is
an application kernel for containers. More information can be found at
https://github.com/google/gvisor.

Azure Functions take a totally different approach of using the
PaaS offering app service as their base. So, you can see that the major
cloud providers use their own frameworks for the managing functions’
containers. This makes it difficult for functions to move between clouds
in a multi-cloud environment. This portability issue becomes more
pronounced due to the lack of portability at the container level.

Lambda Function Instance Google Function Instance Azure Function Instance
5 | FunctionCode _
Lambda Runtime E gVisor La0guage Runtime
Sandbox E Host Kernel Weblobs Script Runtime
E Azure Furctions Host - Dynamic Compiation, Language
Antradtions ete
Guest OS5 (MVM) Google Compute Engine
- Weblobs Core
Hypervisor 2] Frogramming Modsl, Common Ab@ractans
Host 05 § Weblobs Extensions
~ Trggers, Input and Dutput Bindings
Nitro Hardware = App Service Dynamic Runtime
Heming, C1, Degloyment Siets, Remote Debugpng etc_

Figure 1-3. Serverless architecture comparison

You can see that the code and containers both differ from the provider
and are not easily portable.

10

https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://github.com/google/gvisor

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

In the discussions so far, you have seen the following issues related
to FaaS:

o Portability of code
o Portability of the serverless container
o Cold start of the serverless environment

How do you solve these issues?

Enter Spring Cloud Function and Knative. Spring Cloud Function
addresses function code portability, and Knative addresses container
portability.

Information on Spring Cloud Function is available at https://spring.
io/projects/spring-cloud-function, and information about Knative is
available at https://knative.dev/docs/.

The following sections deep dive into each of these topics.

1.3. Spring Cloud Function: Writing Once
and Deploying to Any Cloud

Asyou learned from the earlier discussion, writing functions for AWS
Lambda, Google Cloud Functions, or Azure Functions is a proprietary
activity. You have to write code specific to a hyperscaler. Hyperscalers
refer to large-scale cloud providers like AWS, Google, or Azure, who have a
complete mix of hardware and facilities that can scale to 1000s of servers.
This is not bad if your strategy is to have a strong single hyperscaler
relationship, but over time, when your strategy changes to a hybrid cloud
or multi-cloud, you may have to rethink your approach.

A hybrid cloud comprises a private cloud and a public cloud
and is managed as one entity. Multi-cloud includes more than
one public cloud and does not have a private cloud component.

11

https://spring.io/projects/spring-cloud-function
https://spring.io/projects/spring-cloud-function
https://knative.dev/docs/

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

This is where the Spring Cloud Function comes in. The Spring.io team
started the Spring Cloud Function project with the following goals:

e Promote the implementation of business logic via

functions.

e Decouple the development lifecycle of business logic
from any specific runtime target so that the same code

can run as a web endpoint, a stream processor, or a task.

e Support a uniform programming model across
serverless providers, as well as the ability to run
standalone (locally or in a PaaS).

o Enable Spring Boot features (auto-configuration,
dependency injection, metrics) on serverless providers.

Source: https://spring.io/projects/spring-cloud-function

The key goals are decoupling from a specific runtime and supporting a
uniform programming model across serverless providers.

Here’s how these goals are achieved:

o Using Spring Boot
e Wrapper beans for Function<T, R> (Predicate),

Consumer<T>, and Supplier<T>

» Packaging functions for deployments to target
platforms such as AWS Lambda, Azure Functions,
Google Cloud Functions, and Knative using adapters

e Another exciting aspect of Spring Cloud Function is that
it enables functions to be executed locally. This allows
developers to unit test without deploying to the cloud

Figures 1-4 and 1-5 show how you can deploy Spring Cloud Function.
When Spring Cloud Function is bundled with specific libraries, it can be
deployed to AWS Lambda, Google Cloud Functions, or Azure Functions.

12

﻿https://spring.io/projects/spring-cloud-function﻿

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

Usabrad
specific libaries Amazon Cloud Google Cloud Azure
A’ @ &>

AWS Lambda

Google Cloud Functions Azure functions

Figure 1-4. Deploying Spring Cloud Function directly to FaaS
environments provided by the cloud providers

Hyperscale Clouds

llgmoﬂ —
1M Cloud |

p ju b]
‘ A9, BB 0
(C 02P'°y . BB
AMAZONEXS AWS Fargate GoogleGKE Google Cloud Run| | Asure AKS ey s
7] On-Prem,/Hybrid

Spring Gloud Function Knative : Py Q
[Deploy : ;"O\ 0 Q@Q %
= ! _/ OPENSHIT o & °

WMWare Tantu RedHat HPE Ezmeral Kubernetes

Amazon Cloud Google Cloud HAzure

Figure 1-5. Deploying Spring Cloud Function on Knative serverless
configured on Kubernetes environments provided by the cloud
providers

When Spring Cloud Function is containerized on Knative, it can
be deployed to any Kubernetes offering, whether on the cloud or on-
premises. This is the preferred way to deploy it on hybrid and multi-cloud
environments.

1.4. Project Knative and Portable
Serverless Containers

Having a portable serverless container is also important. This minimizes
the complexity and time required to move between cloud providers.
Moving between cloud providers to take advantage of discounted pricing
goes a long way toward saving costs. One methodology used is called
cloud bursting (Figure 1-6). Cloud bursting compensates for the lack

of infrastructure on-premises by adding resources to the cloud. This is
usually a feature of a hybrid cloud.

13

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

0,9 0,000

2 OO0

L ale

Traffic Spike
o . s
| I
Appteaton _ e Zeplcatcg
VMs
Public Cloud
Corporate Data Center
\o /

Figure 1-6. Cloud bursting

Figure 1-6 shows that, to compensate for the lack of resources in a
private cloud during a traffic spike, resources are allocated to the public
cloud where the traffic is routed. When the traffic spike goes down, the
public cloud resources are removed. This allows for targeted use of costs
and resources—that is, it uses additional resources only during the traffic
spike period. The burst of activity during an eCommerce event like Cyber
Monday is a great example of a traffic spike.

This cannot be easily achieved with just a portable code. You need
containers that are also portable. This way, containers can be moved
across cloud boundaries to accommodate traffic spikes. In Figure 1-6,
you can see that VMs from VMware are used as containers. Since the VMs
hosted in the datacenter and hosted in the cloud are similar in construct,
cloud bursting is possible.

Applying this to Functions as a Service, you need a new way to make
the underlying serverless containers portable.

One such revolutionary approach in the cloud function world is
Knative. The next section dives deep into Knative.

14

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

1.4.1. Containers, Serverless Platforms,
and Knative

What was the need for containers /serverless platforms?

Over the course of the evolution of IT, there has been a need for
secure isolation of running processes. In the early 90’s, chroot jail-based
isolation allowed developers to create and host a virtualized copy of the
software system. In 2008 Linux Containers (LXC) was introduced which
gave the developers a virtualized environment. In 2011 Cloud Foundry
introduced the concept of a container, and with Warden in 2019 container
orchestration became a reality. Docker, introduced in 2013, provided
containers that can host any operating system. Kubernetes, introduced in
2014, provided the capability to orchestrate containers based on Docker.
Finally, Knative, introduced in 2018, extended Kubernetes to enable
serverless workloads to run on Kubernetes clusters.

Serverless workloads (Knative) grew out of the need to help developers
rapidly create and deploy applications without worrying about the
underlying infrastructure. The serverless computing model takes care of
provisioning, management, scheduling, and patching and allows cloud
providers to develop the “pay only for resources used” model.

With Knative, you can create portable serverless containers that run
on any Kubernetes environment. This allows for FaaS to be portable in a
multi-cloud or hybrid-cloud environment.

Besides making developers more productive, the serverless
environment offers faster deploys (see Figure 1-7). Developers can use
the “fail fast and fail often” model and spin up or spin down code and
infrastructure faster, which helps drive rapid innovation.

15

CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

docker

Serverless

Virtual Containers

machines

Servers:

sDeploysin sDeploysin

seconds

sDeploysin

months milliseconds

sDeploysin
(ITES

Figure 1-7. Serverless deploys the quickest

1.4.2. What Is Knative?

Knative is an extension of Kubernetes that enables serverless workloads
to run on Kubernetes clusters. Working with Kubernetes is a pain. The
amount of tooling that is required to help developers move their code from
the IDE to Kubernetes defeats the purpose of the agility that Kubernetes
professes to bring to the environment. Knative automates the process of
build packages and deploying to Kubernetes by provider operators that are
native to Kubernetes. Hence, the names “K” and “Native”.

Knative has two main components:

o Serving: Provides components that enable rapid
deployment of serverless containers, autoscaling, and
point-in-time snapshots

o Eventing: Helps developers use event-driven
architecture by providing tools to route events from
producers to subscribers/sinks

You can read more about Knative at https://Knative.dev/docs.

16

https://Knative.dev/docs

