
Practical Spring
Cloud Function

Developing Cloud-Native Functions
for Multi-Cloud and Hybrid-Cloud
Environments
—
Banu Parasuraman

Practical Spring
Cloud Function

Developing Cloud-Native
Functions for Multi-Cloud

and Hybrid-Cloud
Environments

Banu Parasuraman

Practical Spring Cloud Function: Developing Cloud-Native Functions for

Multi-Cloud and Hybrid-Cloud Environments

ISBN-13 (pbk): 978-1-4842-8912-9 ISBN-13 (electronic): 978-1-4842-8913-6
https://doi.org/10.1007/978-1-4842-8913-6

Copyright © 2023 by Banu Parasuraman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler
Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image by Aamyr on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

Banu Parasuraman
Frisco, TX, USA

https://doi.org/10.1007/978-1-4842-8913-6

I would like to dedicate this book to my wife Vijaya and
my wonderful children Pooja and Deepika,

who stuck with me through the trials and
tribulations during the writing of this book.

I also dedicate this to my mom,
Kalpana Parasuraman.

v

Table of Contents

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

Chapter 1: Why Use Spring Cloud Function ��1

1.1. Functions as a Service (FaaS) ..1

1.1.1. Implementation of an Enterprise Application ..2

1.1.2. Migration ROI for a Portfolio of Application ...3

1.1.3. The Serverless Functions Concept ..4

1.1.4. Applying the Serverless Functions Concept to an Enterprise
Application ...4

1.2. Code Portability Issues ...8

1.2.1. Serverless Container Portability Issue ...10

1.3. Spring Cloud Function: Writing Once and Deploying to Any Cloud11

1.4. Project Knative and Portable Serverless Containers13

1.4.1. Containers, Serverless Platforms, and Knative....................................15

1.4.2. What Is Knative? ..16

1.5. Sample Use Case: Payroll Application ..17

1.6. Spring Cloud Function Support ..19

1.6.1. Spring Cloud Function on AWS Lambda on AWS20

1.6.2. Spring Cloud Function on Knative and EKS on AWS22

1.6.3. Spring Cloud Function on Cloud Functions on GCP23

vi

1.6.4. Spring Cloud Function on Knative and GKE on GCP24

1.6.5. Spring Cloud Function on Azure Functions on Azure26

1.6.6. Spring Cloud Function on Knative and AKS on Azure27

1.6.7. Spring Cloud Function on VMware Tanzu (TKG, PKS)28

1.6.8. Spring Cloud Function on Red Hat OpenShift (OCP)31

1.7. Summary..32

Chapter 2: Getting Started with Spring Cloud Function ����������������������33

2.1. Setting Up the Spring Boot and Spring Cloud Function Locally34

2.1.1. Step 1: Create the Spring Boot Scaffolding ...35

2.1.2. Step 2: Create the Employee Model...40

2.1.3. Step 3: Write the Consumer ...43

2.1.4. Step 4: Write the Supplier ..44

2.1.5. Step 5: Write the Function ...45

2.1.6. Step 6: Deploy and Run the Code Locally ..46

2.1.7. Step 7: Test the Function ...47

2.2. Setting Up Spring Cloud Function and AWS Lambda49

2.3. Setting Up Spring Cloud Function and Google Cloud Functions59

2.4. Setting Up Spring Cloud Function Azure Functions67

2.5. Setting Up Locally with Kubernetes and Knative and Spring Cloud
Function ...72

2.6. Setting Up AWS with EKS and Knative with Spring Cloud Function82

2.7. Setting Up GCP with Cloud Run/GKE and Knative with Spring Cloud
Function ...89

2.8. Setting Up Azure with AKS and Knative with Spring Cloud Function98

2.9. Setting Up VMware Tanzu TKG and Knative ...102

2.10. Summary..106

Table of ConTenTs

vii

Chapter 3: CI/CD with Spring Cloud Function �����������������������������������107

3.1. GitHub Actions ..108

3.2. ArgoCD ...111

3.3. Building a Simple Example with Spring Cloud Function120

3.4. Setting Up a CI/CD Pipeline to Deploy to a Target Platform122

3.5. Deploying to the Target Platform ..124

3.5.1. Deploying to AWS Lambda ...124

3.6. Deploying to GCP Cloud Functions ...129

3.7. Deploying to Azure Functions ...133

3.8. Deploying to Knative on Kubernetes ..138

3.9. Summary..147

Chapter 4: Building Event-Driven Data Pipelines with
Spring Cloud Function ��149

4.1. Data Event Pipelines ..149

4.1.1. Acquire Data ..152

4.1.2. Store/Ingest Data ...152

4.1.3. Transform Data ..153

4.1.4. Load Data ..153

4.1.5. Analyze Data ..153

4.2. Spring Cloud Function and Spring Cloud Data Flow and
Spring Cloud Streams ..154

4.2.1. Spring Cloud Function and SCDF ...155

4.3. Spring Cloud Function and AWS Glue...172

4.3.1. Step 1: Set Up Kinesis ...173

4.3.2. Step 2: Set Up AWS Glue ..174

4.3.3. Step 3: Create a Function to Load Data into Kinesis175

4.4. Spring Cloud Function and Google Cloud Dataflow185

4.5. Summary..197

Table of ConTenTs

viii

Chapter 5: AI/ML Trained Serverless Endpoints with Spring
Cloud Function ��199

5.1. AI/ML in a Nutshell ...199

5.1.1. Deciding Between Java and Python or Other Languages
for AI/ML ..206

5.2. Spring Framework and AI/ML ..209

5.3. Model Serving with Spring Cloud Function with DJL210

5.3.1. What Is DJL? ..210

5.3.2. Spring Cloud Function with DJL ..218

5.4. Model Serving with Spring Cloud Function with Google Cloud
Functions and TensorFlow ...225

5.4.1. TensorFlow ..225

5.4.2. Example Model Training and Serving ..228

5.5. Model Serving with Spring Cloud Function with AWS Lambda and
TensorFlow ...241

5.6. Spring Cloud Function with AWS SageMaker or AI/ML243

5.7. Summary..251

Chapter 6: Spring Cloud Function and IoT ��253

6.1. The State of IoT ..253

6.1.1. Example Spring Implementation ...255

6.1.2. An Argument for Serverless Functions On-Premises256

6.2. Spring Cloud Function on the Cloud with AWS IoT257

6.3. Spring Cloud Function on the Cloud with Azure IoT270

6.3.1. Azure IoT Edge Device ...271

6.3.2. Azure IoT Hub ..271

6.4. Spring Cloud Function on Azure IoT Edge ..272

6.5. Spring Cloud Function On-Premises with IoT Gateway on a
SaaS Provider (SmartSense) ..280

6.6. Summary..283

Table of ConTenTs

ix

Chapter 7: Industry-Specific Examples with
Spring Cloud Function ��285

7.1. Oil/Natural Gas Pipeline Tracking with Spring Cloud Function and IOT285

7.1.1. Sensors ..287

7.1.2. IoT Gateway ...287

7.1.3. IBM Cloud Functions ..288

7.1.4. IBM Watson IoT Platform ...288

7.1.5. IBM Watson IoT Platform: Message Gateway288

7.1.6. IBM Event Streams ..289

7.1.7. IBM Cloudant DB ..289

7.2. Enabling Healthcare with Spring Cloud Function and Big
Data Pipelines ..308

7.3. Conversational AI in Retail Using Spring Cloud Function311

7.3.1. Components of Conversational AI Solutions314

7.3.2. Watson Assistant Webhooks and Spring Cloud Function315

7.3.3. Implementing the Watson Assistant with Spring Cloud Function316

7.4. Summary..333

 Index ���335

Table of ConTenTs

xi

About the Author

Banu Parasuraman is a cloud native

technologist and a Customer Success Manager

(CSM) at IBM, with over 30 years of experience

in the IT industry. He provides expert advice

to clients who are looking to move to the cloud

or implement cloud-native platforms such

as Kubernetes, Cloud Foundry, and the like.

He has engaged over 25 select companies

spread across different sectors (including

retail, healthcare, logistics, banking, manufacturing, automotive, oil

and gas, pharmaceuticals, and media and entertainment) in the United

States, Europe, and Asia. He is experienced in most of the popular cloud

platforms, including VMware VCF, Pivotal PCF, IBM OCP, Google GCP,

Amazon AWS, and Microsoft Azure. Banu has taken part in external

speaking engagements targeted at CXOs and engineers, including at

VMworld, SpringOne, Spring Days, and Spring Developer Forum Meetups.

His internal speaking engagements include developer workshops on

cloud-native architecture and development, customer workshops on

Pivotal Cloud Foundry, and enabling cloud-native sales plays and

strategies for sales and teams. Lastly, Banu has numerous blogs on

platforms such as Medium and LinkedIn, where he promotes the adoption

of cloud-native architecture.

xiii

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic

developer and researcher who enjoys learning

new technologies for his own experiments and

creating new integrations. Manuel won the

Springy Award 2013 Community Champion

and Spring Champion. In his little free time,

he reads the Bible and composes music on his

guitar. Manuel is known as dr_pompeii. He

has tech-reviewed numerous books, including

Pro Spring MVC with Webflux (Apress, 2020),

Pro Spring Boot 2 (Apress, 2019), Rapid Java Persistence and Microservices

(Apress, 2019), Java Language Features (Apress, 2018), Spring Boot 2

Recipes (Apress, 2018), and Java APIs, Extensions, and Libraries (Apress,

2018). You can read his detailed tutorials on Spring technologies and

contact him through his blog at www.manueljordanelera.blogspot.com.

You can follow Manuel on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com

xv

Acknowledgments

It has been a great privilege to write this book and help you understand

real-world implementations of Spring Cloud Function. Thank you for

reading it.

After my presentation at SpringOne 2020, I received a message on

LinkedIn from Steve Anglin at Apress. Steve asked me if I would be willing

to write a book about Spring Cloud Function. I was a bit hesitant at first,

given that I was occupied with many client engagements, which were

taking up most of my work hours. I was worried that I would not do the

subject justice, due to my preoccupation with my clients. But after a long

contemplation and a heartfelt discussion with my family, I decided to

take it on.

I want to thank Steve Anglin, Associate Editorial Director, for reaching

out to me and providing me this opportunity to write a book on Spring

Cloud Function.

Mark Powers, the Editorial Operations Manager, was instrumental

in helping me bring this book to close. With his incessant prodding and

nudging, he helped me reached the finish line. Thanks, Mark.

Manuel Jordan, the technical reviewer, was immensely helpful. His

comments kept me honest and prevented me from cutting corners. He

helped improve the quality of the solutions that I present in this book.

Thanks, Manuel.

I also want to thank Nirmal Selvaraj and others at Apress, who worked

to bring this book to fruition.

This book would not be possible without the help of my wife Vijaya and

daughters Pooja and Deepika, who provided the much-needed emotional

support through this journey.

xvii

Introduction

I entered the field of Information Technology (IT) 25 years ago, after

spending time in sales and marketing. I was an average programmer and

was never into hardcore programming. During my early life in IT, I worked

as part of a team that built a baseball simulator for the Detroit Tigers. I

helped build a video capture driver for that simulator using C++. Even

though this was a great project with a lot of visibility, it was never my real

passion to be a hard-core programmer.

I soon gravitated toward solution architecture. This seemed to

perfectly tie my marketing skills to my technology skills. I began looking

at solutions from a marketing lens. This approach formed the basis for

writing this book. Because, what good is a technology if we do not know

how to apply it in real life?

Functional programming was an emerging technology. Cloud

providers such as AWS, Google, and Azure created serverless

environments, with innovations such as Firecracker virtualization

techniques, that allowed infrastructure to scale down to zero. This allowed

customers to derive huge cost savings by not paying for resources that were

not in use and subscribing to a pay-per-use model.

Initially, development of these functions that run on serverless

environments were built on either NodeJS or Python. These functions

were also vendor-specific. Spring.io developed the Spring Cloud Function

framework, which allowed the functions to run in a cloud-agnostic

environment. The focus was on the “write once, deploy anywhere”

concept. This was a game changer in the cloud functions world.

xviii

Prior to writing this book, I was a staunch evangelist of Pivotal Cloud

Foundry and Kubernetes. I promoted writing code that was portable.

When Knative came into being in 2018 as a joint effort between IBM and

Google, I was excited. Knative was designed as a serverless infrastructure

on top of Kubernetes and made the serverless infrastructure portable.

Combining the power and portability of Spring Cloud Function and

Knative, you have a true portable system with zero scale-down capabilities.

This was something that I wanted to write and evangelize about. But I

felt that writing about the technology and how it worked would not be that

exciting. I wanted to write about how people could use this technology in

the real world.

In this book, you will see how to program and deploy real-life

examples using Spring Cloud Function. It starts with examples of writing

code and deploying to AWS Lambda, Google Cloud Function, and

Azure Function serverless environments. It then introduces you to the

Knative on Kubernetes environment. Writing code and deploying is not

enough. Automating the deployment is key in large-scale, distributed

environments. You also see how to automate the CI/CD pipeline through

examples.

This books also takes you into the world of data pipelines, AI/ML,

and IoT. This book finishes up with real-world examples in oil and gas

(IoT), manufacturing (IoT), and conversational AI (retail). This book

touches on AWS, the Google Cloud Platform (GCP), Azure, IBM Cloud, and

VMware Tanzu.

The code for these projects is provided on GitHub at https://

github.com/banup-kubeforce. It is also available at github.com/apress/

practical-spring-cloud-function. This allows you to get up to speed on

the technologies. So, after completing this book, you will have hands-on

experience with AI/ML, IoT, data pipelines, CI/CD, and of course Spring

Cloud Function.

I hope you enjoy reading and coding this book.

InTroduCTIon

https://github.com/banup-kubeforce
https://github.com/banup-kubeforce

1

CHAPTER 1

Why Use Spring
Cloud Function
This chapter explores Spring Cloud Function using a sample use case—an

HRM (Human Resources Management) system. The focus is on systems

that reside in an enterprise. The chapter touches on the FaaS (Functions

as a Service) concept and explains how it is gaining momentum in the

enterprise. The chapter also digs deeper into its implementations in the

cloud. You will learn about some of the portability issues present at the

code and container level and read about concepts such as Knative on

Kubernetes, which includes container portability. You will also learn about

some high-level implementations of Spring Cloud Function on AWS, GCP,

Azure, VMware Tanzu, and Red Hat OpenShift.

1.1. Functions as a Service (FaaS)
FaaS is a revolutionary technology. It is a great boon for developers and

businesses. FaaS allows businesses to adapt to rapidly changing business

needs by enabling their development teams to develop products and

features at a “high” velocity, thereby improving their Mean Time To Market

(MTTM). Developers can develop functions without worrying about

setting up, configuring, or maintaining the underlying infrastructure. FaaS

models are also designed to use just the right quantity of infrastructure and

© Banu Parasuraman 2023
B. Parasuraman, Practical Spring Cloud Function,
https://doi.org/10.1007/978-1-4842-8913-6_1

https://doi.org/10.1007/978-1-4842-8913-6_1

2

compute time. They also can be scaled to fit exact demand, by focusing on

billing for the number of invocations as compared to billing for uptime.

FaaS has two parts, as shown in Figure 1-1.

• The function code encapsulates the business logic

in any language, such as Java, C#, Python, Node,

and so on.

• The underlying container hosts an application server

and an operating system.

Figure 1-1. FaaS component architecture

1.1.1. Implementation
of an Enterprise Application

Imagine all the infrastructure needed to run a single payroll application

on the cloud. This application may consume only 16GB of RAM and eight

vCPUs, but you are charged continuously for the entire duration that the

application is active. Using a simple AWS pricing formula, this works out

to around $1,000 per year. This cost is for the whole time the application

Chapter 1 Why Use spring CloUd FUnCtion

3

is hosted and active, regardless of use. Of course, you can cost-justify

it through a TCO (Total Cost of Ownership) calculation, which helps

you determine how your application can bring in revenue or value that

compensates for the expense. This revenue-generation model is more

suitable to applications that generate revenue for the company, such as

an ecommerce site. It is more difficult to prove the value that a supporting

application, running in the backend of an enterprise, brings to a company.

1.1.2. Migration ROI for a Portfolio of Application
The value equation gets more complex if you plan to migrate an extensive

portfolio of apps in your enterprise.

Let’s for a moment assume, as a CTO or CIO of a company, you have a

portfolio of about one thousand applications that you plan on migrating to

the cloud. The key factors to consider, among the many, include:

• What is the current infrastructure supporting the apps?

• What is the utilization of these apps?

The utilization of apps is an essential factor in determining the value of

the application. Consider this—after analyzing the utilization of apps, you

find that this portfolio includes the following distribution:

• 10% with 80% utilization

• 40% with 50% utilization

• 50% with 20% utilization

If you calculate the billing cost using an AWS cost calculator, you see

that you will spend $1 million per year. This spend is for applications

that are critical and highly utilized, as well as for applications that are

minimally utilized. This cost is due to the fact that the cloud providers

charge for the entire duration the application is active and consuming

the infrastructure. The key here is that the infrastructure is fully allocated

Chapter 1 Why Use spring CloUd FUnCtion

4

for the application’s life. Imagine how much you could save if the

infrastructure was allocated only for the duration that the application

was active and serving. This would be a great cost and resource saving

approach. Cloud providers have thought through this because they also

faced the pressure of finite infrastructure and considered the time needed

to provision additional infrastructure.

1.1.3. The Serverless Functions Concept
To work around the problem of finite infrastructure utilization, AWS

created Lambda serverless functions. This was a genius invention.

Subscribers to this service pay only for the time the application is invoked.

The infrastructure is unallocated when it is not invoked. This way, AWS can

save on infrastructure by repurposing the infrastructure for other needy

applications while transferring the cost savings to the customer. This is a

win-win. It’s worth considering whether you can apply this same approach

to all the enterprise applications in your company today. You would be

able to save a lot of money. Also, if you were to bring this technology to the

datacenter, you would be able to reap the benefits that AWS realized. Isn’t

this wonderful?

1.1.4. Applying the Serverless Functions
Concept to an Enterprise Application

Let’s dig deeper into the concept of functions and how AWS realizes the

magic of infrastructure savings. Functions are tiny code pieces with a

single input and a single output, and a processing layer (a predicate) acting

as the glue. Compare this to enterprise apps, which are designed to do

many things. Take a simple payroll system, for example. A payroll system

has multiple input interfaces and multiple output interfaces. Here are

some of those interfaces:

Chapter 1 Why Use spring CloUd FUnCtion

5

• Timecard system to get the hours employees worked

in a month

• Performance evaluation system

• Peer feedback system

• Inflation adjustment calculator system

• The outgoing interface to the IRS

• The outgoing interface to the medical insurance

provider

• An outgoing interface to the internal web portal where

employees can download their paystubs

Running this payroll application is not trivial. I have seen such a

payroll system use the following:

• Fourteen dedicated middleware application servers

• Two RDBMS database stores

• Two integration tools such as message queues and FTP

• Four dedicated bare-metal servers, with each server

configured with 128GB RAM, 32 CPUs, 4TB of HDD,

10TB of vSAN, and the like

The key factor in determining whether this application can be hosted

on a serverless functions infrastructure like Lambda is the time it takes for

the application to boot up (the startup time or cold start) and the time it

takes for the application to shut down (the shutdown time). The faster the

startup and shutdown times, the larger the cost savings.

It is also important that these times be quick so that they don’t cause

disruptions. If you were to research the startup times for large enterprise

applications like the payroll application, you would find that it is not

pretty. An average startup time is around 15 minutes for all components to

Chapter 1 Why Use spring CloUd FUnCtion

6

come up and another 15 minutes for the application to come down. This

would not fly. Imagine if you deployed this application to an AWS Lambda

serverless function. Thirty minutes of downtime for each invocation?

This will not work. Your users would abandon the application entirely. As

you can see, large applications cannot benefit from resource release and

resource reassignment because they take a long time to start up and shut

down, which would impact the general operation of the application.

Can you make this large payroll application behave in an expected way

for serverless functions? The answer is yes. A lot of refactoring is required,

but it can be done.

 Serverless Function in the Cloud

All cloud providers have now incorporated the serverless functions into

their infrastructure offerings. AWS has Lambda Functions, Google has

Cloud Functions, and Azure has Azure Functions. These providers, in

the quest for making their customers captive, made sure to introduce

proprietary elements into their environments. The two components that

are essential to run the functions are:

• Serverless function code that serves the functions

• Serverless infrastructure (containers) that supports

the code

 Why Is It Important for Serverless Functions
to be Non- Proprietary?

Enterprises are gravitating toward a multi-cloud, hybrid-cloud approach

to their cloud strategy. As you can see in Figure 1-2, the survey of 3,000

global respondents indicated that 76 percent already work in a multi-cloud

environment. This means they are not bound to one single cloud provider.

The adoption of a multi-cloud strategy alleviates the risk of vendor lock-in.

Chapter 1 Why Use spring CloUd FUnCtion

7

Figure 1-2. Multi-cloud adoption report
Source: https://info.flexera.com/CM-REPORT-State-of-the-
Cloud?lead_source=Website%20Visitor&id=Blog

In a multi-cloud world, it is essential that enterprises subscribe to

services that can be easily ported between clouds. This is especially

important for commodity services.

FaaS, or serverless functions, have of late become a commodity with all

the providers having some services around FaaS. It is therefore imperative

that FaaS containers not have proprietary code.

Serverless functions become portable when they do not use

proprietary code. Portable serverless functions allow for workload mobility

across clouds. If, for instance, AWS Lambda functions are costly and Azure

Functions are cheap, enterprises can avail the cost savings and move that

Lambda workload to Azure Functions with very little effort.

The subsequent sections discuss in detail these portability issues and

explain how you can solve them.

Chapter 1 Why Use spring CloUd FUnCtion

8

1.2. Code Portability Issues
Listing 1-1 shows the sample AWS Lambda code written in Java. This

code was generated using the AWS SAM (Serverless Application Model)

template. When observing the code, you can see that the AWS-specific

library references and method calls bind the code to AWS. It is not much,

but it is potent. In an enterprise, you typically have hundreds if not

thousands of pieces of code that you must refactor if you want to move this

type of code to another cloud provider. This is a costly affair.

Chapter 1 Why Use spring CloUd FUnCtion

9

Listing 1-1. Sample Code Using the AWS SAM Framework

The following section explores the portability of the underlying

serverless container, which impacts how multi-cloud migrations are

conducted.

Chapter 1 Why Use spring CloUd FUnCtion

10

1.2.1. Serverless Container Portability Issue
What about Lambda’s underlying serverless framework? Is it portable?

If you deep dive into AWS Lambda, the virtualization technology used

is Firecracker. Firecracker uses KVM (a kernel-based virtual machine)

to create and manage microVMs. You can find more information on

Firecracker at https://aws.amazon.com/blogs/aws/firecracker-

lightweight-virtualization-for-serverless-computing/.

The minimalist design principle that Firecracker is built on allows

for fast startup and shutdown times. Google Cloud Functions, on the

other hand, use gVisor and are not compatible with Firecracker. gVisor is

an application kernel for containers. More information can be found at

https://github.com/google/gvisor.

Azure Functions take a totally different approach of using the

PaaS offering app service as their base. So, you can see that the major

cloud providers use their own frameworks for the managing functions’

containers. This makes it difficult for functions to move between clouds

in a multi-cloud environment. This portability issue becomes more

pronounced due to the lack of portability at the container level.

You can see that the code and containers both differ from the provider

and are not easily portable.

Figure 1-3. Serverless architecture comparison

Chapter 1 Why Use spring CloUd FUnCtion

https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://github.com/google/gvisor

11

In the discussions so far, you have seen the following issues related

to FaaS:

• Portability of code

• Portability of the serverless container

• Cold start of the serverless environment

How do you solve these issues?

Enter Spring Cloud Function and Knative. Spring Cloud Function

addresses function code portability, and Knative addresses container

portability.

Information on Spring Cloud Function is available at https://spring.

io/projects/spring-cloud-function, and information about Knative is

available at https://knative.dev/docs/.

The following sections deep dive into each of these topics.

1.3. Spring Cloud Function: Writing Once
and Deploying to Any Cloud

As you learned from the earlier discussion, writing functions for AWS

Lambda, Google Cloud Functions, or Azure Functions is a proprietary

activity. You have to write code specific to a hyperscaler. Hyperscalers

refer to large-scale cloud providers like AWS, Google, or Azure, who have a

complete mix of hardware and facilities that can scale to 1000s of servers.

This is not bad if your strategy is to have a strong single hyperscaler

relationship, but over time, when your strategy changes to a hybrid cloud

or multi-cloud, you may have to rethink your approach.

A hybrid cloud comprises a private cloud and a public cloud
and is managed as one entity. Multi-cloud includes more than
one public cloud and does not have a private cloud component.

Chapter 1 Why Use spring CloUd FUnCtion

https://spring.io/projects/spring-cloud-function
https://spring.io/projects/spring-cloud-function
https://knative.dev/docs/

12

This is where the Spring Cloud Function comes in. The Spring.io team

started the Spring Cloud Function project with the following goals:

• Promote the implementation of business logic via

functions.

• Decouple the development lifecycle of business logic

from any specific runtime target so that the same code

can run as a web endpoint, a stream processor, or a task.

• Support a uniform programming model across

serverless providers, as well as the ability to run

standalone (locally or in a PaaS).

• Enable Spring Boot features (auto-configuration,

dependency injection, metrics) on serverless providers.

Source: https://spring.io/projects/spring-cloud-function

The key goals are decoupling from a specific runtime and supporting a

uniform programming model across serverless providers.

Here’s how these goals are achieved:

• Using Spring Boot

• Wrapper beans for Function<T, R> (Predicate),

Consumer<T>, and Supplier<T>

• Packaging functions for deployments to target

platforms such as AWS Lambda, Azure Functions,

Google Cloud Functions, and Knative using adapters

• Another exciting aspect of Spring Cloud Function is that

it enables functions to be executed locally. This allows

developers to unit test without deploying to the cloud

Figures 1-4 and 1-5 show how you can deploy Spring Cloud Function.

When Spring Cloud Function is bundled with specific libraries, it can be

deployed to AWS Lambda, Google Cloud Functions, or Azure Functions.

Chapter 1 Why Use spring CloUd FUnCtion

https://spring.io/projects/spring-cloud-function

13

Figure 1-5. Deploying Spring Cloud Function on Knative serverless
configured on Kubernetes environments provided by the cloud
providers

Figure 1-4. Deploying Spring Cloud Function directly to FaaS
environments provided by the cloud providers

When Spring Cloud Function is containerized on Knative, it can

be deployed to any Kubernetes offering, whether on the cloud or on-

premises. This is the preferred way to deploy it on hybrid and multi-cloud

environments.

1.4. Project Knative and Portable
Serverless Containers

Having a portable serverless container is also important. This minimizes

the complexity and time required to move between cloud providers.

Moving between cloud providers to take advantage of discounted pricing

goes a long way toward saving costs. One methodology used is called

cloud bursting (Figure 1-6). Cloud bursting compensates for the lack

of infrastructure on-premises by adding resources to the cloud. This is

usually a feature of a hybrid cloud.

Chapter 1 Why Use spring CloUd FUnCtion

14

Figure 1-6. Cloud bursting

Figure 1-6 shows that, to compensate for the lack of resources in a

private cloud during a traffic spike, resources are allocated to the public

cloud where the traffic is routed. When the traffic spike goes down, the

public cloud resources are removed. This allows for targeted use of costs

and resources—that is, it uses additional resources only during the traffic

spike period. The burst of activity during an eCommerce event like Cyber

Monday is a great example of a traffic spike.

This cannot be easily achieved with just a portable code. You need

containers that are also portable. This way, containers can be moved

across cloud boundaries to accommodate traffic spikes. In Figure 1-6,

you can see that VMs from VMware are used as containers. Since the VMs

hosted in the datacenter and hosted in the cloud are similar in construct,

cloud bursting is possible.

Applying this to Functions as a Service, you need a new way to make

the underlying serverless containers portable.

One such revolutionary approach in the cloud function world is

Knative. The next section dives deep into Knative.

Chapter 1 Why Use spring CloUd FUnCtion

15

1.4.1. Containers, Serverless Platforms,
and Knative

What was the need for containers /serverless platforms?

Over the course of the evolution of IT, there has been a need for

secure isolation of running processes. In the early 90’s, chroot jail-based

isolation allowed developers to create and host a virtualized copy of the

software system. In 2008 Linux Containers (LXC) was introduced which

gave the developers a virtualized environment. In 2011 Cloud Foundry

introduced the concept of a container, and with Warden in 2019 container

orchestration became a reality. Docker, introduced in 2013, provided

containers that can host any operating system. Kubernetes, introduced in

2014, provided the capability to orchestrate containers based on Docker.

Finally, Knative, introduced in 2018, extended Kubernetes to enable

serverless workloads to run on Kubernetes clusters.

Serverless workloads (Knative) grew out of the need to help developers

rapidly create and deploy applications without worrying about the

underlying infrastructure. The serverless computing model takes care of

provisioning, management, scheduling, and patching and allows cloud

providers to develop the “pay only for resources used” model.

With Knative, you can create portable serverless containers that run

on any Kubernetes environment. This allows for FaaS to be portable in a

multi-cloud or hybrid-cloud environment.

Besides making developers more productive, the serverless

environment offers faster deploys (see Figure 1-7). Developers can use

the “fail fast and fail often” model and spin up or spin down code and

infrastructure faster, which helps drive rapid innovation.

Chapter 1 Why Use spring CloUd FUnCtion

16

Figure 1-7. Serverless deploys the quickest

1.4.2. What Is Knative?
Knative is an extension of Kubernetes that enables serverless workloads

to run on Kubernetes clusters. Working with Kubernetes is a pain. The

amount of tooling that is required to help developers move their code from

the IDE to Kubernetes defeats the purpose of the agility that Kubernetes

professes to bring to the environment. Knative automates the process of

build packages and deploying to Kubernetes by provider operators that are

native to Kubernetes. Hence, the names “K” and “Native”.

Knative has two main components:

• Serving: Provides components that enable rapid

deployment of serverless containers, autoscaling, and

point-in-time snapshots

• Eventing: Helps developers use event-driven

architecture by providing tools to route events from

producers to subscribers/sinks

You can read more about Knative at https://Knative.dev/docs.

Chapter 1 Why Use spring CloUd FUnCtion

https://Knative.dev/docs

