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Introduction

I entered the field of Information Technology (IT) 25 years ago, after
spending time in sales and marketing. I was an average programmer and
was never into hardcore programming. During my early life in IT, I worked
as part of a team that built a baseball simulator for the Detroit Tigers. I
helped build a video capture driver for that simulator using C++. Even
though this was a great project with a lot of visibility, it was never my real
passion to be a hard-core programmer.

I soon gravitated toward solution architecture. This seemed to
perfectly tie my marketing skills to my technology skills. I began looking
at solutions from a marketing lens. This approach formed the basis for
writing this book. Because, what good is a technology if we do not know
how to apply it in real life?

Functional programming was an emerging technology. Cloud
providers such as AWS, Google, and Azure created serverless
environments, with innovations such as Firecracker virtualization
techniques, that allowed infrastructure to scale down to zero. This allowed
customers to derive huge cost savings by not paying for resources that were
not in use and subscribing to a pay-per-use model.

Initially, development of these functions that run on serverless
environments were built on either Node]JS or Python. These functions
were also vendor-specific. Spring.io developed the Spring Cloud Function
framework, which allowed the functions to run in a cloud-agnostic
environment. The focus was on the “write once, deploy anywhere”
concept. This was a game changer in the cloud functions world.

xvii



INTRODUCTION

Prior to writing this book, I was a staunch evangelist of Pivotal Cloud
Foundry and Kubernetes. I promoted writing code that was portable.
When Knative came into being in 2018 as a joint effort between IBM and
Google, I was excited. Knative was designed as a serverless infrastructure
on top of Kubernetes and made the serverless infrastructure portable.
Combining the power and portability of Spring Cloud Function and
Knative, you have a true portable system with zero scale-down capabilities.

This was something that I wanted to write and evangelize about. But I
felt that writing about the technology and how it worked would not be that
exciting. I wanted to write about how people could use this technology in
the real world.

In this book, you will see how to program and deploy real-life
examples using Spring Cloud Function. It starts with examples of writing
code and deploying to AWS Lambda, Google Cloud Function, and
Azure Function serverless environments. It then introduces you to the
Knative on Kubernetes environment. Writing code and deploying is not
enough. Automating the deployment is key in large-scale, distributed
environments. You also see how to automate the CI/CD pipeline through
examples.

This books also takes you into the world of data pipelines, AI/ML,
and IoT. This book finishes up with real-world examples in oil and gas
(IoT), manufacturing (IoT), and conversational Al (retail). This book
touches on AWS, the Google Cloud Platform (GCP), Azure, IBM Cloud, and
VMware Tanzu.

The code for these projects is provided on GitHub at https://
github.com/banup-kubeforce. Itis also available at github.com/apress/
practical-spring-cloud-function. This allows you to get up to speed on
the technologies. So, after completing this book, you will have hands-on
experience with AI/ML, IoT, data pipelines, CI/CD, and of course Spring
Cloud Function.

I hope you enjoy reading and coding this book.
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CHAPTER 1

Why Use Spring
Cloud Function

This chapter explores Spring Cloud Function using a sample use case—an
HRM (Human Resources Management) system. The focus is on systems
that reside in an enterprise. The chapter touches on the FaaS (Functions

as a Service) concept and explains how it is gaining momentum in the
enterprise. The chapter also digs deeper into its implementations in the
cloud. You will learn about some of the portability issues present at the
code and container level and read about concepts such as Knative on
Kubernetes, which includes container portability. You will also learn about
some high-level implementations of Spring Cloud Function on AWS, GCP,
Azure, VMware Tanzu, and Red Hat OpenShift.

1.1. Functions as a Service (Faa$S)

FaaS$ is a revolutionary technology. It is a great boon for developers and
businesses. Faa$ allows businesses to adapt to rapidly changing business
needs by enabling their development teams to develop products and
features at a “high” velocity, thereby improving their Mean Time To Market
(MTTM). Developers can develop functions without worrying about
setting up, configuring, or maintaining the underlying infrastructure. FaaS
models are also designed to use just the right quantity of infrastructure and

© Banu Parasuraman 2023 1
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compute time. They also can be scaled to fit exact demand, by focusing on
billing for the number of invocations as compared to billing for uptime.
FaaS has two parts, as shown in Figure 1-1.

e The function code encapsulates the business logic
in any language, such as Java, C#, Python, Node,
and so on.

e The underlying container hosts an application server
and an operating system.

Events
Cloud

Consumer Supplier

Function Code
App Server

(035

Container

Figure 1-1. FaaS component architecture

1.1.1. Implementation
of an Enterprise Application

Imagine all the infrastructure needed to run a single payroll application
on the cloud. This application may consume only 16GB of RAM and eight
vCPUs, but you are charged continuously for the entire duration that the
application is active. Using a simple AWS pricing formula, this works out
to around $1,000 per year. This cost is for the whole time the application
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is hosted and active, regardless of use. Of course, you can cost-justify

it through a TCO (Total Cost of Ownership) calculation, which helps

you determine how your application can bring in revenue or value that
compensates for the expense. This revenue-generation model is more
suitable to applications that generate revenue for the company, such as
an ecommerce site. It is more difficult to prove the value that a supporting
application, running in the backend of an enterprise, brings to a company.

1.1.2. Migration ROI for a Portfolio of Application

The value equation gets more complex if you plan to migrate an extensive
portfolio of apps in your enterprise.

Let’s for a moment assume, as a CTO or CIO of a company, you have a
portfolio of about one thousand applications that you plan on migrating to
the cloud. The key factors to consider, among the many, include:

e What is the current infrastructure supporting the apps?
o What is the utilization of these apps?

The utilization of apps is an essential factor in determining the value of
the application. Consider this—after analyzing the utilization of apps, you
find that this portfolio includes the following distribution:

e 10% with 80% utilization
e 40% with 50% utilization
e 50% with 20% utilization

If you calculate the billing cost using an AWS cost calculator, you see
that you will spend $1 million per year. This spend is for applications
that are critical and highly utilized, as well as for applications that are
minimally utilized. This cost is due to the fact that the cloud providers
charge for the entire duration the application is active and consuming
the infrastructure. The key here is that the infrastructure is fully allocated
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for the application’s life. Imagine how much you could save if the
infrastructure was allocated only for the duration that the application

was active and serving. This would be a great cost and resource saving
approach. Cloud providers have thought through this because they also
faced the pressure of finite infrastructure and considered the time needed
to provision additional infrastructure.

1.1.3. The Serverless Functions Concept

To work around the problem of finite infrastructure utilization, AWS
created Lambda serverless functions. This was a genius invention.
Subscribers to this service pay only for the time the application is invoked.
The infrastructure is unallocated when it is not invoked. This way, AWS can
save on infrastructure by repurposing the infrastructure for other needy
applications while transferring the cost savings to the customer. This is a
win-win. It's worth considering whether you can apply this same approach
to all the enterprise applications in your company today. You would be
able to save a lot of money. Also, if you were to bring this technology to the
datacenter, you would be able to reap the benefits that AWS realized. Isn’t
this wonderful?

1.1.4. Applying the Serverless Functions
Concept to an Enterprise Application

Let’s dig deeper into the concept of functions and how AWS realizes the
magic of infrastructure savings. Functions are tiny code pieces with a
single input and a single output, and a processing layer (a predicate) acting
as the glue. Compare this to enterprise apps, which are designed to do
many things. Take a simple payroll system, for example. A payroll system
has multiple input interfaces and multiple output interfaces. Here are
some of those interfaces:
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Timecard system to get the hours employees worked
in a month

Performance evaluation system

Peer feedback system

Inflation adjustment calculator system
The outgoing interface to the IRS

The outgoing interface to the medical insurance
provider

An outgoing interface to the internal web portal where
employees can download their paystubs

Running this payroll application is not trivial. I have seen such a

payroll system use the following:

Fourteen dedicated middleware application servers
Two RDBMS database stores
Two integration tools such as message queues and FTP

Four dedicated bare-metal servers, with each server
configured with 128GB RAM, 32 CPUs, 4TB of HDD,
10TB of vSAN, and the like

The key factor in determining whether this application can be hosted

on a serverless functions infrastructure like Lambda is the time it takes for

the application to boot up (the startup time or cold start) and the time it

takes for the application to shut down (the shutdown time). The faster the

startup and shutdown times, the larger the cost savings.

It is also important that these times be quick so that they don’t cause

disruptions. If you were to research the startup times for large enterprise

applications like the payroll application, you would find that it is not

pretty. An average startup time is around 15 minutes for all components to
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come up and another 15 minutes for the application to come down. This
would not fly. Imagine if you deployed this application to an AWS Lambda
serverless function. Thirty minutes of downtime for each invocation?
This will not work. Your users would abandon the application entirely. As
you can see, large applications cannot benefit from resource release and
resource reassignment because they take a long time to start up and shut
down, which would impact the general operation of the application.

Can you make this large payroll application behave in an expected way
for serverless functions? The answer is yes. A lot of refactoring is required,
but it can be done.

Serverless Function in the Cloud

All cloud providers have now incorporated the serverless functions into
their infrastructure offerings. AWS has Lambda Functions, Google has
Cloud Functions, and Azure has Azure Functions. These providers, in
the quest for making their customers captive, made sure to introduce
proprietary elements into their environments. The two components that
are essential to run the functions are:

e Serverless function code that serves the functions

o Serverless infrastructure (containers) that supports
the code

Why Is It Important for Serverless Functions
to be Non-Proprietary?

Enterprises are gravitating toward a multi-cloud, hybrid-cloud approach
to their cloud strategy. As you can see in Figure 1-2, the survey of 3,000
global respondents indicated that 76 percent already work in a multi-cloud
environment. This means they are not bound to one single cloud provider.
The adoption of a multi-cloud strategy alleviates the risk of vendor lock-in.



CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

Cloud strategy for all organizations

—— Multiple public

Multiple private
Single
private

LI Multi-cloud

Single public Hybrid cloud

Flexera

Figure 1-2. Multi-cloud adoption report
Source: https://info. flexera.com/CM-REPORT-State-of-the-
Cloud?lead source=Website%20Visitor&id=Blog

In a multi-cloud world, it is essential that enterprises subscribe to
services that can be easily ported between clouds. This is especially
important for commodity services.

FaaS$, or serverless functions, have of late become a commodity with all
the providers having some services around FaaS. It is therefore imperative
that FaaS containers not have proprietary code.

Serverless functions become portable when they do not use
proprietary code. Portable serverless functions allow for workload mobility
across clouds. If, for instance, AWS Lambda functions are costly and Azure
Functions are cheap, enterprises can avail the cost savings and move that
Lambda workload to Azure Functions with very little effort.

The subsequent sections discuss in detail these portability issues and
explain how you can solve them.
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1.2. Code Portability Issues

Listing 1-1 shows the sample AWS Lambda code written in Java. This

code was generated using the AWS SAM (Serverless Application Model)
template. When observing the code, you can see that the AWS-specific
library references and method calls bind the code to AWS. It is not much,
but it is potent. In an enterprise, you typically have hundreds if not
thousands of pieces of code that you must refactor if you want to move this
type of code to another cloud provider. This is a costly affair.
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Listing 1-1. Sample Code Using the AWS SAM Framework

package helloworld;

import java.io.BufferedReader; E—
import java.io.I[OException;

import java.io.InputStreamReader;

import java.net.URL;

import java.util. HashMap;

import java.util Map; =— AWS SpecificCode ~
import java.util.stream.Collectors;

import com.amazonaws.services.lambda.runtime.Confext;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.evepts.APIGateway ProxyRequestEvent; —
import com.amazonaws.services.lambda.runtime.events. APIGatewayProxyResponseEvent;

AWS Specific Code

Ve
* Handler for requests to Lambda function.
7 )

public class App implements RequestHandler<APIGatewayProxyRequestEvent, APIGatewayProxyResponseEvent> {

public APIGatewayProxyResponseEvent handleRequest(final APIGatewayProxyRequestEvent input, final Context
context) {
Map<String, String> headers = new HashMap<>();
headers.put("Content-Type", "application/json");

headers.put("X-Custom-Header", "application/json");

APIGatewayProxyResponseEvent response = new APIGatewayProxyResponseEvent()
.withHeaders(headers);
try {
final String pageContents = this.getPageContents("https://checkip.amazonaws.com");
String output = String.format("{ \"message\": \"hello world\", \"location\": \"%s\" }", pageContents);

return response
.withStatusCode(200)
.withBody(output);
} catch (IOException e) {
return response
.withBody("{}")
.withStatusCode(500);
}
}

private String getPageContents(String address) throws IOException{
URL url = new URL(address);
try(BufferedReader br = new BufferedReader(new InputStreamReader(url.openStream()))) {
return br.lines().collect(Collectors joining(System.lineSeparator()));
}
J
}

The following section explores the portability of the underlying
serverless container, which impacts how multi-cloud migrations are
conducted.
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1.2.1. Serverless Container Portability Issue

What about Lambda’s underlying serverless framework? Is it portable?

If you deep dive into AWS Lambda, the virtualization technology used
is Firecracker. Firecracker uses KVM (a kernel-based virtual machine)
to create and manage microVMs. You can find more information on
Firecracker at https://aws.amazon.com/blogs/aws/firecracker-
lightweight-virtualization-for-serverless-computing/.

The minimalist design principle that Firecracker is built on allows
for fast startup and shutdown times. Google Cloud Functions, on the
other hand, use gVisor and are not compatible with Firecracker. gVisor is
an application kernel for containers. More information can be found at
https://github.com/google/gvisor.

Azure Functions take a totally different approach of using the
PaaS offering app service as their base. So, you can see that the major
cloud providers use their own frameworks for the managing functions’
containers. This makes it difficult for functions to move between clouds
in a multi-cloud environment. This portability issue becomes more
pronounced due to the lack of portability at the container level.

Lambda Function Instance Google Function Instance Azure Function Instance
5 | FunctionCode _
Lambda Runtime E gVisor La0guage Runtime
Sandbox E Host Kernel Weblobs Script Runtime
E Azure Furctions Host - Dynamic Compiation, Language
Antradtions ete
Guest OS5 (MVM) Google Compute Engine
- Weblobs Core
Hypervisor 2] Frogramming Modsl, Common Ab@ractans
Host 05 § Weblobs Extensions
~ Trggers, Input and Dutput Bindings
Nitro Hardware = App Service Dynamic Runtime
Heming, C1, Degloyment Siets, Remote Debugpng etc_

Figure 1-3. Serverless architecture comparison

You can see that the code and containers both differ from the provider
and are not easily portable.
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In the discussions so far, you have seen the following issues related
to FaaS:

o Portability of code
o Portability of the serverless container
o Cold start of the serverless environment

How do you solve these issues?

Enter Spring Cloud Function and Knative. Spring Cloud Function
addresses function code portability, and Knative addresses container
portability.

Information on Spring Cloud Function is available at https://spring.
io/projects/spring-cloud-function, and information about Knative is
available at https://knative.dev/docs/.

The following sections deep dive into each of these topics.

1.3. Spring Cloud Function: Writing Once
and Deploying to Any Cloud

Asyou learned from the earlier discussion, writing functions for AWS
Lambda, Google Cloud Functions, or Azure Functions is a proprietary
activity. You have to write code specific to a hyperscaler. Hyperscalers
refer to large-scale cloud providers like AWS, Google, or Azure, who have a
complete mix of hardware and facilities that can scale to 1000s of servers.
This is not bad if your strategy is to have a strong single hyperscaler
relationship, but over time, when your strategy changes to a hybrid cloud
or multi-cloud, you may have to rethink your approach.

A hybrid cloud comprises a private cloud and a public cloud
and is managed as one entity. Multi-cloud includes more than
one public cloud and does not have a private cloud component.
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This is where the Spring Cloud Function comes in. The Spring.io team
started the Spring Cloud Function project with the following goals:

e Promote the implementation of business logic via

functions.

e Decouple the development lifecycle of business logic
from any specific runtime target so that the same code

can run as a web endpoint, a stream processor, or a task.

e Support a uniform programming model across
serverless providers, as well as the ability to run
standalone (locally or in a PaaS).

o Enable Spring Boot features (auto-configuration,
dependency injection, metrics) on serverless providers.

Source: https://spring.io/projects/spring-cloud-function

The key goals are decoupling from a specific runtime and supporting a
uniform programming model across serverless providers.

Here’s how these goals are achieved:

o Using Spring Boot
e Wrapper beans for Function<T, R> (Predicate),

Consumer<T>, and Supplier<T>

» Packaging functions for deployments to target
platforms such as AWS Lambda, Azure Functions,
Google Cloud Functions, and Knative using adapters

e Another exciting aspect of Spring Cloud Function is that
it enables functions to be executed locally. This allows
developers to unit test without deploying to the cloud

Figures 1-4 and 1-5 show how you can deploy Spring Cloud Function.
When Spring Cloud Function is bundled with specific libraries, it can be
deployed to AWS Lambda, Google Cloud Functions, or Azure Functions.
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Figure 1-4. Deploying Spring Cloud Function directly to FaaS
environments provided by the cloud providers
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Figure 1-5. Deploying Spring Cloud Function on Knative serverless
configured on Kubernetes environments provided by the cloud
providers

When Spring Cloud Function is containerized on Knative, it can
be deployed to any Kubernetes offering, whether on the cloud or on-
premises. This is the preferred way to deploy it on hybrid and multi-cloud
environments.

1.4. Project Knative and Portable
Serverless Containers

Having a portable serverless container is also important. This minimizes
the complexity and time required to move between cloud providers.
Moving between cloud providers to take advantage of discounted pricing
goes a long way toward saving costs. One methodology used is called
cloud bursting (Figure 1-6). Cloud bursting compensates for the lack

of infrastructure on-premises by adding resources to the cloud. This is
usually a feature of a hybrid cloud.
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Figure 1-6. Cloud bursting

Figure 1-6 shows that, to compensate for the lack of resources in a
private cloud during a traffic spike, resources are allocated to the public
cloud where the traffic is routed. When the traffic spike goes down, the
public cloud resources are removed. This allows for targeted use of costs
and resources—that is, it uses additional resources only during the traffic
spike period. The burst of activity during an eCommerce event like Cyber
Monday is a great example of a traffic spike.

This cannot be easily achieved with just a portable code. You need
containers that are also portable. This way, containers can be moved
across cloud boundaries to accommodate traffic spikes. In Figure 1-6,
you can see that VMs from VMware are used as containers. Since the VMs
hosted in the datacenter and hosted in the cloud are similar in construct,
cloud bursting is possible.

Applying this to Functions as a Service, you need a new way to make
the underlying serverless containers portable.

One such revolutionary approach in the cloud function world is
Knative. The next section dives deep into Knative.
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1.4.1. Containers, Serverless Platforms,
and Knative

What was the need for containers /serverless platforms?

Over the course of the evolution of IT, there has been a need for
secure isolation of running processes. In the early 90’s, chroot jail-based
isolation allowed developers to create and host a virtualized copy of the
software system. In 2008 Linux Containers (LXC) was introduced which
gave the developers a virtualized environment. In 2011 Cloud Foundry
introduced the concept of a container, and with Warden in 2019 container
orchestration became a reality. Docker, introduced in 2013, provided
containers that can host any operating system. Kubernetes, introduced in
2014, provided the capability to orchestrate containers based on Docker.
Finally, Knative, introduced in 2018, extended Kubernetes to enable
serverless workloads to run on Kubernetes clusters.

Serverless workloads (Knative) grew out of the need to help developers
rapidly create and deploy applications without worrying about the
underlying infrastructure. The serverless computing model takes care of
provisioning, management, scheduling, and patching and allows cloud
providers to develop the “pay only for resources used” model.

With Knative, you can create portable serverless containers that run
on any Kubernetes environment. This allows for FaaS to be portable in a
multi-cloud or hybrid-cloud environment.

Besides making developers more productive, the serverless
environment offers faster deploys (see Figure 1-7). Developers can use
the “fail fast and fail often” model and spin up or spin down code and
infrastructure faster, which helps drive rapid innovation.

15



CHAPTER 1 WHY USE SPRING CLOUD FUNCTION

docker

Serverless

Virtual Containers

machines

Servers:

sDeploysin sDeploysin

seconds

sDeploysin

months milliseconds

sDeploysin
(ITES

Figure 1-7. Serverless deploys the quickest

1.4.2. What Is Knative?

Knative is an extension of Kubernetes that enables serverless workloads
to run on Kubernetes clusters. Working with Kubernetes is a pain. The
amount of tooling that is required to help developers move their code from
the IDE to Kubernetes defeats the purpose of the agility that Kubernetes
professes to bring to the environment. Knative automates the process of
build packages and deploying to Kubernetes by provider operators that are
native to Kubernetes. Hence, the names “K” and “Native”.

Knative has two main components:

o Serving: Provides components that enable rapid
deployment of serverless containers, autoscaling, and
point-in-time snapshots

o Eventing: Helps developers use event-driven
architecture by providing tools to route events from
producers to subscribers/sinks

You can read more about Knative at https://Knative.dev/docs.
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