species K- r	read.table	("species.tx	t", header	$\gamma = T$, col(llasses	= 11
head (specie						
pH Bioma						
high 0.46929	972 30					
high 1.73087		Third Ed	lition			
high 2.08977						
high 3.92578						
high 4.36679	927 25					
high 5.48197						
species_mod2	2 <- glm (S		mass * pH,	poisson,		
summary (spe						
	$n \cap $					
all:						
lm(formula =	Species ~	Biomass * ph	H, family =	= poisson,		
eviance Resid	iuals:					
Min	10 Media	n 30	Max			
2.4978 -0.74	485 -0 <mark>.04</mark> 0	2 9.5575	7.2297			
pefficients:						
	Estimate S	td. Error z	value Pr(>	z)		
Intercept)	3.76812	0.06153 6	51.40 < 2	2e-16 ***		
iomass	-0.10713	0.01249 -	8.577 < 2	le-16 ***		
Hlow	-0.81557	0.10284	7.93 2.18	8e-15 ***		
Hmid	-0.33146	0.09217 -	3.596 0.0	200	/	
iomass:pHlow	-0.15503	9.94993 -	3.873 0.0	DUU	N I	
iomass:pHmid	-0.03189	0.02308 -				

ignif. codes: 0 (***' 0.001 (**' 0.01 (*' 0.05 (.' 0.1 (' 1

Elinor, Jones • Simon, Harden • Michael J. Crawley

Num We6 viance: 452.346 on 89 degrees of freedom Viance: 83.201 on 84 degrees of freedom

mber of Fisher Scoring iterations: 4

The R Book

The R Book

Third Edition

Elinor Jones University College London, UK

Simon Harden University College London, UK

Michael J. Crawley Imperial College London, UK

WILEY

This third edition first published 2023 © 2023 John Wiley & Sons Ltd

Edition History: John Wiley & Sons Ltd (1e, 2007; 2e, 2013)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Elinor Jones, Simon Harden and Michael J. Crawley to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office 9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Jones, Elinor (Associate Professor), author. | Harden, Simon, author. | Crawley, Michael J., author. Title: The R book / Elinor Jones, Simon Harden, and Michael J. Crawley. Description: Third edition. | Hoboken, NJ : Wiley, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2022008352 (print) | LCCN 2022008353 (ebook) | ISBN 9781119634324 (cloth) | ISBN 9781119634409 (adobe pdf) | ISBN 9781119634430 (epub) Subjects: LCSH: R (Computer program language) | Mathematical statistics–Data processing. Classification: LCC QA276.45.R3 J662 2022 (print) | LCC QA276.45.R3 (ebook) | DDC 005.5/5–dc23/eng20220528 LC record available at https://lccn.loc.gov/2022008352

LC ebook record available at https://lccn.loc.gov/2022008353

Cover design: Wiley

Cover image: Courtesy of Simon Harden; © enjoynz/Getty Images

Set in 10/12pt HelveticaLTStd by Straive, Chennai, India

Contents

List	t of Tables	xxi
Pre	face	xxiii
Ack	knowledgments	XXV
Abo	out the Companion Website	xxvii
1	Getting Started	1
2	Technical Background	17
3	Essentials of the R Language	55
4	Data Input and Dataframes	207
5	Graphics	249
6	Graphics in More Detail	297
7	Tables	359
8	Probability Distributions in R	373
9	Testing	405
10	Regression	439
11	Generalised Linear Models	499
12	Generalised Additive Models	579
13	Mixed-Effect Models	601
14	Non-linear Regression	627
15	Survival Analysis	649
16	Designed Experiments	667
17	Meta-Analysis	699
18	Time Series	715
19	Multivariate Statistics	741

20	Classification and Regression Trees	761
21	Spatial Statistics	779
22	Bayesian Statistics	799
23	Simulation Models	823
Inde	ex	839

Detailed Contents

List	of Tal	bles		xxi	
Prei	Preface				
Ack	nowle	dgments	S	XXV	
Abc	out the	Compai	nion Website	xxvii	
1	Getti	1			
	1.1	1 Navigating the book		1	
		1.1.1	How to use this book	1	
	1.2	<i>R</i> vs. F	Studio	3	
	1.3	Installir	ng R and RStudio	3	
	1.4	Usina I	RStudio	4	
		1.4.1	Using R directly via the console	5	
		1.4.2	Using text editors	5	
	1.5	The Co	omprehensive R Archive Network	7	
		1.5.1	Manuals	7	
		1.5.2	Frequently asked questions	8	
		1.5.3	Contributed documentation	8	
	1.6	6 Packages in <i>R</i>		8	
		1.6.1	Contents of packages	9	
		1.6.2	Finding packages	9	
		1.6.3	Installing packages	9	
	1.7	Getting	help in R	11	
		1.7.1	Worked examples of functions	12	
		1.7.2	Demonstrations of R functions	13	
	1.8	Good h	nousekeeping	13	
		1.8.1	Variable types	13	
		1.8.2	What's loaded or defined in the current session	14	
		1.8.3	Attaching and detaching objects	14	
		1.8.4	Projects	15	
	1.9	Linking	to other computer languages	15	
	Refe	rences		15	

2	Technical Background 1					
	2.1	Mathema	atical functions	17		
		2.1.1	Logarithms and exponentials	18		
		2.1.2	Trigonometric functions	19		
		2.1.3	Power laws	20		
		2.1.4	Polynomial functions	22		
		2.1.5	Gamma function	24		
		2.1.6	Asymptotic functions	25		
		2.1.7	Sigmoid (S-shaped) functions	27		
		2.1.8	Biexponential function	28		
		2.1.9	Transformations of model variables	29		
	2.2	Matrices		30		
		2.2.1	Matrix multiplication	31		
		2.2.2	Diagonals of matrices	32		
		2.2.3	Determinants	33		
		2.2.4	Inverse of a matrix	35		
		2.2.5	Eigenvalues and eigenvectors	36		
		2.2.6	Solving systems of linear equations using matrices	39		
	2.3	Calculus		40		
		2.3.1	Differentiation	40		
		2.3.2	Integration	41		
		2.3.3	Differential equations	42		
	2.4	Probabili	ity	45		
		2.4.1	The central limit theorem	45		
		2.4.2	Conditional probability	49		
	2.5	Statistics	3	50		
		2.5.1	Least squares	51		
		2.5.2	Maximum likelihood	51		
	Refer	ence		53		
3	Esser	ntials of th	e R Language	55		
	3.1	Calculati	ons	56		
		3.1.1	Complex numbers	57		
		3.1.2	Rounding	58		
		3.1.3	Arithmetic	59		
		3.1.4	Modular arithmetic	61		
		3.1.5	Operators	62		
		3.1.6	Integers	63		
	3.2	Naming	objects	64		
	3.3	Factors		64		
	3.4	Logical c	operations	67		
		3.4.1	TRUE, T, FALSE, F	68		
		3.4.2	Testing for equality of real numbers	69		
		3.4.3	Testing for equality of non-numeric objects	70		
		3.4.4	Evaluation of combinations of TRUE and FALSE	72		
		3.4.5	Logical arithmetic	73		
	3.5	Generati	ng sequences	74		
		3.5.1	Generating repeats	76		
		3.5.2	Generating factor levels	77		

3.6	Class m	nembership	78
3.7	Missing	values, infinity, and things that are not numbers	82
	3.7.1	Missing values: NA	83
3.8	Vectors	and subscripts	86
	3.8.1	Extracting elements of a vector using subscripts	87
	3.8.2	Classes of vector	89
	3.8.3	Naming elements within vectors	90
3.9	Working	g with logical subscripts	91
3.10	Vector f	functions	93
	3.10.1	Obtaining tables using tapply ()	95
	3.10.2	Applying functions to vectors using sapply ()	97
	3.10.3	The aggregate () function for grouped summary statistics	99
	3.10.4	Parallel minima and maxima: pmin and pmax	100
	3.10.5	Finding closest values	101
	3.10.6	Sorting, ranking, and ordering	102
	3.10.7	Understanding the difference between unique () and	
		duplicated ()	104
	3.10.8	Looking for runs of numbers within vectors	106
	3.10.9	Sets: union (), intersect (), and setdiff ()	108
3.11	Matrice	s and arrays	109
	3.11.1	Matrices	111
	3.11.2	Naming the rows and columns of matrices	112
	3.11.3	Calculations on rows or columns of matrices	113
	3.11.4	Adding rows and columns to matrices	115
	3.11.5	The sweep () function	117
	3.11.6	Applying functions to matrices	119
	3.11.7	Scaling a matrix	120
	3.11.8	Using the max.col () function	121
	3.11.9	Restructuring a multi-dimensional array using aperm ()	123
3.12	Randon	n numbers, sampling, and shuffling	126
	3.12.1	The sample () function	127
3.13	Loops a	and repeats	128
	3.13.1	More complicated while () loops	131
	3.13.2	Loop avoidance	133
	3.13.3	The slowness of loops	134
	3.13.4	Do not 'grow' data sets by concatenation or recursive function calls	135
	3.13.5	Loops for producing time series	136
3.14	Lists		138
	3.14.1	Summarising lists and lapply ()	140
- · -	3.14.2	Manipulating and saving lists	142
3.15	lext, ch	naracter strings, and pattern matching	147
	3.15.1	Pasting character strings together	149
	3.15.2	Extracting parts of strings	150
	3.15.3	Counting things within strings	151
	3.15.4	Upper and lower case text	153
	3.15.5	I ne match () TUNCTION and relational databases	153
	3.15.6	Pattern matching	155
	3.15./	Substituting text within character strings	159
	3.15.8	Locations of a pattern within a vector	160

	3.15.9	Comparing vectors using %in% and which ()	162
	3.15.10	Stripping patterned text out of complex strings	163
3.16	Dates ar	d times in <i>R</i>	164
	3.16.1	Reading time data from files	165
	3.16.2	Calculations with dates and times	168
	3.16.3	Generating sequences of dates	170
	3.16.4	Calculating time differences between the rows of a dataframe	173
	3.16.5	Regression using dates and times	175
3.17	Environn	nents	177
	3.17.1	Using attach () or not!	178
	3.17.2	Using attach () in this book	180
3.18	Writing F	? functions	181
	3.18.1	Arithmetic mean of a single sample	181
	3.18.2	Median of a single sample	182
	3.18.3	Geometric mean	183
	3.18.4	Harmonic mean	184
	3.18.5	Variance	186
	3.18.6	Variance ratio test	187
	3.18.7	Using the variance	189
	3.18.8	Plots and deparsing in functions	191
	3.18.9	The switch () function	192
	3.18.10	Arguments in our function	193
	3.18.11	Errors in our functions	195
	3.18.12	Outputs from our function	196
3.19	Structure	e of R objects	200
3.20	Writing fi	rom R to a file	203
	3.20.1	Saving data objects	203
	3.20.2	Saving command history	204
	3.20.3	Saving graphics or plots	204
	3.20.4	Saving data for a spreadsheet	204
	3.20.5	Saving output from functions to a file	205
3.21	Tips for v	writing R code	206
Refer	ences		206

4	Data Input and Dataframes			
	4.1	Working directory	207	
	4.2	Data input from files	208	
		4.2.1 Data input using read.table () and read.csv ()	208	
		4.2.2 Input from files using scan ()	210	
		4.2.3 Reading data from a file using readLines ()	213	
	4.3	Data input directly from the web	215	
	4.4	Built-in data files	215	
	4.5	Dataframes	216	
		4.5.1 Subscripts and indices	220	
		4.5.2 Selecting rows from the dataframe at random	222	
		4.5.3 Sorting dataframes	223	
		4.5.4 Using logical conditions to select rows from the dataframe	229	

		4.5.5 4.5.6 4.5.7	Omitting rows containing missing values, NA A dataframe with row names instead of row numbers Creating a dataframe from another kind of object	232 235 236			
		4.5.8	Eliminating duplicate rows from a dataframe	239			
		4.5.9	Dates in dataframes	239			
	4.6	Using the	ematch () function in dataframes	241			
		4.6.1	Merging two dataframes	243			
	4.7	Adding m	nargins to a dataframe	245			
		4.7.1	Summarising the contents of dataframes	247			
5	Graph	ics		249			
	5.1	Plotting p	principles	249			
		5.1.1	Axes labels and titles	251			
		5.1.2	Plotting symbols and colours	251			
		5.1.3	Saving graphics	254			
	5.2	Plots for	single variables	255			
		5.2.1	Histograms vs. bar charts	255			
		5.2.2	Histograms	256			
		5.2.3	Density plots	260			
		5.2.4	Boxpiots	261			
		5.2.5	Dolpiols Ber charte	202			
		5.2.0	Bar charls Die shorte	203			
	E 2	D.Z./	Ple charts	204			
	5.5	FI015 101	Showing two numeric variables	200			
		532	Scallerpiol Plots with many identical values	200			
	51	D.J.Z Plote for	numeric variables by group	270			
	5.4	5/11	Boxplots by group	272			
		542	Dotplots by group	274			
		543	An inferior (but nonular) ontion	274			
	55	Plots sho	wing two categorical variables	277			
	0.0	551	Grouped bar charts	277			
		552	Mosaic plots	277			
	5.6	Plots for	three (or more) variables	279			
	0.0	5.6.1	Plots of all pairs of variables	279			
		5.6.2	Incorporating a third variable on a scatterplot	280			
		5.6.3	Basic 3D plots	281			
	5.7	Trellis gra	aphics	283			
		5.7.1	Panel boxplots	285			
		5.7.2	Panel scatterplots	286			
		5.7.3	Panel barplots	289			
		5.7.4	Panels for conditioning plots	290			
		5.7.5	Panel histograms	291			
		5.7.6	More panel functions	292			
	5.8	Plotting f	unctions	293			
		5.8.1	Two-dimensional plots	293			
		5.8.2	Three-dimensional plots	295			
	Refere	eferences 2					

6	Grap	hics in Mo	ore Detail	297
	6.1	More or	ו colour	297
		6.1.1	Colour palettes with categorical data	297
		6.1.2	The RColorBrewer package	299
		6.1.3	Foreground colours	302
		6.1.4	Background colours	302
		6.1.5	Background colour for legends	303
		6.1.6	Different colours for different parts of the graph	304
		6.1.7	Full control of colours in plots	305
		6.1.8	Cross-hatching and grey scale	307
	6.2	Changir	ng the look of graphics	308
		6.2.1	Shape and size of plot	308
		6.2.2	Multiple plots on one screen	309
		6.2.3	Tickmarks and associated labels	309
		6.2.4	Font of text	311
	6.3	Adding	items to plots	311
		6.3.1	Adding text	311
		6.3.2	Adding smooth parametric curves to a scatterplot	313
		6.3.3	Fitting non-parametric curves through a scatterplot	314
		6.3.4	Connecting observations	316
		6.3.5	Adding shapes	321
		6.3.6	Adding mathematical and other symbols	322
	6.4	The gra	mmar of graphics and ggplot2	326
		6.4.1	Basic structure	327
		6.4.2	Examples	327
	6.5	Graphic	es cheat sheet	330
		6.5.1	Text justification, adj	332
		6.5.2	Annotation of graphs, ann	332
		6.5.3	Delay moving on to the next in a series of plots, ask	332
		6.5.4	Control over the axes, axis	332
		6.5.5	Background colour for plots, bg	333
		6.5.6	Boxes around plots, bty	334
		6.5.7	Size of plotting symbols using the character expansion function, \mathtt{cex}	334
		6.5.8	Changing the shape of the plotting region, plt	335
		6.5.9	Locating multiple graphs in non-standard layouts using fig	336
		6.5.10	Two graphs with a common X scale but different Y scales using fig	336
		6.5.11	The layout function	338
		6.5.12	Creating and controlling multiple screens on a single device	340
		6.5.13	Orientation of numbers on the tick marks, las	341
		6.5.14	Shapes for the ends and joins of lines, lend and ljoin	342
		6.5.15	Line types, lty	343
		6.5.16	Line widths, 1wd	343
		6.5.17	Several graphs on the same page, mfrow and mfcol	344
		6.5.18	Margins around the plotting area, mar	345
		6.5.19	Plotting more than one graph on the same axes, new	346
		6.5.20	Outer margins, oma	347
		6.5.21	Packing graphs closer together	348
		6.5.22	Square plotting region, pty	350

		6.5.23 6.5.24 6.5.25	Character rotation, srt Rotating the axis labels Tick marks on the axes	350 351 351
		0.5.20 6 5 07	AXIS SIVIES	303
	Dofo	0.3.27	Summary	303
	neie	Tences		557
7	Table	25		359
	7.1	Tabulat	ing categorical or discrete data	359
		7.1.1	Tables of counts	359
		7.1.2	Tables of proportions	360
	7.2	Tabulat	ing summaries of numeric data	362
		7.2.1	General summaries by group	362
		7.2.2	Bespoke summaries by group	364
	7.3	Conver	ting between tables and dataframes	367
		7.3.1	From a table to a dataframe	367
		7.3.2	From a dataframe to a table	370
	Refe	rence		371
•	Duck	- h ::::+ . D:-	tributions in D	070
8		ability Dis	Stributions in R	373
	0.1	9 1 1	Discrete and continuous probability distributions	374
		0.1.1	Discrete and continuous probability distributions	374
		0.1.2		374
	80	Drobabi	ility distributions in P	375
	0.2 8 3	Continu	inty distributions in A	370
	0.0	831	The Normal (or Gaussian) distribution	377
		8.3.2	The Uniform distribution	380
		833	The Chi-squared distribution	381
		834		382
		835	Student's t distribution	383
		8.3.6	The Gamma distribution	385
		8.3.7	The Exponential distribution	386
		8.3.8	The Beta distribution	387
		8.3.9	The Lognormal distribution	388
		8.3.10	The Logistic distribution	389
		8.3.11	The Weibull distribution	390
		8.3.12	Multivariate Normal distribution	390
	8.4	Discrete	e probability distributions	392
		8.4.1	The Bernoulli distribution	392
		8.4.2	The Binomial distribution	392
		8.4.3	The Geometric distribution	395
		8.4.4	The Hypergeometric distribution	397
		8.4.5	The Multinomial distribution	398
		8.4.6	The Poisson distribution	399
		8.4.7	The Negative Binomial distribution	400
	8.5	The cer	ntral limit theorem	402
	Refe	rences		404

9	Testi	ng		405
	9.1	Princip	les	406
		9.1.1	Defining the question to be tested	406
		9.1.2	Assumptions	408
		9.1.3	Interpreting results	408
	9.2	Continu	uous data	410
		9.2.1	Single population average	410
		9.2.2	Two population averages	412
		9.2.3	Multiple population averages	414
		9.2.4	Population distribution	415
		9.2.5	Checking and testing for normality	417
		9.2.6	Comparing variances	419
	9.3	Discret	te and categorical data	421
		9.3.1	Sign test	421
		9.3.2	Test to compare proportions	423
		9.3.3	Contingency tables	427
		9.3.4	Testing contingency tables	429
	9.4	Bootstr	rapping	431
	9.5	Multiple	e tests	433
	9.6	Power	and sample size calculations	434
	9.7	A table	e of tests	436
	Refe	437		
10	Regr	439		
	10.1	The sir	mple linear regression model	440
		10.1.1	Model format and assumptions	440
		10.1.2	Building a simple linear regression model	443
	10.2	The mu	ultiple linear regression model	446
		10.2.1	Model format and assumptions	446
		10.2.2	Building a multiple linear regression model	447
		10.2.3	Categorical covariates	449
		10.2.4	Interactions between covariates	454
	10.3	Unders	standing the output	458
		10.3.1	Residuals	458
		10.3.2	Estimates of coefficients	459
		10.3.3	Testing individual coefficients	459
		10.3.4	Residual standard error	460
		10.3.5	R ² and its variants	460
		10.3.6	The regression <i>F</i> -test	460
		10.3.7	ANOVA: Same model, different output	461
		10.3.8	Extracting model information	464
	10.4	Fitting	models	465
		10.4.1	The principle of parsimony	465
		10.4.2	First plot the data	467
		10.4.3	Comparing nested models	468
		10.4.4	Comparing non-nested models	470
	40 -	10.4.5	Dealing with large numbers of covariates	471
	10.5	Checki	ing model assumptions	473
		10.5.1	Residuals and standardised residuals	473
		10.5.2	Checking for linearity	474

		10.5.3	Checking for homoscedasticity of errors	476
		10.5.4	Checking for normality of errors	476
		10.5.5	Checking for independence of errors	478
		10.5.6	Checking for influential observations	479
		10.5.7	Checking for collinearity	481
	10.0	10.5.8	Improving fit	483
	10.6	Using th	ne model	491
		10.6.1	Interpretation of model	491
	40 -	10.6.2	Making predictions	495
	10.7	Further	types of regression modelling	497
	Refer	ences		498
11	Gene	ralised Li	near Models	499
	11.1	How GL	Ms work	499
		11.1.1	Error structure	499
		11.1.2	Linear predictor	500
		11.1.3	Link function	501
		11.1.4	Model checking	502
		11.1.5	Interpretation and prediction	506
	11.2	Count d	ata and GLMs	507
		11.2.1	A straightforward example	508
		11.2.2	Dispersion	511
		11.2.3	An alternative to Poisson counts	516
	11.3	Count ta	able data and GLMs	522
		11.3.1	Log-linear models	522
		11.3.2	All covariates might be useful	522
		11.3.3	Spine plot	534
	11.4	Proporti	on data and GLMs	537
		11.4.1	Theoretical background	538
		11.4.2	Logistic regression with binomial errors	541
		11.4.3	Predicting x from y	544
		11.4.4	Proportion data with categorical explanatory variables	545
		11.4.5	Binomial GLM with ordered categorical covariates	550
		11.4.6	Binomial GLM with categorical and continuous covariates	556
		11.4.7	Revisiting lizards	559
	11.5	Binary F	Response Variables and GLMs	560
		11.5.1	A straightforward example	562
		11.5.2	Graphical tests of the fit of the logistic curve to data	564
		11.5.3	Mixed covariate types with a binary response	567
		11.5.4	Spine plot and logistic regression	570
	11.6	Bootstra	apping a GLM	574
	Refer	ences		577
12	Gene	ralised A	dditive Models	579
-	12.1	Smooth	ing example	580
	12.2 Straightforward examples of GAMs			
	12.3 Background to using GAMs			
		12.3.1	Smoothing	588
		12.3.2	Suggestions for using gam ()	588
		-		

	12.4	More co	mplex GAM examples	589
		12.4.1	Back to Ozone	590
		12.4.2	An example with strongly humped data	592
		12.4.3	GAMs with binary data	596
		12.4.4	Three-dimensional graphic output from gam	598
	Refer	ences		599
13	Mixed	l-Effect M	lodels	601
	13.1	Regress	sion with categorical covariates	601
	13.2	An alter	native method: random effects	602
	13.3	Commo	n data structures where random effects are useful	603
		13.3.1	Nested (hierarchical) structures	604
		13.3.2	Non-nested structures	604
		13.3.3	Longitudinal structures	605
	13.4	R packa	ges to deal with mixed effects models	605
		13.4.1	The nlme package	605
		13.4.2	The lme4 package	606
		13.4.3	Methods for fitting mixed models	606
	13.5	Example	es of implementing random effect models	607
		13.5.1	Multilevel data (two levels)	607
		13.5.2	Multilevel data (three levels)	611
		13.5.3	Designed experiment: split-plot	614
		13.5.4	Longitudinal data	617
	13.6	General	ised linear mixed models	622
	40 -	13.6.1	Logistic mixed model	622
	13.7	Alternati	ives to mixed models	625
	Refer	ences		625
14	Non-linear Regression			627
	14.1	Example	e: modelling deer jaw bone length	628
		14.1.1	An exponential model for the deer data	629
		14.1.2	A Michaelis–Menten model for the deer data	632
		14.1.3	Comparison of the exponential and the Michaelis–Menten model	634
	14.2 Example: grouped data			634
	14.3	Self-stai	rting functions	638
		14.3.1	Self-starting Michaelis-Menten model	638
		14.3.2	Self-starting asymptotic exponential model	640
		14.3.3	Self-starting four peremeter legistic	642
		14.3.4 Eurther	Sell-starting four-parameter logistic	043
	14.4			040
		14.4.1	Confidence intervale	040
	Refer	ences		648
15	C	(a) A		040
15			sis a survival data	649
	15.1		y survival uala	649
		15.1.1	Structure of a survival dataset	649
		15.1.2	Survival uala III A	652

	15.2	The surv 15.2.1	vival and hazard functions Non-parametric estimation of the survival function	652 653
		15.2.2	Parametric estimation of the survival function	654
	15.3	Modellin	ng survival data	655
		15.3.1	The data	657
		15.3.2	The Cox proportional hazard model	658
		15.3.3	Accelerated failure time models	660
		15.3.4	Cox proportional hazard or a parametric model?	665
	Refer	ences		665
16	Desig	ned Expe	eriments	667
	16.1	Factoria	l experiments	667
		16.1.1	Expanding data	672
	16.2	Pseudo-	replication	673
		16.2.1	Split-plot effects	673
		16.2.2	Removing pseudo-replication	675
	10.0	16.2.3	Derived variable analysis	6/6
	16.3	Contrast		677
		16.3.1	Contrast coefficients	678
		16.3.2	An example of contrasts using A Model simplification for contrasts	679
		16.2.0		004 699
		1635	Sum contrasts	000 083
		16.3.6	Polynomial contrasts	691
		16.3.7	Contrasts with multiple covariates	694
	Refer	ences		698
17	Meta-	Analysis		699
	17.1	Element	s of a meta-analysis	699
		17.1.1	Choosing studies for a meta-analysis	700
		17.1.2	Effects and effect size	700
		17.1.3	Weights	701
		17.1.4	Fixed vs. random effect models	701
	17.2	Meta-an	alysis in R	703
		17.2.1	Formatting information from studies	703
		17.2.2	Computing the inputs of a meta-analysis	703
	47.0	17.2.3	Conducting the meta-analysis	706
	17.3	Example		707
	17 /	17.3.1 Mata an	Meta-analysis of scaled differences	707
	17.4 INIEIA-ANAIYSIS OT CATEGORICAI DATA			711
	Relei	ences		/14
18	Time	Series		715
	18.1	Moving a	average	/15
	18.2	BIOWILLES	S al data	/1/
	18.3		al uala Roint of view	/23
		10.3.1	Puilt in the () functions	724
		10.J.Z	Duilt in CS () lunctions	/24
		18 2 /	Uyuco Tasting for a time series trend	120 700
		10.3.4	ו בשמווש וטו מ מוווב שבוובש מבווט	120

	18.4 Multi 18.5 Som 18.5. 18.5. 18.5. 18.5. 18.5. 18.6 ARIN 18.7 Simu Reference	 ple time series theoretical background Autocorrelation Autoregressive models Partial autocorrelation Moving average models More general models: ARMA and ARIMA MA example Ilation of time series 	729 730 731 732 732 733 733 733 733 735 739
19	Multivariate 19.1 Visua 19.2 Multi 19.3 Princ 19.4 Facto 19.5 Cluss 19.5 19.6 Hiera 19.7 Discu 19.8 Neur References	Statistics alising data variate analysis of variance ipal component analysis or analysis rer analysis 1 <i>k</i> -means urchical cluster analysis riminant analysis al networks	741 742 743 745 748 751 751 754 756 758 760
20	Classificatio 20.1 How 20.2 Regr 20.2 20.2 20.2 20.2 20.2 20.3 20.3 20.3	 n and Regression Trees CARTs work ession trees 1 The tree package 2 The rpart package 3 Comparison with linear regression 4 Model simplification sification trees 1 Classification trees with categorical explanatory variables 2 Classification trees for replicated data ing for patterns 	761 763 764 765 767 769 771 771 773 775 777
21	Spatial Stat 21.1 Spat 21.1. 21.1. 21.1. 21.2 Geos 21.2. References	istics al point processes 1 How can we check for randomness? 2 Models 3 Marks 5 patial statistics 1 Models	779 779 781 785 790 793 794 798
22	Bayesian S 22.1 Com 22.1 22.1 22.1	atistics ponents of a Bayesian Analysis 1 The likelihood (the model and data) 2 Priors 3 The Posterior	799 800 800 801 802

		22.1.4	Markov chain Monte Carlo (MCMC)	803
		22.1.5	Considerations for MCMC	803
		22.1.6	Inference	805
		22.1.7	The Pros and Cons of going Bayesian	806
	22.2	Bayesia	n analysis in R	806
		22.2.1	Installing JAGS	807
		22.2.2	Running JAGS in <i>R</i>	807
		22.2.3	Writing BUGS models	808
	22.3	Example	S	810
		22.3.1	MCMC for a simple linear regression	810
		22.3.2	MCMC for longitudinal data	814
	22.4	MCMC f	or a model with binomial errors	818
	Refer	ences		821
23	Simulation Models			823
	23.1	Temporal dynamics		823
		23.1.1	Chaotic dynamics in population size	823
		23.1.2	Investigating the route to chaos	825
	23.2	Spatial s	imulation models	826
		23.2.1	Meta-population dynamics	826
		23.2.2	Coexistence resulting from spatially explicit (local) density dependence	829
		23.2.3	Pattern generation resulting from dynamic interactions	834
	23.3 Temporal and spatial dynamics: random walk			837
	Rofor	ences		838
	TICICI	011000		000

Index

839

List of Tables

Table 1.1	Libraries used in this book that come supplied as part of the base package of R	8
Table 1.2	Task Views on CRAN	10
Table 3.1	Mathematical functions	61
Table 3.2	Common operators	62
Table 3.3	Logical and relational operations	67
Table 3.4	Data types	80
Table 3.5	Vector functions	94
Table 3.6	Format codes for dates and times	167
Table 3.7	Escape sequences for use with cat ()	199
Table 4.1	Correctly set out dataset for importing into a dataframe	216
Table 4.2	Dataset that will not form a dataframe correctly	217
Table 4.3	Dataset that will form a dataframe correctly	217
Table 4.4	Selecting parts of a dataframe called df_dummy	223
Table 5.1	Plotting single variables	255
Table 6.1	Orientation and sizes of labels	310
Table 6.2	Drawing mathematical expressions in text	323
Table 6.3	Graphical parameters and their default values	354
Table 8.1	Some commonly used probability distributions supported by R	376
Table 9.1	Tests used in Chapter 9	436
Table 10.1	Functions for various regression models	497
Table 10.2	Frequently used functions to extract information about regression models	498
Table 11.1	Common members of the exponential family	501

Table 14.1	Useful non-linear functions	628
Table 14.2	Useful non-linear self-starting functions	639
Table 15.1	Common parametric forms of the survival and hazard functions	654
Table 17.1	Data from Study A	711

Preface

R is the most powerful tool in the known universe for carrying out statistical analysis, and it's free! This book is aimed at those who wish to carry out such work – exploring, plotting, and modelling data – but who do not have much experience in *R* and/or statistics. *R* is described from scratch with instructions for loading and getting going with the software in Chapter 1 and a description of its essential elements in Chapter 3. Later chapters discuss statistical methods and are written so that they can be used either as a beginner's guide or as a reference manual on particular procedures in *R*. The theory behind the analyses is covered in enough depth, we hope, to make it comprehensible but without overburdening the reader with too much mathematics. The datasets used to illustrate various analyses are available at https://www.wiley.com/go/jones/therbook3e.

Using R has become far simpler with the introduction of RStudio, which is also free (other editors are available). RStudio provides a friendly front end and easy access to tools, all of which seem a long way from R's original rather forbidding command prompt. This book assumes the use of RStudio rather than using R directly, but the code presented will work using the latter setup too.

While there is still the usual hurdle of getting to know powerful software, the benefits, particularly in graphics and modelling, far outweigh the effort. Academic papers in many disciplines routinely use and report results using *R*. In addition, the open-source nature of the software means that users have added extra functionality by writing packages to broaden *R*'s capabilities. There are currently over 18,000 packages that, together with useful links and information, can be found at the official *R* distribution site, CRAN: https://cran.r-project.org/.

This book is contingent upon the existence of R. Those involved are too numerous to mention, but we are hugely grateful to all involved in its creation and continuing evolution. When you use R, R packages (e.g. spatstat), and RStudio, please cite them. Up-to-date citation details for each of these can be found by typing the following in R, respectively:

citation () citation ("spatstat") RStudio.Version ()

> Elinor Jones Simon Harden Michael J. Crawley August 2022

Acknowledgments

This book would not exist without its previous editions so thanks, firstly, to the originating author, Michael J. Crawley.

It has been a pleasure to revise The R Book to create this third edition. We are very grateful to Professor Crawley for allowing us to use materials from previous versions, including his fantastic array of datasets that make a welcome return in this edition.

Finally, we would like to thank the Department of Statistical Science at University College London for giving us time and space to complete the book during a difficult period for everybody.

Elinor Jones Simon Harden August 2022

About the Companion Website

This book is accompanied by a companion website.

www.wiley.com/go/jones/therbook3e

This website include: Datasets

