
Federated
Learning
Fundamentals and Advances

Yaochu Jin · Hangyu Zhu ·
Jinjin Xu · Yang Chen

Machine Learning: Foundations, Methodologies,
and Applications

Machine Learning: Foundations, Methodologies,
and Applications

Series Editors

Kay Chen Tan, Department of Computing, Hong Kong Polytechnic University,
Hong Kong, China

Dacheng Tao, University of Technology, Sydney, Australia

Books published in this series focus on the theory and computational foundations,
advanced methodologies and practical applications of machine learning, ideally
combining mathematically rigorous treatments of a contemporary topics in machine
learning with specific illustrations in relevant algorithm designs and demonstrations
in real-world applications. The intended readership includes research students and
researchers in computer science, computer engineering, electrical engineering, data
science, and related areas seeking a convenient medium to track the progresses made
in the foundations, methodologies, and applications of machine learning.

Topics considered include all areas of machine learning, including but not limited
to:

• Decision tree
• Artificial neural networks
• Kernel learning
• Bayesian learning
• Ensemble methods
• Dimension reduction and metric learning
• Reinforcement learning
• Meta learning and learning to learn
• Imitation learning
• Computational learning theory
• Probabilistic graphical models
• Transfer learning
• Multi-view and multi-task learning
• Graph neural networks
• Generative adversarial networks
• Federated learning

This series includesmonographs, introductory, and advanced textbooks, and state-
of-the-art collections. Furthermore, it supports Open Access publication mode.

Yaochu Jin · Hangyu Zhu · Jinjin Xu · Yang Chen

Federated Learning
Fundamentals and Advances

Yaochu Jin
Faculty of Technology
Bielefeld University
Bielefeld, Germany

Jinjin Xu
Intelligent Perception and Interaction
Research Department
OPPO Research Institute
Shanghai, China

Hangyu Zhu
Department of Artificial Intelligence
and Computer Science
Jiangnan University
Wuxi, China

Yang Chen
School of Electrical Engineering
China University of Mining and Technology
Xuzhou, China

ISSN 2730-9908 ISSN 2730-9916 (electronic)
Machine Learning: Foundations, Methodologies, and Applications
ISBN 978-981-19-7082-5 ISBN 978-981-19-7083-2 (eBook)
https://doi.org/10.1007/978-981-19-7083-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-7083-2

Preface

I heard the terminology “federated learning” for the first time when I was listening
to a talk given by Dr. Catherine Huang from Intel at a workshop of the IEEE Sympo-
sium Series on Computational Intelligence in December 2016 in Athens, Greece. I
was fascinated by the idea of federated learning and immediately recognized the
paramount importance of preserving data privacy, since deep learning had been
increasingly relying on the collection of a large amount of data, either from industrial
processes or from human everyday life.

Federated learning has now become a popular research area in machine learning
and received increased interest from both industry and government. Actually already
in April 2016, the European Union adopted the General Data Protection Regulation,
which is the most strict law on data protection and privacy in the European Union and
the European Economic Area and took effective in May 2018. Consequently, data
privacy and security has become indispensable for practical applications of machine
learning and artificial intelligence, together with other importance requirements,
Including explainability, fairness, accountability, robustness and reliability.

This book presents a compact yet comprehensive and updated coverage of funda-
mentals and recent advances in federated learning. The book is self-contained
and suited for both postgraduate students, researchers, and industrial practitioners.
Chapter 1 starts with an introduction to the most popular neural network models
and gradient-based learning algorithms, evolutionary algorithms, evolutionary opti-
mization, and multi-objective evolutionary learning. Then, three main privacy-
preserving computing techniques, including secure multi-party computation, differ-
ential privacy, and homomorphic encryption are described. Finally, the basics of
federated learning, including a category of federated learning algorithms, the vanilla
federated averaging algorithm, federated transfer learning, and main challenges
in federated learning over non independent and identically distributed data are
presented. Chapter 2 focuses on communication efficient federated learning, which
aims to reduce the communication costs in federated learning without deteriorating
the learning performance. Two algorithms for reducing communication overhead
in federated learning are detailed. The first algorithm takes advantage of the fact
that shallow layers in a deep neural network are responsible for learning general

v

vi Preface

features across different classes while deep layers take care of class-specific features.
Consequently, the deep layers can be updated less frequently than the deep layers,
thereby reducing the number of parameters that need to be uploaded and downloaded.
The second algorithm adopts a completely different approach, which dramatically
decreases the communication load by converting the weights in real numbers into
ternary values. Here, the key question is how to maintain the learning performance
after ternary compression of the weights, which is achieved by training a real-valued
co-efficient for each layer. Interestingly, we are able to prove theoretically that model
divergence can even be mitigated by introducing ternary quantization of the weights,
in particularwhen the data is not independent and identically distributed.While layer-
wise synchronous weight update and ternary compression described in Chap. 2 can
effectively lower the communication cost, Chap. 3 addresses communication cost
by simultaneously maximizing the learning performance and minimizing the model
complexity (e.g., the number of parameters in the model) using a multi-objective
evolutionary algorithm. To go a step further, a real-time multi-objective evolutionary
federated learning algorithm is given, which searches for optimal neural architectures
by maximizing the performance, minimizing the model complexity, and minimizing
the computational performance (indicated by floating point operations per second) at
the same time. To make it possible for real-time neural architecture search, a strategy
that searches for subnetworks by sampling a supernet, and reducing computational
costs by sampling clients is introduced. To enhance the security level of federated
learning, Chap. 4 elaborates two secure federated learning algorithms by integrating
homomorphic encryption and differential privacy techniqueswith federated learning.
The first algorithm is based on a horizontal federated learning, in which a distributed
encryption algorithm is applied to the weights to be uploaded on top of ternary quan-
tization. By contrast, the second algorithm is meant for vertical federated learning
based on decision trees, in which secure node split and construction are developed
based on homomorphic encryption and predicted labels are aggregated on the basis
of partial differential privacy. This algorithm does not assume that all labels are
stored on one client, making it more practical for real-world applications. The book
is concluded by Chap. 5, providing a summary of the presented algorithms, and an
outlook of future research.

The two algorithms presented in Chap. 2 were developed by two visiting Ph.D.
students I hosted at University of Surrey, Jinjin Xu and Yang Cheng. The two multi-
objective evolutionary federated learning algorithms were proposed by my previous
Ph.D. student, Hangyu Zhu. Finally, the two secure federated learning algorithms
were designed by Hangyu Zhu, in collaboration with Dr. Kaitai Liang, and his Ph.D.
student, RuiWang, who were with the Department of Computer Science, University
of Surrey, and are now with the Department of Intelligent Systems, Delft University
of Technology, The Netherlands. I would like to take this opportunity thank to Kaitai
and Rui for their contributions to Chap. 4.

Preface vii

Finally, I would like to acknowledge that my research is funded by an Alexander
von Humboldt Professorship for Artificial Intelligence endowed by the German
Federal Ministry of Education and Research.

Bielefeld, Germany
August 2022

Yaochu Jin

Contents

1 Introduction . 1
1.1 Artificial Neural Networks and Deep Learning 1

1.1.1 A Brief History of Artificial Intelligence 1
1.1.2 Multi-layer Perceptrons . 4
1.1.3 Convolutional Neural Networks . 13
1.1.4 Long Short-Term Memory . 20
1.1.5 Decision Trees . 26
1.1.6 Gradient-Based Methods . 31

1.2 Evolutionary Optimization and Learning . 36
1.2.1 Optimization and Learning . 36
1.2.2 Genetic Algorithms . 37
1.2.3 Genetic Programming . 42
1.2.4 Evolutionary Multi-objective Optimization 43
1.2.5 Evolutionary Multi-objective Learning 52
1.2.6 Evolutionary Neural Architecture Search 54

1.3 Privacy-Preserving Computation . 60
1.3.1 Secure Multi-party Computation . 61
1.3.2 Differential Privacy . 64
1.3.3 Homomorphic Encryption . 66

1.4 Federated Learning . 68
1.4.1 Horizontal and Vertical Federated Learning 68
1.4.2 Federated Averaging . 71
1.4.3 Federated Transfer Learning . 73
1.4.4 Federated Learning Over Non-IID Data 76

1.5 Summary . 83
References . 83

2 Communication Efficient Federated Learning . 93
2.1 Communication Cost in Federated Learning . 93
2.2 Main Methodologies . 94

ix

x Contents

2.2.1 Non-IID/IID Data and Dataset Shift . 94
2.2.2 Non-identical Client Distributions . 95
2.2.3 Violations of Independence . 95

2.3 Temporally Weighted Averaging and Layer-Wise Weight
Update . 96
2.3.1 Temporally Weighted Averaging . 98
2.3.2 Layer-Wise Asynchronous Weight Update 99
2.3.3 Empirical Studies . 103

2.4 Trained Ternary Compression for Federated Learning 109
2.4.1 Binary and Ternary Compression . 110
2.4.2 Trained Ternary Compression . 113
2.4.3 Trained Ternary Compression for Federated Learning 114
2.4.4 Theoretical Analysis . 119
2.4.5 Empirical Studies . 126

2.5 Summary . 135
References . 135

3 Evolutionary Multi-objective Federated Learning 139
3.1 Motivations and Challenges . 139
3.2 Offline Evolutionary Multi-objective Federated Learning 140

3.2.1 Sparse Network Encoding with a Random Graph 141
3.2.2 Evolutionary Multi-objective Neural Architecture

Search . 141
3.2.3 Overall Framework . 144
3.2.4 Empirical Results . 146

3.3 Real-Time Evolutionary Federated Neural Architecture
Search . 150
3.3.1 Network Architecture Encoding Based On Supernet 151
3.3.2 Network Sampling and Client Sampling 153
3.3.3 Overall Framework . 154
3.3.4 Empirical Studies . 157

3.4 Summary . 163
References . 163

4 Secure Federated Learning . 165
4.1 Threats to Federated Learning . 165
4.2 Distributed Encryption for Horizontal Federated Learning 166

4.2.1 Distributed Data Encryption . 167
4.2.2 Federated Encryption and Decryption 168
4.2.3 Ternary Quantization and Approximate Aggregation 173
4.2.4 Overall Framework . 176
4.2.5 Empirical Studies . 178

4.3 Secure Vertical Federated Learning . 185
4.3.1 Vertical Federated Learning with XGBoost 187
4.3.2 Secure Node Split and Construction . 192
4.3.3 Partial Differential Privacy . 196

Contents xi

4.3.4 Security Analysis . 198
4.3.5 Empirical Studies . 200

4.4 Summary . 207
References . 208

5 Summary and Outlook . 213
5.1 Summary . 213
5.2 Future Directions . 214

Index . 217

Chapter 1
Introduction

Abstract This chapter introduces the background knowledge of the book, including
the most widely used artificial neural network models and decision trees, gradient
based learningmethods, evolutionary algorithms and their applications to single- and
multi-objective machine learning, traditional privacy-preserving computing meth-
ods such as multi-party secure computation, differential privacy, and homomorphic
encryption, and the federated learning paradigm for privacy-preserving machine
learning. An overview of horizontal and vertical federated learning, together with a
description of the basic federated learning algorithm, known as federated averaging,
is presented, before knowledge transfer in federated learning is briefly explained.
Finally, the main challenges of federated learning over non independent and identi-
cally distributed data are discussed in detail.

1.1 Artificial Neural Networks and Deep Learning

1.1.1 A Brief History of Artificial Intelligence

The terminology of artificial intelligence was formally suggested in a proposal of
a summer workshop held in Dartmouth 1955, although the idea to create a pro-
grammablemachine can be traced back to the 19th century [1]. The firstmathematical
model proposed by McCulloch and Pitts in 1943 [2], known as the McCulloch-Pitts
model, simulates the function of a single neuron. In 1949, the Hebb Law was pro-
posed byHebb [3], which states that neurons that fire together wire together, meaning
that a connection between two neurons will become stronger if they activate simul-
taneously, and the connection will weaken if they activate at different times. Many
unsupervised learning algorithms were based the Hebb Law in principle. The earliest
functional neuronmodel is the perceptron proposed by Rosenblatt in 1958 [4], which
can separate linearly separable patterns.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Jin et al., Federated Learning, Machine Learning: Foundations, Methodologies,
and Applications, https://doi.org/10.1007/978-981-19-7083-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7083-2_1&domain=pdf
https://doi.org/10.1007/978-981-19-7083-2_1

2 1 Introduction

During 1945 and 1947, Alan Turing, a pioneer of both computer science and arti-
ficial intelligence, worked on the design of the Automatic Computing Engine, which
is widely recognized as the first stored-program computer. In 1950, Turing proposed
his most well known test to define if a machine is intelligent, called Turing test [5].
The basic idea behind the Turing test is that a machine can be seen as intelligent if a
human interrogator is not able to distinguish a machine from a human being through
conversation. The term machine learning was first proposed by Arthur Samuel in
1959, which was defined as a research field that enables computers to learn without
being explicitly programmed. A large body of research on artificial intelligence was
carried out after the Dartmouth workshop, including the development of the first nat-
ural language processing computer program ELIZA [6] and the first industrial robot
Unimate [7]. It should be mentioned that two important research areas of artificial
intelligence, namely fuzzy sets and fuzzy systems [8] that simulate human reason-
ing, and evolutionary computation [9] that simulates natural evolution, were also
developed during the 1960s.

The first ‘winter’ of artificial intelligence started in the beginning of 1970s after
Minsky and Papert published a book analyzing the limitations of perceptrons [10].
Nevertheless, several prominent advances were made during the 1970 and 1980s,
including the development of many successful expert systems, proposal of an early
version of the error back-propagation learning algorithm for a neural network model
containing one hidden layer that can solve the XOR problem [11], and genetic algo-
rithms [12] as well as population based evolution strategies [13].

Several breakthroughs were achieved in the 1980s. In 1982, Kohonen proposed
the self-organizing maps [14], which is one most important unsupervised learning
algorithms, while reinforcement learning was suggested in 1983 [15]. The Hopfield
neural network, which is a recurrent neural network model, remarked the start of
second boom of the artificial intelligence research, which was culminated by the
publication of the seminal paper [16] in 1986, in which the error back-propagating
algorithm was proposed for training multiple layer perceptrons, enabling artificial
neural networks containing one or two hidden layers to solve many linearly non-
separable classification problems and nonlinear regression problems.

Many other learning algorithms and neural network models have also been
reported during the 1980s. In 1983, the Bienenstock-Cooper-Munro (BCM) neural
plasticity rule was published [17], which can be seen as an extension of the Hebbian
rule and has become a powerful unsupervised learning algorithm.Aftermore than one
decade, another important unsupervised learning rule, called spike-timing dependent
plasticity was developed in 1998 [18], which has become one popular unsupervised
learning algorithm for spiking neural networks proposed in 1997 byWolfgang Maas
[19]. Very different from other artificial neural networks that are based on continuous
analog signals, spiking neural networks use the timing and frequency of the spikes
or pulses for information processing, which is biologically more plausible since all
biological nervous systems, including the human brain, also rely on spikes. In the
meantime, Neurocognitron [20], which was based on the architecture of the human
visual system was suggested by Fukushima in 1983, and which can be seen as the
predecessor of the convolutional neural network [21] proposed in 1998, which is cur-

1.1 Artificial Neural Networks and Deep Learning 3

rently the most popular neural network model for solving computer vision problems.
Several other important pieces of research on artificial intelligence have also been
proposed in the 1990s, e.g., the support vector machine [22], and the long short-term
memory, a more powerful recurrent neural network model [23]. Interestingly, sup-
port vector machines and other statistically learning algorithms outperformed those
based on artificial neural networks, resulting in the second ‘winter’ of the artificial
intelligence research.

There were also lots of interesting new developments outside the field of neu-
ral networks and machine learning during the 1990s. Specifically, new theories
and methodologies were developed in fuzzy systems, including the introduction
of type-2 fuzzy sets and a wide range of successful applications of fuzzy control
and fuzzy decision-making. Besides, evolutionary computation has also become a
popular research field, in which not only new paradigms such as genetic program-
ming was proposed, but several other population based meta-heuristics were also
proposed, including particle swarm optimization, ant colony optimization, and dif-
ferential evolution [24]. Evolutionary algorithms and other metaheuristics have been
shown to be effective in solving complex optimization problems, in particular multi-
objective optimization problems, dynamic optimization problems, and data-driven
optimization problems.

Like in the first winter of artificial intelligence, many researchers continued work-
ing in the field of neuronal networks, fuzzy systems and evolutionary computation,
whichwas called computational intelligence, instead of artificial intelligence, mainly
because artificial intelligence became unwelcome in the research community. Many
popular emerging research topics in artificial intelligence nowadays have already
been studied in the 1990s and early 2000s, before the third wave of artificial intelli-
gence. These include interpretability of trained neural networks and fuzzy systems,
robust machine learning, multi-objective machine learning and structure optimiza-
tion of neural networks, now popularly known as neural architecture search.

The third resurgence of artificial intelligence started in 2007 when Hinton pub-
lished a paper on effective training of artificial neural networks consisting of many
large hidden layers [25], now widely known as deep neural networks. The training
of deep neural networks was considerably accelerated by using graphic processing
units (GPUs), making it possible to effectively train deep neural networks containing
tens or even hundreds of hidden layers on huge datasets such as ImageNet by taking
advantage of the immense computational resources available nowadays. A revolu-
tionary success was achieved by deep learning when a computer go player algorithm
called AlphaGo on the basis of deep reinforcement learning and Monte Carlo tree
search defeated a human world champion.

To date, deep learning has achieved tremendous successes that were unimaginable
years ago. Deep learning has demonstrated unique power in solving almost all single
problems in science and technology, ranging from face recognition, game playing, to
healthcare, natural language processing, protein folding and drug discovery. Many
very powerful deep neural networkmodels have been proposed, such as autoencoder,
variational autoencoder, generative adversarial networks, and transformer, just to
name a few. In addition, new research paradigms such as transfer learning, few

4 1 Introduction

shots learning, and self-supervised learning have been developed to handle various
problems, in particular deep learning in the presence of data paucity.

Despite the above successes deep learning has achieved, many technical, ethical,
and social issues remain or have arisen. Technically, it is still a challenging issue to
enable machine learning models to learn multiple tasks on small data, let alone to
learn autonomously. Trustworthiness and fairness of artificial intelligence become
increasingly concerning as it is more and more widely used in critical, human, and
societal systems. Trustworthiness typically include explanability and or transparency,
safety, reliability and robustness, privacy preservation, respect of human values,
green, and accountability.

1.1.2 Multi-layer Perceptrons

A multi-layer perceptron (MLP) [26–28] often represent a fully connected feed-
forward artificial neural network (ANN). And it consists of three types of layers: the
input layer, output layer and hidden layers, each of which contains several neurons
named perceptrons [29]. Before discussing about MLP neural networks, simpler
perceptrons will be explained at first.

1.1.2.1 Perceptrons

The general structure of a perceptron is shown in Fig. 1.1, where x = (x1, x2, . . . , xn)
is a n-length input feature vector, b is the bias and w = (w1,w2, . . . ,wn) is the
corresponding weight vector of the input features.

For feed-forward propagation, a perceptron receives a weighted sum of the input
features together with the bias as the input z computed by the following Eq. (1.1):

Fig. 1.1 An example of perceptron

1.1 Artificial Neural Networks and Deep Learning 5

Fig. 1.2 An example of the
step function when the
threshold t is 0

z =
n∑

i=1

xiwi = xTw (1.1)

The computed sum z is then passed through an activation function a for nonlinear
transformation, refer to Fig. 1.1. And the step function is always selected to be the
activation function of the perceptrons whose outputs are calculated according to Eq.
(1.2):

yout = a(z) =
{
1, z > t.
0, z < t.

(1.2)

where t is the threshold. A simple example of the step function when t = 0 is shown
in Fig. 1.2. If the weighted sum z is larger than the threshold t , the perceptron in
Fig. 1.1 will output yout = 1; otherwise, the output yout will become 0. Note that the
step function can be replaced by other activation functions or even be removed for
specific learning tasks.

1.1.2.2 Activation Function

For a typical supervised learning problem, we redefine the outputs of the perceptron
for any input vector x as model prediction ŷout and the corresponding data label as
yout . In this case, training perceptrons can be converted into minimizing the con-
structed loss function representing the distance between the prediction ŷout and the
actual label yout , which is conducted by optimizing the weights and bias (often called
model parameters) of the perceptrons.

The gradient based optimization methods are commonly used in training percep-
trons. The core idea of this kind of approach is to let themodel parameters recursively
subtract their corresponding product of the gradients and the learning rate until the
loss function converges. And calculating the gradients of the model parameters with
the chain rule [30] requires the constructed loss function to be continuous and dif-

6 1 Introduction

ferentiable. Therefore, the above mentioned step function is usually approximated
by the sigmoid function, making it differentiable for the gradient based training.

It is clear to see that the curve of sigmoid function shown in Fig. 1.3(a) has a
similar shape as that of step function shown in Fig. 1.2. These two functions also
have the same output range, and the sigmoid function can be seen as the smoothed
and continuous version of the step function. The sigmoid function is described in
Eq. (1.3):

ŷout = σ(z) = 1

1 + e−z
(1.3)

And the derivative of the sigmoid function with respect to its input z (weighted
sum of the input data features) can be easily calculated in Eq. (1.4):

∂σ(z)

∂z
= − 1

(1 + e−z)2
· (−e−z)

= σ(z)(1 − σ(z))
(1.4)

From Fig. 1.3(b), the largest gradient of the sigmoid function is located at the
central part of the curve and it tends to approach 0 when the absolute value of the
input z approaches to infinity. That is the reason why normalization techniques [31–
33] are often used in modern machine learning tasks.

Furthermore, the sigmoid function may cause gradient vanishing especially for
MLPs with a large number of hidden layers. This is because the gradients of MLP
neural networks are calculated using the error back propagation (to be discussed later
in detail) by computing the derivative from the last output layer to the input layer.
And according to the chain rule, the gradients of shallower layers (closer to the input
layer) are derived by multiplying the calculated derivatives of deeper layers (closer
to the output layer). Consequently, when calculating, for example, the gradients of
the shallower layer for a n-hidden-layer MLP using the sigmoid activation function,
n small derivatives (the maximum value is 0.25 shown in Fig. 1.3(b) are multiplied
together, making the resulting gradients extremely small. In this case, the gradients

Fig. 1.3 An example of the sigmoid function and its corresponding derivative

1.1 Artificial Neural Networks and Deep Learning 7

Fig. 1.4 ReLU and leaky ReLU functions

are too small to have negligible influence on the parameter updates during the training
period.

To overcome this issue, rectified linear unit (ReLU) or leaky ReLU is instead
selected to be the activation function as described in Eq. (1.5):

ŷout = a(z) =
{
z, z ≥ 0.
az, z < 0.

(1.5)

where a is real-valued hyperparameter with a range of [0, 1), and above equation
becomes ReLU function if a = 0; otherwise it called is leaky ReLU. And the corre-
sponding plot is also shown in Fig. 1.4.

It is easy to find that the derivatives of both ReLU and leaky ReLU are 1 if the
input z > 0, thus, effectively avoiding the gradient vanishing issue of multiplying
derivatives layer by layer compared to the sigmoid function. In addition, the ReLU
function is computationally efficient, where only comparison, addition and multipli-
cation operations are involved during model training. Therefore, ReLU has become
the most popular activation function for modern deep neural networks [34].

1.1.2.3 Model Structure

A perceptron without any connection (the node represented by a big circle in
Fig. 1.1) is acted as a basic building element called a neuron in MLP neural net-
works. Roughly speaking, MLPs are a brunch of neurons connected together with
a multi-layer structure as shown in Fig. 1.5, where circles in solid lines are neurons
containing the activation function and circles in dashed lines represent biases with
weight connections equal to 1.

When a training data passes through the MLP model from the input layer to the
output layer, exactly the same forward computation is performed as a perceptron
does for each neuron of each layer. And the mathematical formulation for the output
of each layer is described as follows:

8 1 Introduction

Fig. 1.5 An illustrative example of MLP

yl = a(yl−1Wl−1,l + bl) (1.6)

where yl is the output of the l-th layer,Wl−1,l are the weights between layer l − 1 and
layer l, and bl is the bias vector of the lth layer. Note that y0 is in fact the input feature
vector when l = 1. Bothweights and biases are required to be initializedwith random
numbers (normally small real numbers from–1 to 1). Common initializationmethods
include Gaussian initialization, Xavier initialization, and Kaiming initialization [35],
among others.

1.1.2.4 Input Layer

The input layer is actually the (preprocessed) input datawhere each neuron represents
one data attribute. And table-format data like credit card [36] and bank marketing
[37] are intrinsically well suited to MLP neural networks. Furthermore, other types
of data can also be processed and converted to fit the structure ofMLPs. For instance,
image data can be easily transformed into the input vector whose elements are just
pixel values, and time-series data can be partitioned along the sequence direction to
several input vectors. However, the MLP neural network, for instance, is not able to
extract spatial and time sequence information for image data and time-series data,
respectively.

1.1 Artificial Neural Networks and Deep Learning 9

1.1.2.5 Hidden Layer

Layers after the input layer except the last layer are hidden layers. The width of
MLPs means the number of neurons of hidden layers and the depth represents the
number of hidden layers. And deep neural networks often refer to those networks
having many hidden layers. By contrast, wide neural networks represent a network
with a large number of neurons per layer.

1.1.2.6 Output Layer

The last layer of MLPs is called the output layer that outputs a scalar or a vector cor-
responding to the requirement of the learning task. And both the activation function
and the number of neurons for the output layer is constrained by the modeling type.

For a regression problem, the output layer may contain only one neuron with no
activation function (which can be seen as a linear activation function). Similarly, for
a simple binary classification problem, the output layer may also have one neuron
using the sigmoid function to output a value between 0 and 1, representing the
probability of predicting class 1. In addition, a multi-class classification problem
may have multiple neurons with softmax activation function in the output layer and
each neuron outputs the probability of predicting one class value.

1.1.2.7 Loss Function

For a typical supervised learning task, the loss function �(ŷout , yout) representing
the distance between the desired label yout and the real prediction ŷout should be
constructed before parameter optimization. Two most commonly used loss function
for both classification and regression problems will be introduced below.

The first widely used loss function is the cross entropy loss [38] for multi-class
classification problems as shown in Eq. (1.7):

�(ŷout , yout) = −
M∑

c=1

yout,clog(ŷout,c) (1.7)

where c is the class index andM is the total number of classes. It shouldbe emphasized
that the data label yout requires to be converted into a M-length binary one-hot code
[39] where only the corresponding position of label class is filledwith 1. For instance,
for a 4-class classification problem, the label 2 is converted into a binary code 0100
as shown in Fig. 1.6. Furthermore, the prediction value ŷout,c of each class c follows
a discrete probability distribution satisfying

∑M
c=1 ŷout,c = 1.

Intuitively, the cross entropy loss aims to make two vectors ŷout and yout
become similar. Since yout is one-hot encoded, it is easy to find that the formula

10 1 Introduction

Fig. 1.6 An example of cross entropy loss

yout,clog(ŷout,c) is 0 if c is not equal to the label class. Therefore, the original cross
entropy loss can be simplified into Eq. (1.8):

�(ŷout , yout) = −yout,c′ log(ŷout,c′)

= −log(ŷout,c′)
(1.8)

where c
′
represents the label class number. Considering that log function is mono-

tonically increasing (monotonically decreasing for negative log function) and ŷout,c′

ranges from 0 to 1, minimizing �(ŷout , yout) is in fact letting ŷout,c′ approach to the
true label element yout,c′ = 1.

Besides, the cross entropy loss function can bemodified into a binary cross entropy
loss to fit the scope of binary classification problems as shown in Eq. (1.9). In this
case, the output layer contains one neuron only and yout is a binary number with a
value of either 0 or 1.

�(ŷout , yout) = −yout log(ŷout) − (1 − yout)log(1 − ŷout) (1.9)

The other commonly used loss function for regression problems is the squared
error shown in Eq. (1.10):

�(ŷout , yout) = 1

2
(yout − ŷout)

2 (1.10)

where both ŷout and yout are real-valued scalars. Since Eq. (1.10) is a quadratic func-
tion achieving the minimum loss value if ŷout = yout , thus, minimizing the squared
error function will make the prediction ŷout close to the actual label yout .

1.1 Artificial Neural Networks and Deep Learning 11

The above introduced loss functions are constructed by a single data entry. Inmost
scenarios, however, multiple training data are required to be simultaneously imported
into theMLP neural network. And the averaged loss function is often adopted to deal
with this situation. For convenience, θ is used here to represent both weights and
biases, and the averaged loss function for N data samples can be reformulated as Eq.
(1.11):

L(θ,X) = 1

N

∑

i

�(θ, xi) xi ∈ {x1, x2 . . . , xN } (1.11)

where xi is the i th training data vector and N is the data size. The objective of model
training is to find suitable model parameters θ to minimize the expected loss of N
data entries.

1.1.2.8 Gradient-Based Optimization Methods

The gradient based parameter optimization method [40] is the most popular MLP
training algorithm used during back-propagation due to its efficiency and fast con-
vergence.

Given that the total training data size is N , the batch size is B and the entire data
are evenly divided into N

B mini-batches, a typical mini-batch gradient descent (GD)
algorithm in each iteration is performed in Eq. (1.12):

gt = 1

B
�θ L(θ, xt :t+B)

θt+1 = θt − ηgt

(1.12)

where gt is the expected gradients of a B-size mini-batch data at the t-th iteration and
η is the learning rate controlling the training footsteps. In each iteration of the MLP
training, the averaged model gradients of a randomly selected (without replacement)
min-batch data are computed layer by layer. After that, the model parameters θt+1

for the next iteration can be updated by subtracting the product ηgt .
Note that if the batch size B = 1, Eq. (1.12) becomes the standard stochastic

gradient descent (SGD) in which the model parameters θ are immediately upgraded
once the gradients for a randomdata sample are computed. However, SGDmay cause
instability in training. By contrast, the standard GD is another extreme compared
to SGD, where the batch size B is equal to the entire data size N , and thus the
average gradients for all N training are calculated and subtracted at each iteration.
The weakness of the GD is that the computational consumption in each iteration is
intensive when the training data is huge and it is more likely to be trapped into the
local minimum.

Consequently, to strike a good balance between SGD and GD, mini-batch SGD is
usually selected as the training algorithm by setting 1 < B < N . And nowadays, the
usage of these terms are not very strict, and ‘GD’, ‘SGD’ and ‘mini-batch SGD’ all

