
BestMasters

Laura Wirth

Weighted
Automata, Formal
Power Series and
Weighted Logic

BestMasters

Mit “BestMasters” zeichnet Springer die besten Masterarbeiten aus, die an renommi-
erten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die
mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachterinnen und Gutachter
zur Veröffentlichung empfohlen und behandeln aktuelle Themen aus unterschiedlichen
Fachgebieten der Naturwissenschaften, Psychologie, Technik und Wirtschaftswis-
senschaften. Die Reihe wendet sich an Personen aus Praxis und Wissenschaft gleicherma-
ßen und soll insbesondere auch dem wissenschaftlichen Nachwuchs Orientierung geben.

Springer awards “BestMasters” to the best master’s theses which have been com-
pleted at renowned Universities in Germany, Austria, and Switzerland. The studies
received highest marks and were recommended for publication by supervisors.
They address current issues from various fields of research in natural sciences,
psychology, technology, and economics. The series addresses practitioners as well
as scientists and, in particular, offers guidance for early stage researchers.

Laura Wirth

Weighted Automata,
Formal Power Series and
Weighted Logic

Laura Wirth
University of Konstanz
Konstanz, Germany

ISSN 2625-3577	 ISSN 2625-3615  (electronic)
BestMasters
ISBN 978-3-658-39322-9 	 ISBN 978-3-658-39323-6  (eBook)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachme-
dien Wiesbaden GmbH, part of Springer Nature 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, expressed or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Marija Kojic
This Springer Spektrum imprint is published by the registered company Springer Fachmedien
Wiesbaden GmbH, part of Springer Nature.
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

https://doi.org/10.1007/978-3-658-39323-6

To my mom, for always being by my side,
and in loving memory of Opa Helmut, the biggest fan of my studies.

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Dr. Salma Kuhl-
mann for her patient guidance throughout my studies. Special thanks shall also go
to my second supervisor Prof. Dr. Sven Kosub, whom I could always ask to clarify
computer-scientific aspects of any kind. I had the advantage of being able to ask both
of them for advice and answers to resolve difficulties at all times. Their remarks and
comments have been a valuable help and powerful encouragement.

Furthermore, I would like to thank Prof. Dr. Manfred Droste for our exchange regarding
Section 2.5. I could ask him to obtain references, and he gave me a hint that finally
resulted in a proof of Theorem 2.5.19, which generalizes the classical result of Büchi,
Elgot and Trakhtenbrot.

I owe a particular debt to Dr. Lothar Sebastian Krapp, who calmly supported me in
overcoming all problems that arose during this work. His deep mathematical insight
has given rise to many invaluable remarks and comments, which have essentially im-
proved the presentation in many respects. In particular, I wish to thank him for taking
the trouble to attentively proofread several iterations of this work. Beyond that, I am
lucky enough to have him as a friend.

Most warmly, I thank my family – my sister Anna-Lena, my parents Bernd and
Manuela, as well as Oma Anne and Oma Ria – for their less mathematical but more
loving and emotional support, while I was studying and writing obscure theses that
none of them is likely to ever read.

Finally, I wish to thank my fellow students Carl Eggen, Moritz Link, Patrick Michalski,
including Philipp Huber, with whom I could share my enthusiasm for the subject of
this work.

vii

Abstract

A basic concept from Theoretical Computer Science for the specification of formal
languages are finite automata. By equipping the states and transitions of these finite
automata with weights, one obtains the quantitative model of weighted automata. The
included weights may model e.g. the amount of resources needed for the execution of
a transition, the involved costs, or the reliability of its successful execution. To obtain
a uniform model, the underlying weight structure is usually modeled by an abstract
semiring. The behavior of a weighted automaton is then represented by a formal power
series. A formal power series is defined as a map assigning to each word over a given
alphabet an element of the semiring, i.e. some weight associated with the respective
word.

In this work, we put emphasis on the expressive power of weighted automata. More
precisely, the main objective is to represent the behaviors of weighted automata by
expressively equivalent formalisms. These formalisms include rational operations on
formal power series, linear representations by means of matrices, and weighted monadic
second-order logic.

To this end, we first exhibit the classical language-theoretic results of Kleene, Büchi,
Elgot and Trakhtenbrot, which concentrate on the expressive power of finite automata.
We further derive a generalized version of the Büchi–Elgot–Trakhtenbrot Theorem
addressing formulas, which may have free variables, whereas the original statement
concerns only sentences. Then we use the language-theoretic approaches and methods
as starting point for our investigations with regard to formal power series. We establish
Schützenberger’s extension of Kleene’s Theorem, referred to as Kleene–Schützenberger
Theorem. Moreover, we introduce a weighted version of monadic second-order logic,
which is due to Droste and Gastin, and analyze its expressive power. By means of
this weighted logic, we derive an extension of the Büchi–Elgot–Trakhtenbrot Theorem.
Thus, we point out relations among the different specification approaches for formal
power series. Further, we relate the notions and results concerning formal power series
to their respective counterparts in Language Theory.

Overall, our investigations shed light on the interplay between languages, classical as
well as weighted automata, formal power series and monadic second-order logic. Hence,
the topic of this work lies at the interface between Theoretical Computer Science,
Algebra and Logic or, more generally, Model Theory.

ix

Contents

1. Introduction 1

2. Languages, Automata and Monadic Second-Order Logic 7
2.1. Words and Formal Languages . 7
2.2. Finite Automata . 14
2.3. Kleene’s Theorem . 21
2.4. Monadic Second-Order Logic for Words 26
2.5. The Büchi–Elgot–Trakhtenbrot Theorem 33

3. Weighted Automata 55
3.1. Semirings and Formal Power Series . 56
3.2. Weighted Automata and Their Behavior 62
3.3. Linear Representations . 76

4. The Kleene–Schützenberger Theorem 85
4.1. Operations on Formal Power Series . 85
4.2. Rational Formal Power Series . 95
4.3. The Kleene–Schützenberger Theorem . 99

Closure Properties of Recognizable Formal Power Series 99
Weighted Automata and Linear Systems of Equations 108

5. Weighted Monadic Second-Order Logic and Weighted Automata 119
5.1. Syntax and Semantics . 120
5.2. Results of Droste and Gastin . 136

From Weighted Formulas to Weighted Automata 139
From Weighted Automata to Weighted Formulas 146
Locally Finite Semirings . 153

6. Summary and Further Research 157
6.1. Summary . 157
6.2. Further Research . 164

A. Appendix 167
A.1. Model Theory and Monadic Second-Order Logic 167
A.2. Monadic Second-Order Logic for Words 176

References 181

Index 185

xi

1. Introduction

A fundamental concern of Computer Science is the study and processing of information
and data. Any information requires to be specified, and depending on the application
context, a suitable representation or specification is chosen in order to interpret the
information in a targeted manner. More precisely, the processing of data, and in
particular the amount of resources required for this, depends on the chosen method
or formal model for the representation of the conveyed information. Especially when
working with infinite objects or structures, it is essential to have a finite specification of
the conveyed information. In this work, we focus on the description-oriented research
in Theoretical Computer Science, rather than on algorithm-oriented results. However,
the two research areas really are highly, even inseparably, connected.

The information conveying structures that are considered in this work are formal lan-
guages and formal power series. Formal languages are sets of words over a given al-
phabet, and the formal power series, which concern us, are maps associating elements
of an abstract semiring to words over a given alphabet. Thus, languages model qual-
itative information concerning the membership of words, whereas formal power series
provide quantitative data about words. In fact, formal power series can be regarded
as quantitative extensions of languages.

In Theoretical Computer Science, the basic tool for the specification of languages
are finite automata. Historically, finite automata originate in the mid-1950s in the
work of Kleene [18]. In his fundamental result, which is commonly referred to as
Kleene’s Theorem, Kleene characterized the languages that are recognizable by finite
automata as rational languages1. Mainly motivated by decidability questions, the
expressive equivalence of finite automata and monadic second-order logic was derived
independently by Büchi [4], Elgot [15] and Trakhtenbrot2 [43] in the early 1960s. Their
equivalence result, referred to as Büchi–Elgot–Trakhtenbrot Theorem, establishes a
very early connection between the theory of finite automata and Mathematical Logic.
The two approaches often complement each other in a synergetic way, and their relation
is highly relevant for multiple application domains, e.g. in verification and knowledge
representation, for the design of combinatorial and sequential circuits, as well as in
natural language processing. In Theorem 2.5.19, we further present an extension of
the Büchi–Elgot–Trakhtenbrot Theorem to monadic second-order formulas, which may
have free variables, whereas the original result addresses only sentences. The proof of

1A language is called rational if it can be constructed from finitely many finite languages by applying
the rational operations union, concatenation and Kleene star.

2Due to different transliteration from the Cyrillic, various spellings of this name are common in Latin
script.

© The Author(s), under exclusive license to
Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2022
L. Wirth, Weighted Automata, Formal Power Series and Weighted Logic,
BestMasters, https://doi.org/10.1007/978-3-658-39323-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-39323-6_1&domain=pdf

Chapter 1. Introduction

Theorem 2.5.19 is a new contribution of this work3. Overall, we are provided with
three expressively equivalent tools for the specification of languages: finite automata,
rational operations, and monadic second-order logic.

However, the main focus of this work concentrates on the study of formal power series.
On the one hand, formal power series support the modeling of quantitative phenomena,
e.g. the vagueness or uncertainty of a statement, length of time periods, or resource
consumption, whereas languages are not suited to account such subtleties. On the
other hand, formal power series constitute a powerful tool in relation to languages and
automata, since they, in a sense, lead to the arithmetization of the theory. In addition,
formal power series are of interest in various branches of Mathematics, particularly in
Algebra. We therefore consider extensions of the above-mentioned language-theoretic
specification tools to the realm of formal power series. By equipping the transitions and
states of classical finite automata with weights, we arrive at the concept of weighted
automata. The behavior of a weighted automaton is represented by a formal power
series. Weighted automata provide a quantitative model in the sense that they take
into account weights associated to computations. Therefore, weighted automata are
employed for the description of quantitative properties in various areas such as im-
age compression, probabilistic systems and speech-to-text processing. The notion of a
weighted automaton was first introduced by Schützenberger [37] in 1961. Furthermore,
Schützenberger was the first to investigate rational formal power series in the context
of languages and automata. In particular, he proved an extension of Kleene’s The-
orem, referred to as Kleene–Schützenberger Theorem. The results of Kleene, Büchi,
Elgot, Trakhtenbrot and Schützenberger have inspired a wealth of extensions as well
as further research, and also led to recent practical applications, e.g. in verification
of finite-state programs, in digital image compression and in speech-to-text processing
(cf. Droste and Gastin [6, page 69]). In 2005, Droste and Gastin [5], [6], [10] established
a quantitative extension of the Büchi–Elgot–Trakhtenbrot Theorem by introducing a
weighted version of monadic second-order logic. More precisely, they could prove that,
under certain assumptions, particular restrictions of their weighted logic are expres-
sively equivalent to weighted automata. From a theoretical point of view, the logical
description by means of classical as well as weighted monadic second-order formulas is
particularly interesting. The formalism of monadic second-order logic can be applied
for the abstract investigation of languages and formal power series, respectively, in or-
der to derive theoretical results. On the other hand, formulas can be used to formalize
qualitative as well as quantitative requirements or properties of systems.

As the central concepts under consideration are weighted automata, formal power
series and weighted monadic second-order logic, the topic of this work is situated
at the interface between Theoretical Computer Science, Algebra and Logic or, more
generally, Model Theory. The main objective of this work is to “build bridges”, i.e.
to establish connections between the different notions and formalisms. On the one
hand, we draw connections between the classical results from Language Theory and
3A self-contained proof of this generalized version of the Büchi–Elgot–Trakhtenbrot Theorem has
not been available in the literature. The proof presented in this work is based on a suggestion of
Manfred Droste, for which we are very grateful.

2

Chapter 1. Introduction

the ones concerning formal power series. On the other hand, we study the expressive
power of the different approaches for the specification of languages and formal power
series, respectively, and relate them to each other. More precisely, we derive that all
approaches are expressively equivalent. Graphically, the main results in this work can
be summarized in the following diagram:

recognizable
languages

rational
languages

MSO(Σ)–definable
languages

recognizable
power series

rational
power series

MSO(Σ, S)–definable
power series

Kleene

Schützenberger

Büchi, Elgot
& Trakhtenbrot

Droste
& Gastin

Next, we give a short overview by outlining the contents of this work. More detailed
introductions are given at the beginning of the respective chapters and sections.

In Chapter 2, we start by gathering some general preliminaries on words and lan-
guages, which are the underlying structures for the entirety of this work. Furthermore,
we consider the three above-mentioned approaches for the specification of languages:
finite automata, rational operations and monadic second-order logic. We assume the
reader to be familiar with the basics of Mathematical Logic, and particularly of Model
Theory. However, Appendix A.1 provides a detailed introduction to the fundamental
model-theoretic notions. Our treatment of monadic second-order logic in the context of
words and languages is complemented by Appendix A.2. We refer to the corresponding
section of Appendix A whenever it is convenient. In Theorem 2.3.6 we present the clas-
sical result of Kleene [18] showing that the sets of recognizable and rational languages
are identical. Theorem 2.5.1 establishes the expressive equivalence of automata and
monadic second-order logic, which is due to Büchi [4], Elgot [15] and Trakhtenbrot [43].
Moreover, we derive an extension of the Büchi–Elgot–Trakhtenbrot Theorem to for-
mulas in Theorem 2.5.19. The corresponding proof presented at the end of Chapter 2
is a new contribution of this work4.

The language-theoretic notions, methods and results are then used as starting point
for our investigations in the subsequent chapters. At each point, we attempt to relate
the respective extensions to their language-theoretic counterpart.

4A self-contained proof of this generalized version of the Büchi–Elgot–Trakhtenbrot Theorem has
not been available in the literature. The proof presented in this work is based on a suggestion of
Manfred Droste, for which we are very grateful.

3

Chapter 1. Introduction

Our study of weighted automata starts in Chapter 3. More precisely, we first introduce
the fundamental theory of semirings and formal power series. We present several
particular semirings that will occur throughout the whole work and serve as examples
of possible weight structures. We then formally introduce the notion of a weighted
automaton and its behavior. As we will demonstrate, these quantitative notions can
be regarded as natural generalizations of finite automata and recognizable languages,
respectively. However, we also shed light on some differences. Finally, we represent
weighted automata in terms of matrices. These linear representations provide a further,
more algebraic approach for the specification of formal power series. We prove that
this approach even has the same expressive power as weighted automata.

Chapter 4 is devoted to the investigation of rational formal power series. To this end,
we first define operations on formal power series having language-theoretic operations
as natural counterparts. We further show that these operations yield a natural gen-
eralization of rational languages in the realm of formal power series. In particular,
we derive an extension of Kleene’s Theorem, which is due to Schützenberger [37] (see
Theorem 4.3.1). More precisely, we first proceed by structural induction to show that
every rational power series can be represented as the behavior of a weighted automa-
ton. We then exploit interconnections between rational power series and linear systems
of equations to prove, conversely, that the behavior of any weighted automaton is a
rational power series.

The main subject of Chapter 5 is the logical examination of weighted automata and
their behaviors. We introduce a weighted version of monadic second-order logic, which
is due to Droste and Gastin [5]. By employing the formalism of weighted monadic
second-order formulas, we obtain another method for the specification or representa-
tion of formal power series. However, we will demonstrate by the help of examples that
the semantics of weighted formulas are in general more expressive than the behavior
of weighted automata. Therefore, we restrict the weighted logic and introduce several
fragments of it. By outlining the main steps of Droste and Gastin [6], we then de-
rive that for commutative semirings the behaviors of weighted automata are precisely
the power series definable by restricted weighted sentences (see Theorem 5.2.1). Ulti-
mately, we introduce the notion of locally finite semirings, and we show that for this
large class of semirings also unrestricted sentences define recognizable power series.
Hence, locally finite commutative semirings admit an “unrestricted” generalization of
the Büchi–Elgot–Trakhtenbrot Theorem (see Theorem 5.2.20).

Finally, in Chapter 6 we collect the main results and list the correspondences we
establish throughout this work. Moreover, we indicate several research directions that
tie into the theory presented in this work. These guide towards further work.

This work is intended to composed in a largely self-contained manner. Thus, we try
to give a complete treatment of the included concepts as far as they are used in this
work. Apart from the basics of Model Theory, which are presented in Appendix A, no
particular previous knowledge from graduate level Mathematics and Computer Science
is assumed. Whenever further notions or results are needed, they will be fully described
or at least referenced. Furthermore, in order to illustrate the expressive power and

4

Chapter 1. Introduction

diversity of languages, formal power series, and their respective representation tools,
for each topic we present various examples. We hope that these fulfill the purpose of
pointing out possible application scenarios of the theory.

For the rest of this work, we let N = {0, 1, 2, 3, . . . } be the set of natural
numbers and we denote by N+ := N\{0} the set of positive natural numbers.

5

2. Languages, Automata and
Monadic Second-Order Logic

Although the main subject of this work is to examine formal power series, weighted
automata and weighted monadic second-order logic, we start by considering the clas-
sical notions and results in the context of languages, finite automata and monadic
second-order logic. These classical formalisms are the starting point of those in the
weighted setting that will be considered in the subsequent chapters. Throughout this
chapter, we further establish a clear overview over the classical results from Theoretical
Computer Science, whose extensions and generalizations we will derive in the subse-
quent chapters. Thus, this chapter forms the basis of the whole work, as it provides
all necessary foundations and preliminaries. More detailed introductions are given at
the beginning of each section.

In Section 2.1, we introduce the most fundamental notions from Formal Language The-
ory. Section 2.2 is devoted to the study of finite automata and recognizable languages.
In particular, we present a list of several decidability properties of finite automata
and recognizable languages, respectively. In Section 2.3, we treat rational languages,
prove several closure properties of recognizable languages and state Kleene’s Theorem.
In order to state and prove the Büchi–Elgot–Trakhtenbrot Theorem in Section 2.5,
we study monadic second-order logic and its connection to words and languages in
Section 2.4. We conclude this chapter with a Büchi–Elgot–Trakhtenbrot type result
for formulas and not just for sentences. As a complete proof for this result has not
been available in the literature, the proof presented at the end of Section 2.5 is a new
contribution of this work.

2.1. Words and Formal Languages
“Formal language theory is—together with automata theory (which is re-
ally inseparable from language theory)—the oldest branch of theoretical
computer science. In some sense, the role of language and automata
theory in computer science is analogous to that of philosophy in general
science: it constitutes the stem from which the individual branches of
knowledge emerge.”

Salomaa [36, page 105]

This section gathers the fundamental structures and preliminary notions in the context
of Formal Language Theory that will be used throughout this work. One could say
that words and languages are the playthings in this chapter, as the subsequent sections

© The Author(s), under exclusive license to
Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2022
L. Wirth, Weighted Automata, Formal Power Series and Weighted Logic,
BestMasters, https://doi.org/10.1007/978-3-658-39323-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-39323-6_2&domain=pdf

Chapter 2. Languages, Automata and Monadic Second-Order Logic

are devoted to the introduction of modeling approaches to represent them. However,
the classical notions and their properties, which are introduced in this section, also
play a central role in the weighted setting, with which the subsequent chapters are
concerned.
We set up notation and terminology mainly following Sakarovitch [33, Chapter 0] and
Droste [11, § 1].

2.1.1 Definition. An alphabet is a non-empty finite set Σ. The elements of an
alphabet are called letters or symbols.

2.1.2 Example. The Latin alphabet Σ = {a,A, b, B, c, C, . . . , z, Z} is probably the
first alphabet one thinks of. However, elements of an alphabet may also be

• numbers, e.g. Σ = {0, 1},

• words, e.g. Σ = {bye, tschuess, ciao, farvel},

• or various symbols, e.g. Σ = {A,B, 1, 2, 3, 4,+,×,,}.

In the upcoming examples, we usually work with (subsets of) the alphabet

Σ = {a, b, c, d}.

2.1.3 Definition. Let Σ be an alphabet.

a) A (finite) word over Σ is a finite sequence of the form

w = a1 . . . an

with n ∈ N and a1, . . . , an ∈ Σ. The word obtained for n = 0 is referred to as the
empty word and is denoted by ε. Words are also called strings.

b) Let w = a1 . . . an be a word over Σ. Then n is called the length of w and is denoted
by |w|. In particular, we have |ε| = 0.

c) Given two words w = a1 . . . an and v = b1 . . . bm over Σ, their concatenation is
defined to be the word

w · v := a1 . . . anb1 . . . bm.

Thus, we obtain the concatenation of w and v by writing the word v immediately
after the word w. Instead of w · v we usually write wv.

d) Given a word w over Σ, we define powers of w inductively by

w0 := ε,

wn+1 := wn · w (for n ∈ N).

2.1.4 Remark.

a) Formally, a word over Σ is a tuple w = (a1, . . . , an) with n ∈ N and a1, . . . , an ∈ Σ.
In particular, two words (a1, . . . , an) and (b1, . . . , bm) over Σ are equal if they have
the same length n = m and fulfill ai = bi for any i ∈ {1, . . . , n}. Thus, the equality
of words depends on the underlying alphabet.

8

Chapter 2. Languages, Automata and Monadic Second-Order Logic

b) For convenience, we simply denote the tuple (a1, . . . , an) by the sequence a1 . . . an.
However, this notation does not work in general. For instance, if we consider the
alphabet Σ = {a, aa}, then it is not clear whether the sequence w = aaa stands for
the word (aa, a), (a, aa), or (a, a, a). Therefore, we assume that every alphabet Σ in
this work allows an unambiguous assignment of sequences to the letters in Σ they
consist of. This assumption guarantees that every word in Σ∗ has a unique written
form as concatenation of letters in Σ.

2.1.5 Example. Consider the alphabet Σ = {hello, my, friend, ␣, !, ?}. Then

u = hello?hello?

v = ?!my␣
w = hello␣my␣friend!

are words over Σ. This example shows that, over an appropriate alphabet, also sen-
tences can be interpreted as words. We note further that the word u has length 4
with respect to the alphabet Σ, whereas it has length 12 with respect to the alphabet
Σ′ = {h, e, l, o, ?}.

2.1.6 Definition. Let Σ be an alphabet. We set

Σ∗ := {a1 . . . an | n ∈ N, a1, . . . , an ∈ Σ},

i.e. Σ∗ is the set containing all (finite) words over Σ. Moreover, we let

Σ+ := Σ∗ \ {ε}

be the set of all non-empty words over Σ. Given n ∈ N, we denote by Σn the set of
all words of length n over Σ.

We treat Σ as a subset of Σ∗, i.e. we do not distinguish between letters of Σ and words
of length 1 over Σ. In particular, we have

Σ∗ =
⋃
n∈N

Σn and Σ+ =
⋃
n∈N+

Σn,

with
Σ0 = {ε}, Σ1 = Σ, Σ2 = {ab | a, b ∈ Σ}, etc.

We note further that the concatenation of words provides a binary operation · on Σ∗.

2.1.7 Example.

a) For the singleton alphabet Σ = {a} we obtain

Σ∗ = {ε, a, aa, aaa, . . . } = {an | n ∈ N},
Σ+ = {an | n ∈ N+},
Σn = {an} (for n ∈ N).

9

Chapter 2. Languages, Automata and Monadic Second-Order Logic

b) For the alphabet Σ = {a, b} we obtain

Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . . }.

To further study Σ∗ and its properties, we recall some algebraic notions in the following.

2.1.8 Definition.

a) A monoid is a triple (M, ·, 1) consisting of a non-empty set M , an associative
binary operation · : M ×M →M, (m1,m2) 7→ m1 ·m2 := · (m1,m2) and a neutral
element 1 ∈M with m · 1 = 1 ·m = m for any m ∈M . For convenience, the tuple
(M, ·, 1) is simply denoted by M if there is no confusion likely to arise. Further, we
often omit the symbol · of the binary operation and write m1m2 instead of m1 ·m2

for elements m1,m2 ∈M .

b) A monoidM is called commutative ifm1 ·m2 = m2 ·m1 holds for anym1,m2 ∈M .

It is well-known that the neutral element of a monoid M is unique. Indeed, if we are
given neutral elements 1 and 1′ of M , then we obtain 1 = 1 · 1′ = 1′.

2.1.9 Example. A typical example of a monoid are the natural numbers (N,+, 0)
where + denotes the usual addition on N, which is even a commutative operation.

2.1.10 Definition. Let (M, ·, 1) and (M ′, ◦, 1′) be monoids.

a) A monoid homomorphism from M into M ′ is a map h : M →M ′ fulfilling

• h(1) = 1′ and

• h(m1 ·m2) = h(m1) ◦ h(m2) for any m1,m2 ∈M .

b) A bijective monoid homomorphism is called a monoid isomorphism.

c) The monoids M and M ′ are called isomorphic if there exists a monoid isomor-
phism from M into M ′.

2.1.11 Example. Let Σ be an alphabet.

a) The most important type of a monoid in this work is (Σ∗, ·, ε), called the free
monoid generated by the alphabet Σ. Indeed, the concatenation of words
over Σ is an associative operation whose neutral element is given by the empty
word. One can even show that (Σ∗, ·, ε) is the smallest monoid that contains Σ and
is closed under concatenation (cf. Eilenberg [14, page 5]).

b) The monoid Σ∗ is commutative if and only if the underlying alphabet Σ contains
just a single letter. In fact, if Σ contains two distinct letters a 6= b, then the
inequality a · b 6= b · a implies that Σ∗ is not commutative. For the converse, we
assume that Σ = {a} is a singleton. The free monoid Σ∗ is then isomorphic to
the commutative monoid (N,+, 0) via the monoid isomorphism N → Σ∗, n 7→ an,
whose inverse is given by the length function Σ∗ → N, an 7→ |an| = n. Therefore,
(N,+, 0) is often said to be a free monoid as well.

10

Chapter 2. Languages, Automata and Monadic Second-Order Logic

The reason for calling monoids generated by some alphabet free monoids is the fol-
lowing universal property (cf. Sakarovitch [33, page 24]), which we will apply various
times throughout this work.

2.1.12 Lemma. Let Σ be an alphabet and (M, ◦, 1) a monoid. Then every map
h : Σ → M can be uniquely extended to a monoid homomorphism ĥ from the free
monoid (Σ∗, ·, ε) into the monoid (M, ◦, 1). In particular, every monoid homomor-
phism h from the free monoid Σ∗ into a monoid M is uniquely determined by its
restriction h

∣∣
Σ
to the underlying alphabet Σ.

Proof. We put ĥ(ε) = 1 and ĥ(a1 . . . an) = h(a1) ◦ . . . ◦ h(an) for any n ∈ N+ and
any a1, . . . , an ∈ Σ. Clearly, the map ĥ extends h and is a monoid homomorphism
by definition. To prove the uniqueness of ĥ, let h̃ be another monoid homomorphism
from the free monoid (Σ∗, ·, ε) into the monoid (M, ◦, 1) extending h. Then for each
word w = a1 . . . an ∈ Σ∗ we obtain

h̃(w) = h̃(a1 . . . an)

= h̃(a1) ◦ . . . ◦ h̃(an)

= h(a1) ◦ . . . ◦ h(an)

= ĥ(w).

We denote the above described (unique) extension ĥ of a map h again by h if no
confusion is likely to arise.

2.1.13 Example. Consider the constant map h : Σ→ N, a 7→ 1. It is easy to see that
its extension ĥ is precisely the length function | · | : Σ∗ → N, w 7→ |w|. In other words,
the length function is the unique monoid homomorphism from (Σ∗, ·, ε) into (N,+, 0)
that maps each letter of Σ to 1. In particular, we have

|w · v| = |w|+ |v| and |wn| = n · |w|

for each w, v ∈ Σ∗ and n ∈ N.

Usually, the monoid homomorphisms we deal with are of the form h : Σ∗ → Γ∗, where
both Σ and Γ are alphabets. Such maps allow us to change the underlying alphabet, as
they assign words over Γ to words over Σ. Based on Droste and Kuich [9, page 16 f.],
we now introduce some properties of such monoid homomorphisms.

2.1.14 Definition. Let Σ,Γ be alphabets and h : Σ∗ → Γ∗ a monoid homomorphism.
We call h

• non-extending if |h(w)| ≤ |w| for any w ∈ Σ∗.

• non-deleting if |h(w)| ≥ |w| for any w ∈ Σ∗.

• length-preserving if |h(w)| = |w| for any w ∈ Σ∗.

11

