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Physics

In this part, three physics projects are presented, which achieved important scientific
results in 2020/21 by using Hawk/Hazel Hen at the HLRS and ForHLR II of the
Steinbuch Center.

Fascinating new results are being presented in the following pages on soft mat-
ter/biochemical systems (ligand-induced protein stabilization) and on quantum sys-
tems (anomalous magnetic moment of the muon, ultracold-boson quantum simulators,
phase transitions, resonant tunneling, and variances).

Studies of the soft matter/biochemical systems have focused on ligand-induced
protein stabilization.

T. Schäfer, A.C. Joerger, J. Spencer, F. Schmid, and G. Settanni from Mainz (T.S.,
F.S., G.S.), Frankfurt (A.C.J.), and Sussex (J.S.) present interesting new results on
ligand-induced protein stabilization in their project Flexadfg. The authors show how
Molecular Dynamics simulations of several cancer mutants of the DNA-binding
domain of the tumor suppressor protein p53 allowed to establish the destabilizing effect
of the mutations as well as the stabilizing effects of bound ligands. In addition, the
authors report on the development of a new reweighting technique for metadynamics
simulations that speeds up convergence and may provide an advantage in the case of
simulations of large systems.

Studies of the quantum systems have focused on the anomalous magnetic moment
of the muon, and on ultracold-boson quantum simulators, phase transitions, resonant
tunneling, and variances.

M. Cè, E. Chao, A. Gérardin, J.R. Green, G. von Hippel, B. Hörz, R.J. Hudspith,
H.B. Meyer, K. Miura, D. Mohler, K. Ottnad, S. Paul, A. Risch, T. San José, and
H. Wittig from Mainz (E.C., G.v.H., R.J.H., H.B.M., K.M., K.O., S.P., T.S.J., H.W.),
Darmstadt (K.M., D.M., T.S.J.), Zeuthen (A.R.), Geneva (M.C., J.R.G.), Marseille
(A.G.), and Berkeley (B.H.) present interesting results obtained by their lattice QCD
Monte Carlo simulations on Hawk/Hazel Hen in their project GCS-HQCD on leading
hadronic contributions to the anomalous magnetic moment of the muon, on the
energy dependence of the electromagnetic coupling, on the electroweak mixing angle,
and on the hadronic vacuum polarisation and light-by-light scattering contributions.

1



2 Physics

The authors focus will turn to increasing the overall precision of their determination
of the hadronic vacuum polarization contribution to the muon anomalous magnetic
moment to the sub-percent level.

A.U.J. Lode, O.E. Alon, J. Arnold, A. Bhowmik, M. Büttner, L.S. Cederbaum,
B. Chatterjee, R. Chitra, S. Dutta, C. Georges, A. Hemmerich, H. Keßler, J. Klinder,
C. Lévêque, R. Lin, P. Molignini, F. Schäfer, J. Schmiedmayer, and M. Žonda from
Freiburg (A.U.J.L., M.B. ), Haifa (O.E.A., A.B., S.D.), Basel (J.A., F.S.), Heidelberg
(L.S.C.), Kanpur (B.C.), Zürich (R.C., R.L.), Hamburg (C.G., A.H., H.K., J.K.), Wien
(C.L., J.S.), Oxford (P.M.), and Prague (M.Z.) present interesting results obtained
in their project MCTDHB with their multiconfigurational time-dependent Hartree
method for indistinguishable particles (MCTDH-X) on Hazel Hen and Hawk. In
the past the authors have implemented their method to solve the many-particle
Schrödinger equation for time-dependent and time-independent systems in various
software packages. The authors present interesting new results of their investigations
on ultracold boson quantum simulators for crystallization and superconductors in
a magnetic field, on phase transitions of ultracold bosons interacting with a cavity,
and of charged fermions in lattices described by the Falicov–Kimball model. In
addition, the authors report on new results on the many-body dynamics of tunneling
and variances, in two- and three-dimensional ultracold-boson systems.

Fachbereich Physik, Peter Nielaba
Universität Konstanz,
78457 Konstanz,
Germany,
e-mail: peter.nielaba@uni-konstanz.de

mailto:peter.nielaba@uni-konstanz.de


Ligand-induced protein stabilization and
enhanced molecular dynamics sampling
techniques

Timo Schäfer, Andreas C. Joerger, John Spencer, Friederike Schmid and Giovanni
Settanni

Abstract Molecular dynamics (MD) simulations provide an increasingly important
instrument to study protein-materials interaction phenomena, thanks to both the
constant improvement of the available computational resources and the refinement of
the modeling methods. Here, we summarize the results obtained along two different
research directions within our project. First, we show how MD simulations of several
cancer mutants of the DNA-binding domain of the tumor suppressor protein p53
allowed to establish the destabilizing effect of the mutations as well as the stabilizing
effects of bound ligands. Second, we report on the development of a new reweighting
technique for metadynamics simulations that speeds up convergence and may provide
an advantage in the case of simulation of large systems.

1 Introduction

Molecular dynamics (MD) simulations provide a way to observe the motions of
molecular objects at the atomic scale. In classical MD simulations, each system is
composed of a set of particles and is represented by a Hamiltonian energy function
of the coordinates and momenta of the particles. By numerical integration of the
Hamiltonian equations of motion, MD allows to follow the trajectories of all the
particles as a function of time and, in this way, to extrapolate its static and dynamic
properties. A crucial step to guarantee the accuracy of the observations is the

Timo Schäfer, Friederike Schmid and Giovanni Settanni
Department of Physics, Johannes Gutenberg University, Mainz, Germany,
e-mail: settanni@uni-mainz.de
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availability of highly optimized force fields, i.e., the classical Hamiltonian function,
which approximates the underlying quantum chemical nature of the system. During the
course of the last 40 years, MD force fields for the simulations of biomolecules have
been dramatically improved in terms of accuracy to the point that it is now possible
to simulate phenomena like protein folding, at least for some small proteins [1], as
well as protein-ligand and protein-materials interactions [2–11]. In this report, we
will show how we have been able to use classical MD simulations to characterize the
stability of several cancer mutants of p53, a protein that is found mutated in about
50% of the cancer cases diagnosed every year [12]. In that study simulations were
used also to asses the effect of small ligands which, by binding to a mutation-induced
pocket on the protein surface, are capable of stabilizing the protein, thus representing
possible lead compounds for the development of cancer therapeutics. In addition to
protein folding, many biological phenomena, however, occur on time scales that are
still inaccessible to standard classical MD. For this reason, a wide range of enhanced
sampling techniques have been proposed. Metadynamics [13–15] is one of the most
popular techniques. In metadynamics, a time-dependent energy term is added to the
Hamiltonian, to drive the system away from regions of conformational space already
sampled. We started to use this method in the past to characterize the conformational
properties of a large protein complex, fibrinogen [9]. We soon discovered that in
this case, the available methods to unbias the metadynamics sampling and obtain
an equilibrium distribution of the most significant observables of the system were
inadequate. We have then developed a new method, which is more accurate than
those previously available in the limit of short trajectories [16]. In what follows, we
also review these findings.

2 Methods

GROMACS[17] was used to perform the MD simulations. GROMACS exploits intra-
node OpenMP parallelization and inter-node MPI parallelization and was optimally
compiled to run efficiently both on Hazelhen and on Hawk HPC infrastructures at
HLRS. Unless stated differently, in what follows, the simulations were performed
with the CHARMM36m force field [18], while the ligands were modeled using the
Charmm Generalized force field (CGenFF)[19]. The time step for the simulations
was set to 2 fs. The LINCS [20] algorithm was used to constrain the length of bonds
involving hydrogen atoms. A cut-off of 1.2 nm with a switch function starting at
1.0 nm was used for direct non-bonded interactions. A cell-list like algorithm [21] was
used. Periodic boundary conditions were adopted along all directions and a smooth
particle-mesh Ewald (sPME) approach [22] was used for long-range electrostatics.
The water was modeled explicitly using a modified TIP3P model[23]. Pressure and
temperature were regulated at 1 atm and 300 K, using the Parrinello–Rahman [24] and
Nose–Hoover [25,26] algorithms, respectively. Few water molecules were replaced
by sodium and chlorine ions during simulation setup to neutralize the charge of the
simulation box and to achieve the physiological ion concentration (0.15 M).
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In the case of the p53 DNA-binding domain, the simulations were based on the
structure of a stabilized pseudo-wild-type (pdb id 1UOL) [27] and mutant structures
determined by X-ray crystallography or modeled in ref. [28]. The systems were
minimized for a max 50’000 steps, then equilibrated in the NVT ensemble for 1 ns
with positional restraints on the heavy atoms of the protein. Then, they were further
equilibrated for 1 ns in the NPT ensemble with no restraints. Four production runs
were started for each mutant. Each run was 200 ns long. Further methodological
details are provided in the original publication ref. [28]. System sizes ranged from
37000 to 43000 atoms, which are sufficient to ensure good scaling on Hazelhen
and Hawk running on 100 and 64 nodes, respectively. Simulations were set up
as job chains with each job not exceeding 3 hours length, writing a single restart
file at the end. The trajectories were analyzed using the program VMD [29] and
WORDOM [30].

3 Simulations of p53 cancer mutants and stabilization by ligand
binding

The tumor suppressor protein p53 is involved in several processes protecting the
human genome, including activation of DNA repair mechanisms or induction of
apoptosis (cell death) in case of extensive DNA damage. Mutations of this protein
can often result in cancer and, indeed, mutations in this protein occur in half of
the diagnosed cancers [12]. Among the most frequently found cancer mutations
are those of residue 220 in the DNA-binding domain of the protein, with the most
abundant being Y220C, found in about 100’000 new cancer cases each year. The
wild-type protein (WT) (i.e., the one without mutations) is only marginally stable,
and many cancer mutations induce a loss of stability, which reduces the folding
transition temperature of the protein, leading to unfolding and, consequently, to a loss
of function at body temperature. In some cases, such as Y220C, the mutation creates a
crevice on the protein surface. This offers a possible strategy to reactivate the mutant
protein: a drug that binds to the mutation-induced pocket may actually stabilize the
protein and thereby rescue its tumor suppressor function. This strategy has already
been successfully used to rescue the Y220C mutant [2, 31]. In collaboration with our
experimental partners, we investigated other frequent cancer mutants with a mutation
of Y220.

In ref. [28], we analyzed the cancer associated mutants Y220H, Y220N, Y220S,
and Y220C using experimental biophysical techniques including, among others, X-ray
crystallography as well as MD simulations. The latter have been used to estimate
the effects of mutations on protein stability by monitoring the root-mean-square
fluctuations (RMSF) [32], that is the average amplitude of the fluctuations of the
atomic positions of the protein around the average structure. We used the same
approach in the context of the p53 DNA-binding domain mutants, and we verified that
the RMSF measured on the simulations correlated with experimentally determined
differences in melting temperature of the mutant proteins (Tab. 1). Our simulations
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also provided additional information complementing the structural data obtained by
X-ray crystallography, for example, by sampling the dynamics of different regions
of the protein. We monitored several atomic distances characterizing the mutation-
induced crevice on the surface of the protein, which can be split into a central crevice
and different subsites (Fig. 1). These distances did not show significant fluctuations
in the WT, whereas in the cancer mutants, they fluctuated between two states which
can be associated with open and collapsed conformations of the mutation-induced
crevice (Fig. 1c).

Several carbazole-based compounds were shown to bind to the mutation-induced
crevice in Y220C and stabilize the protein structure, thus increasing the folding
transition temperature [2, 31]. Given the similarity between the crevices generated by
the various mutations at site 220, in ref. [28] the effects of some of these carbazole
compounds on the Y220S and Y220C mutants were analyzed. It was shown that
several compounds that bind Y220C in the mutation-induced crevice can also bind
to the equivalent pocket in Y220S, to a lesser extent also in the Y220N pocket.
The binding of the compounds resulted in a considerable increase in the melting
temperature of the mutants. MD simulations of the mutants in the presence of the
carbazole compounds in the crevice revealed that the ligands dramatically reduced
the RMSF of the protein, which correlated with the binding constant measured
experimentally and the ligand-induced increase of the folding transition temperature
(Tab. 1). In particular, the simulations showed that the collapsed state of the crevice
is completely absent in the presence of the ligands (Fig. 2).

Summarizing this part of the report, the simulations of p53 DNA-binding domain
mutants, with and without ligands, provided important insights into the molecular
basis of the experimentally observed stabilizing effect upon binding. This information
will aid the development of more potent small-molecule stabilizers and molecules
targeting more than one mutant.

Codon 220 mutation Average RMSF (Å) Tm (◦C)
Native structure

WT 1.46 51.5
Y220H 1.56 45.1
Y220C 1.61 43.8
Y220N 1.64 39.9
Y220S 1.67 39.4

Ligand complexes
Y220C-PK9323 1.35
Y220S-PK9301 1.42
Y220S-PK9323 1.58

Table 1: Root-mean-square fluctuations (RMSF) of the simulated p53 DNA-binding
domain constructs averaged over residues 97-289 and the experimentally determined
folding transition temperature. Adapted from ref. [28], Bauer et al. ©2020 licensed
under CC-BY.

http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
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Fig. 1: MD simulation of p53 cancer mutants. (A) Representative C𝛼-trace structures
of the open and closed states from the simulations of the p53 mutant Y220S
superimposed onto the crystal structure (green). Highlighted residues are represented
as sticks. Distances defining the size of the central cavity (d1) and the subsite 2 (d2)
are represented with magenta dashed lines. (B) Same as (A) but for the Y220H mutant.
The closed state is determined by the H220 side chain swinging out of the pocket. (C)
Distribution of the d1 and d2 distances in the simulations of the p53 variants under
consideration. The green line represent the distance in the crystal structure. Only WT
shows an unimodal distribution. All mutants show the presence of a collapsed state of
the crevice beside the open state. Adapted from ref. [28], Bauer et al. ©2020 licensed
under CC-BY.

http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
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Fig. 2: Time series and resulting distributions of the d1 distance (see fig. 1) in all the
simulated constructs. The presence of the ligands PK9323 and PK9301 in the crevice
dramatically reduces structural fluctuations and prevents the population of collapsed
states of the mutation-induced pocket. Adapted from ref. [28], Bauer et al. ©2020
licensed under CC-BY.

3.1 Data reweighting in metadynamics simulations

In this section, we review the results presented in ref. [16]. Metadynamics introduces
a time-dependent bias potential in the classical energy of the system. The bias is
dependent on selected collective variables 𝒔(𝒓) of the system’s coordinates, and it is
built as a sum of Gaussian functions that are deposited at regular time intervals on
the points reached by the trajectory:

http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
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𝑉 (𝒔(𝒓), 𝑡) =
𝑡∑︁

𝑡′=Δ𝑡 ,2Δ𝑡 ,...
𝑊e−

∑𝑑
𝑖 (𝑠𝑖 (𝒓)−𝑠𝑖 (𝒓 (𝑡′)))2/2𝜎2

𝑖 =

𝑡∑︁
𝑡′=Δ𝑡 ,2Δ𝑡 ,...

𝑔𝑡′ (𝒓, 𝒔(𝑡 ′)) (1)

where the Gaussian hills are 𝑔𝑡′ (𝒔(𝒓)) = 𝑊e−
∑𝑑

𝑖 (𝑠𝑖 (𝒓)−𝑠𝑖 (𝒓 (𝑡′)))2/2𝜎2
𝑖 . This results in

pushing the system away from those values of the collective variables that have been
already sampled.

In order to obtain equilibrium properties from the trajectories sampled using
metadynamics, a reweighting procedure is necessary that takes into account the
time-dependent influence of the bias. In other words, a weight 𝑤(𝒔, 𝑡) has to be
assigned to each sampled conformation of the system, which is dependent on the
time evolution of the bias. Once we have that, we can measure equilibrium properties
from the biased simulations:

⟨𝐴⟩0 = ⟨𝐴𝑤⟩b/⟨𝑤⟩b (2)

where 𝐴 is any observables defined on the system, the subscript 0 indicates the
unbiased (i.e. equilibrium) average and the subscript 𝑏 indicates the average done
over the biased simulations.

Several reweighting techniques have been proposed for metadynamics simula-
tion [33–37], which come with some limitations, for example, some of them are
specifically suited for well-tempered metadynamics, which is a modified version
of the original algorithm where the height of the Gaussians decreases during the
simulation. The simulations we ran on Hazelhen to determine the conformational
states of the fibrinogen complex [9] showed however that the popular reweighting
scheme from Tiwary and Parrinello [37], when used to build the free energy landscape
as a function of the collective variables, did not match exactly the negative bias
potential, which also represents an estimate of the free energy of the system. Tiwary’s
method is based on the assumption that in between two Gaussian depositions, the
system samples a biased energy function 𝑈 + 𝑉 where 𝑈 is the unbiased energy
function of the system and 𝑉 is the metadynamics bias. Thus the conformations of
the system follow a canonical distribution with biased energy.

𝑝𝑏 (𝒓, 𝑡) =
e−𝛽 (𝑈 (𝒓)+𝑉 (𝒔 (𝒓) ,𝑡))∫
d𝒓e−𝛽 (𝑈 (𝒓)+𝑉 (𝒔 (𝒓) ,𝑡))

(3)

For the unbiased system, however, we would have the following distribution:

𝑝0 (𝒓) =
e−𝛽𝑈 (𝒓)∫
d𝒓e−𝛽𝑈 (𝒓)

(4)

We can then obtain the equilibrium distribution from the biased distribution by means
of the following reweighting factor [34, 37]:
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𝑤(𝒓, 𝑡) = 𝑝0 (𝒓)
𝑝𝑏 (𝒓, 𝑡)

(5)

= e𝛽𝑉 (𝒔 (𝒓) ,𝑡))
∫

d𝒓e−𝛽 (𝑈 (𝒓 ,𝑡)+𝑉 (𝒔 (𝒓) ,𝑡))∫
d𝒓e−𝛽𝑈 (𝒓 ,𝑡)

(6)

which can be further rewritten as [34, 37]:

𝑤(𝒓, 𝑡) = e𝛽𝑉 (𝒔 (𝒓) ,𝑡))
∫

d𝒓
∫

d𝒔 𝛿(𝒔 − 𝒔(𝒓))e−𝛽 (𝑈 (𝒓 ,𝑡)+𝑉 (𝒔 (𝒓) ,𝑡))∫
d𝒓

∫
d𝒔 𝛿(𝒔 − 𝒔(𝒓))e−𝛽𝑈 (𝒓 ,𝑡)

(7)

= e𝛽𝑉 (𝒔 (𝒓) ,𝑡))
∫

d𝒔 𝑝0 (𝒔)e−𝛽𝑉 (𝒔,𝑡)∫
d𝒔 𝑝0 (𝒔)

(8)

= e𝛽𝑉 (𝒔 (𝒓) ,𝑡))
∫

d𝒔 e−𝛽𝐹 (𝒔)e−𝛽𝑉 (𝒔,𝑡)∫
d𝒔 e−𝛽𝐹 (𝒔)

(9)

where

𝑝0 (𝒔) =
∫

d𝒓𝛿(𝒔 − 𝒔(𝒓))𝑝0 (𝒓) =
e−𝛽𝐹 (𝒔)∫
d𝒔 e−𝛽𝐹 (𝒔)

(10)

is the unbiased distribution projected on the low-dimensional CV space Ω and 𝐹 (𝒔)
is the unbiased free energy.

Eq. 9, although formally exact, contains the term 𝐹 (𝒔), which is not known a priori
(it is actually often the main aim of the simulation). In metadynamics the negative bias
potential asymptotically approximates the free energy of the system [14,15, 36, 38]:

𝐹 (𝒔) ≈ − 𝛾

𝛾 − 1
𝑉 (𝑠, 𝑡) + 𝑐(𝑡) (11)

where 𝛾 is the so-called bias factor of well-tempered metadynamics, which goes
to infinity in the case of standard metadynamics, and 𝑐(𝑡) is a time-dependent
offset of the free energy profile. In the Tiwary and Parrinello method [37], 𝐹 (𝒔) is
approximated using eq. 11, leading to the following expression for the weight (for
standard metadynamics):

𝑤𝑡𝑤 (𝒓, 𝑡) = e𝛽𝑉 (𝒔 (𝒓) ,𝑡)
∫

d𝒔∫
d𝒔e𝛽𝑉 (𝒔,𝑡)

= e𝛽𝑉 (𝒔 (𝒓) ,𝑡)
1

⟨e𝛽𝑉 (𝒔,𝑡)⟩𝒔
(12)

The approximation eq. 11, however, is only valid asymptotically, thus at short time
scales the reweighting scheme may not provide accurate results.

Alternatively, we suggested [16] to approximate 𝐹 (𝒔) with the value of the negative
potential at the end of the simulation, which is supposedly more accurate:

𝑤(𝒓, 𝑡) = e𝛽𝑉 (𝒔 (𝒓) ,𝑡))
∫

d𝒔 e𝛽 (𝑉 (𝒔,𝑡 𝑓 )−𝑉 (𝒔,𝑡)∫
d𝒔 e𝛽𝑉 (𝒔,𝑡 𝑓 )

(13)
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where 𝑡 𝑓 corresponds to the time at the end of the simulation. Eq. 13 would converge
to eq. 12 at large 𝑡, but it will behave differently at small 𝑡. At short simulation times,
a simple exponential reweighting would be more accurate than the Tiwary’s eq. 12. A
simple exponential reweighting, however, in the standard metadynamics setting where
the bias increases with time would result in an underweighting of the initial part of
the simulation. In ref. [16] we propose a simple way to correct it by subtracting the
average value of the bias at every time step. This results in the balanced exponential
reweighting:

𝑤𝑏𝑒𝑥 (𝒓, 𝑡) ∝ e𝛽𝑉
′ (𝒔 (𝒓) ,𝑡) = e𝛽(𝑉 (𝒔 (𝒓) ,𝑡)−𝑉𝑎 (𝑡)) = e𝛽𝑉 (𝒔 (𝒓) ,𝑡)

1
e𝛽 ⟨𝑉 (𝒔,𝑡) ⟩𝒔

. (14)

The scheme proposed above differs from the previously proposed scheme of eq. 12
by the normalization factor of the exponential weight: in the case of eq. 12 the average
value over Ω of the exponential of the bias potential is used, whereas in the new
scheme eq. 14 we propose to use the exponential of the average bias. The average
of the exponential (eq. 12) is very sensitive to small changes in the upper tail of the
distribution of the bias potential and is, therefore, less robust in the initial part of the
trajectory where the global free energy minimum of the system may not have been
reached, yet.

The newly proposed scheme can be implemented without changes to the output of
the popular metadynamics software PLUMED [39]. To demonstrate its advantages,
we have tested it in several different scenarios and compared it with existing schemes.
The standard mean of comparison that we have adopted consists in recovering the
free energy landscape of a given system as a function of the collective variables
by reweighting the conformations of the system sampled along the metadynamics
trajectory. We did that for a series of systems for which an accurate free energy
landscape is accessible and can be used as reference.

The first system we studied is a particle in a uni-dimensional double-well potential
of the form𝑈 (𝑥) = (𝑥2 − 1)2. Simulations are performed at a temperature such that
𝑘𝑏𝑇 is 1/10 of the barrier separating the two energy wells. The system is discretized
along the 𝑥 direction into equally sized bins, and pseudo standard metadynamics
simulation are performed by moving the particle to the left or right bin using a
Metropolis criterion for accepting the move. The energy function for the Metropolis
criterion is𝑈 (𝑥) +𝑉 (𝑥, 𝑡), 𝑉 (𝑥, 𝑡), where:

𝑉 (𝑥, 𝑡) =
𝑡∑︁

𝑡′=Δ𝑡 ,2Δ𝑡 ,...

𝑣
√

2𝜋𝜎
e(−(𝑥−𝑥 (𝑡′))2/2𝜎) (15)

In the above expression, the metadynamics Gaussian hills have volume 𝑣 (that is
height 𝑣/

√
2𝜋𝜎) and width 𝜎. The deposition period is Δ𝑡. Several simulations were

run using different metadynamics parameters but keeping the length and step size
(bin width) fixed. We then estimated the free energy landscape of the system using
eq. 12 and 14:
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𝐹𝑒𝑠𝑡 (𝑥, 𝑡) = −𝛽−1 log

(∑𝑡
𝑡′=0 𝛿(𝑥 − 𝑥(𝑡 ′))𝑤(𝑥(𝑡 ′), 𝑡 ′)∑𝑡

𝑡′=0 𝑤(𝑥(𝑡 ′), 𝑡 ′)

)
(16)

where the 𝛿 functions are the characteristic functions of the discrete bins along the 𝑥
axis.

In Fig. 3a we report the estimated and reference free energy landscape of the
system as a function of the simulated time. We repeated the simulations 72 times
with different initial conditions and measured the error of the estimated free energy
with respect to the reference in each of the simulations (the error is computed as the
root-mean-square deviation of the two free energy profiles limited to the interval
(-2,2) after subtracting the average). The data (Fig. 3b) show that the estimate obtained
with the newly proposed eq. 14 converges faster than the other tested methods to the
reference landscape. Also other estimates of the quality of the free energy landscape,
like the estimate of the free energy difference between the minima (Fig. 3c) and
the estimate of the height of the barrier (Fig. 3d) reveal a similar picture. Another
advantage of the balanced exponential reweighting is the low run-to-run variability
reported by the error bar in Fig.3b-d. A detailed look at the weights of the sampled
conformations (Fig. 3) shows that while the balanced exponential weights are generally
constant along the simulation, they are smaller than average in the very initial part of
the simulation when the system has not yet explored both minima. On the other hand,
Tiwary’s method produces weights that are larger than average in the initial part of
the simulation. This overestimate reduces the quality of the free energy profile for the
early part of the run.

Although the uni-dimensional system offers already a good overview of the
advantages of the newly proposed reweighting scheme, a test with a more realistic
system is necessary to assess the performance in a normal-use scenario. For that,
in the same work [16], we used an alanine dipeptide, which represents a standard
benchmark of enhanced sampling techniques. The alanine dipeptide can be considered
as the smallest protein-like unit as its structure can be characterized by the two protein
backbone dihedral angles 𝜙 and 𝜓. We performed the metadynamics simulations
using GROMACS [17] with the PLUMED [39] plugin. The system was simulated
for short trajectories (8 ns) in vacuum using the standard force field AMBER03 [40]
and standard values for time step and non-bonded interaction cutoff. The backbone
dihedral angles 𝜙 and 𝜓 were biased during the metadynamics simulations (for all
the details of the simulations and the set of metadynamics parameters used please
refer to our original work [16]). Adopting a strategy similar to the uni-dimensional
case, we estimated the free energy landscape of the system as a function of 𝜙 and 𝜓
using several different reweighting schemes including the newly proposed balanced
exponential. We did that at several different time points along the simulation. We
then compared the free energy estimates with the reference obtained by running an
extremely long well-tempered metadynamics simulations (Fig. 4).
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Fig. 3: (a) FES obtained along a single run at different trajectory lengths using
balanced exponential reweighting, Tiwary reweighting and negative bias potential
(red, blue and green points, respectively). The reference FES is plotted in purple. (b-e)
Time series of (b) the RMSD (in inset is the RMSD·

√︁
(𝑡)), (c) estimated free energy

difference between the two minima (absolute value), (d) estimated error on height
of free energy barrier, and (e) the RMSD between reweighted FES and negative
bias. Same color scheme as in part a. The solid lines represent the average values of
the quantities across the 72 independent runs. Shaded bands indicate the standard
deviations. (f-g) Time series of the position of the particle along one run where
balanced exponential (f) and Tiwary (g) weights are reported according to a color
scale. Adapted with permission from ref. [16], ©2020 American Chemical Society.

https://pubs.acs.org/doi/full/10.1021/acs.jctc.9b00867
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with permission from ref. [16], ©2020 American Chemical Society.

https://pubs.acs.org/doi/full/10.1021/acs.jctc.9b00867


Ligand-induced protein stabilization 15

 0
.2

 0
.6

a

Time / ns
R
M
SD

FE
S 

/ k
bT

 0
.2

 0
.6

 1

0 2 4 6 8 1012

R
M
SD

FE
S 

t1/
2  

 0
 1

 2
 3 b

|Δ
Δ
F C

7e
q-
C
ax

| /
k b
T

 0
 1

 2
 3

 0  1  2  3  4  5  6  7  8

c

|Δ
Δ
F C

ax
-‡

| /
 k
bT

Time / ns

 0
 0

.5
 1

 0  1  2  3  4  5  6  7  8

d

R
M
SD

V
 / 
k b
T

Time / ns

-π
-π

/2
0

π/
2

π

 0  1  2  3  4  5  6  7

e

φ
 /r

ad

Time / ns
 0  1  2  3  4  5  6  7  8

f

Time / ns

-10

0

lo
g(
w/

<
w>

)
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the error on the Δ𝐹𝐶7𝑒𝑞−𝐶𝑎𝑥

and Δ𝐹𝐶𝑎𝑥−‡, respectively, for the balanced exponential
(red), Tiwary’s (blue), Branduardi’s (purple), Bonomi’s (orange) reweighting and
negative bias (green) estimate of the FES. The data are averaged over 96 runs. Shaded
bands indicate standard deviations. The black line at 1.4 ns indicates the time point
where the FES in Fig. 4 have been extracted. (a inset) the 𝑅𝑀𝑆𝐷𝐹𝐸𝑆

√
𝑡 shows to

approximately reach a plateau for balanced exponential, Tiwary’s and Bonomi’s
reweighting schemes. (d) 𝑅𝑀𝑆𝐷𝑉 between the different reweighting schemes and
negative bias (same color scheme as above). (e), (f) Time series of 𝜓 when 𝜙=-1.88 rad
along one selected run. Balanced exponential (e) and Tiwary (f) weights are reported
according to the color scale. ⟨𝑤⟩ is the average of the weights along the run. Adapted
with permission from ref. [16], ©2020 American Chemical Society.
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The results obtained in this test confirmed the observations made in the uni-
dimensional case (Fig. 5): the balanced exponential reweighting scheme converges
faster than most of the other methods to the reference free energy landscape, with the
exception of the method by Bonomi et.al [34], which, as we demonstrate in ref. [16],
within some limits, may provide similar but not better results.

We also tested the newly developed algorithm in other scenarios: the reweighting
of observables not biased in the metadynamics simulation and in well-tempered
metadynamics. In all tested scenarios the balanced exponential reweighting provided
similar or faster convergence than the other methods and, in addition, lower run-to-run
fluctuations. We refer the interested reader to our original publication [16] for further
details.

4 Conclusions

In this report, we have summarized the results obtained for our projects using the
computational resources made available by the HLRS Stuttgart with the Hazelhen
and Hawk HPC infrastructure. We show how molecular dynamics simulations of
the tumor suppressor protein p53, an important target in cancer research, have been
used to understand the effect of cancer mutations on the stability of the protein as
well as the stabilizing effect of ligands binding to a mutation-induced pocket on the
protein surface. In addition, we proposed an improved reweighting method for the
analysis of metadynamics simulations, which is particularly useful in the context of
large MD simulations of complex systems where, due to the high computational cost,
fast convergence to the underlying free energy landscape is essential.
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Abstract The recently reported new measurement of the anomalous magnetic moment
of the muon, 𝑎𝜇, by the E989 collaboration at Fermilab has increased the tension
with the Standard Model (SM) prediction to 4.2 standard deviations. In order to
increase the sensitivity of SM tests, the precision of the theoretical prediction, which
is limited by the strong interaction, must be further improved. In our project we
employ lattice QCD to compute the leading hadronic contributions to 𝑎𝜇 and various
other precision observables, such as the energy dependence (“running”) of the
electromagnetic coupling, 𝛼, and the electroweak mixing angle, sin2 \W. Here we
report on the performance of our simulation codes used for the generation of gauge
ensembles at (near-)physical pion masses and fine lattice spacings. Furthermore, we
present results for the hadronic running of 𝛼, the electroweak mixing angle, as well
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as the hadronic vacuum polarisation and light-by-light scattering contributions to 𝑎𝜇.
Results from an ancillary calculation of the spectrum in the isovector channel are
crucial in order to further increase the precision of our determination of the hadronic
vacuum polarisation contribution.

1 Introduction

The Standard Model of Particle Physics provides a quantitative and precise description
of the properties of the known constituents of matter in terms of a uniform theoretical
formalism. However, despite its enormous success, the Standard Model (SM) does
not explain some of the most pressing problems in particle physics, such as the nature
of dark matter or the asymmetry between matter and antimatter. The world-wide
quest for discovering physics beyond the SM involves several different strategies,
namely (1) the search for new particles and interactions that are not described by the
SM, (2) the search for the enhancement of rare processes by new interactions, and (3)
the comparison of precision measurements with theoretical, SM-based predictions of
the same quantity. These complementary activities form an integral part of the future
European strategy for particle physics [1].

Precision observables, such as the anomalous magnetic moment of the muon,
𝑎𝜇, have provided intriguing hints for the possible existence of “new physics”. The
longstanding tension between the direct measurement of 𝑎𝜇 and its theoretical
prediction has recently increased to 4.2 standard deviations, following the publication
of the first result from the E989 experiment at Fermilab [2]. As E989 prepares to
improve the experimental precision further, it is clear that the theoretical prediction
must be pushed to a higher level of accuracy as well, in order to increase the sensitivity
of the SM test. Since the main uncertainties of the SM prediction arise from strong
interaction effects, current efforts are focussed on quantifying the contributions from
hadronic vacuum polarisation (HVP) and hadronic light-by-light scattering (HLbL).
This has also been emphasised in the 2020 White Paper [3] in which the status of the
theoretical prediction is reviewed.

Our project is focussed on calculations of the hadronic contributions to the muon
anomalous magnetic moment from first principles, using the methodology of Lattice
QCD. To this end, we perform calculations of the HVP contribution at the physical
value of the pion mass, in order to reduce systematic errors. Another highly important
ingredient of our calculation is the determination of the spectrum in the isovector
channel of the electromagnetic current correlator, which constrains the long-distance
contribution to the HVP. Our group has also developed a new formalism for the direct
calculation of the HLbL contribution, which has produced the most precise estimate
from first principles so far [4].

The HVP contribution to the muon anomalous magnetic moment is closely linked
to the hadronic effects that modify the value of the electromagnetic coupling, Δ𝛼.
Since Δ𝛼 depends on other SM parameters such as the mass of the𝑊-boson, a precise
determination provides important information for precision tests of the SM. Finally,
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we also compute the hadronic contributions to the “running” of the electroweak
mixing angle, a precision observable which is particularly sensitive to the effects of
physics beyond the SM in the regime of low energies.

2 Computational setup

One of the major computational tasks of our project is the generation of gauge-
field ensembles at (close to) physical light-quark masses. For a particular challenge
encountered in these simulations please refer to [5]. The generation of a gauge field
ensemble dubbed E250 at physical pion and kaon masses has been a long standing
goal of our programme on Hazel Hen and Hawk, and has been finalized since the last
report. Furthermore we recently produced two somewhat coarser lattices named D452
and D1521 at light pion masses. For both ensembles, the generation of 500 gauge field
configurations, corresponding to 2000 molecular dynamics units (MDU) had been
proposed. As it turned out, the rather coarse lattice spacing of D152 lead to sustained
algorithmic problems, hence the run was stopped after 275 gauge configurations
(1100 MDU). For D452 no such issues were observed, and we were able to produce
1000 gauge configurations (4000 MDU) due to better than expected performance for
this run. Preliminary results for observables suggest that ensemble D452 will play a
vital role for obtaining more precise results for the observables in our project.

Figure 1 shows the Hamiltonian deficits Δ𝐻 as well as the Monte Carlo history of
the topological charge for ensembles E250 and D452. The acceptance rate resulting
from the history of Δ𝐻 is (87.1 ± 1.0)% for E250 and (91.5 ± 0.7)% for D452. The
generation of these chains is now complete and the calculation of physics observables
has been started on compute clusters operated by JGU Mainz.

The openQCD code used in our calculations exhibits excellent scaling properties
over a wide range of problem sizes. Figure 3 shows the strong-scaling behaviour
for the system size corresponding to ensemble D452, i.e. for a 128 × 643 lattice, as
measured on Hawk (left pane). The timings refer to the application of the even-odd
preconditioned O(𝑎) improved Wilson–Dirac operator �̂�w to a spinor field which
accounts for the largest fraction of the total computing time for several of our projects.

For the gauge field generation runs on Hawk and for the HLbL runs on lattices of
size 128 × 643 we used the following setup:

A Local lattice volume of size 84 per MPI rank with 8192 MPI ranks on 64 nodes.

In addition to this setup, we performed spectroscopy runs on J303 (192 × 643) with
setup B and on E250 192 × 963 with setup C:

B Local lattice of size 12 × 83 per MPI rank with 8192 MPI ranks on 64 nodes.
C Local lattice volume of size 12× 62 × 12 per MPI rank with 32768 MPI ranks on

256 nodes.

1 This ensemble was called D151 in the proposal.
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Fig. 1: Monte-Carlo histories of the Hamiltonian deficit Δ𝐻 (left) and the total
topological charge (right) for E250 (top) and D452 (bottom).

When possible a hypercube of size 22 × 42 processes was grouped onto a single
CPU, to minimise off-CPU communication.

For the current allocation year we received a total of 100 MCore hours. It was
foreseen that 32% / 40% / 27% would be spent on the gauge field generation / HVP
spectroscopy / HLbL respectively, while the actual percentages of computing time
spent by the time of writing this report are given by 30% / 44% / 26%.

3 The hadronic running of the electroweak couplings

We start our discussion of precision observables with the hadronic contributions
to the energy dependence (“running”) of the electromagnetic coupling, 𝛼, since its
calculation shares many features and definitions with the determination of the HVP
contribution to the muon anomalous moment.

The electromagnetic coupling in the Thomson limit is one of the most precisely
known quantities, 𝛼 = 1/137.035999084(21) [6]. However, for scales above a few
hundred MeV, the low-energy hadronic contribution to the vacuum polarization



The muon anomaly from Lattice QCD 23

0 4096 8192 12288 16384 20480 24576 28672 32768

# cores

0

16

32

48

64

80

96

112

128
S

p
ee

d
u

p

D200 on Hawk
"ideal" scaling

0 4096 8192 12288 16384 20480 24576 28672 32768

# cores

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

S
p

ee
d

u
p

Fig. 2: Left: Strong-scaling behaviour of the openQCD code on Hawk. The plot
shows the application of the even-odd preconditioned Wilson–Dirac operator on a
128× 643 lattice. Speedup factors are defined relative to 256 cores. A clear indication
of hyperscaling is seen in this regime. Right: Weak scaling with a local volume of 84

on Hawk.

induces a theoretical uncertainty. If one parameterizes the energy dependence, or
“running”, of the coupling in the so-called on-shell scheme,

𝛼(𝑞2) = 𝛼

1 − Δ𝛼(𝑞2)
, (1)

the five flavour quark contribution at the Z-pole is found to be Δ𝛼
(5)
had (𝑀

2
𝑍
) =

0.02766(7) [6]. Its poorer precision is a limiting factor for the global fit of the
electroweak sector of the Standard Model (SM). Thus, the goal is to improve the
precision of this estimate, by reducing the uncertainties associated with the strong
interaction. We concentrate on the quark contribution at low energies, which is given
by the one-subtracted dispersion relation

Δ𝛼had (𝑞2) = 4𝜋𝛼Π̄𝛾𝛾 (𝑞2), Π̄𝛾𝛾 (𝑞2) = Re
[
Π𝛾𝛾 (𝑞2) − Π𝛾𝛾 (0)

]
. (2)

The standard method to obtain eq. (2) employs the optical theorem, which relates
the HVP function with the so-called R-ratio, i.e. the total hadronic cross section
𝜎(𝑒+𝑒− → hadrons) normalized by 𝜎(𝑒+𝑒− → 𝜇+𝜇−), via a dispersion integral.
While the integral can be evaluated using experimental data for the 𝑅-ratio in the low-
energy domain, this procedure introduces experimental uncertainties into a theoretical
prediction. Therefore, lattice computations in the space-like region𝑄2 = −𝑞2 provide
a valuable ab initio crosscheck. In order to estimate Δ𝛼 (5)had (𝑀

2
𝑍
), we use the so-called

Euclidean split technique [7, 8]


