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Preface

Reliability has become a crucial characteristic of advance engineered systems as
systems with poor reliability suffer from a great amount of lifecycle cost and poten-
tial risk of failures. Maintenance, involving both corrective and preventive actions, is
an effective way to retain a system in or restore it to an acceptable operating condi-
tion, and it has been extensively implemented in industrial applications. Examples
of maintenance activities for engineered systems are oil change of rotating systems,
rotor balance of mechanical systems, shaft/coupling alignment, filter replacement,
corroded components coating, and so forth. It is noted that inappropriate mainte-
nance scheme may not guarantee the reduction of operation cost and the fulfill-
ment of reliability target, and systems are over-maintained or under-maintained
during its operation stage. The maintenance models and optimization have been,
therefore, intensively studied in the past decade with the purpose of minimizing
maintenance cost and/or maximizing reliability or availability of a specific system.
The paradigm of maintenance strategy has shifted from corrective maintenance to
preventive maintenance, and then to condition-based maintenance and predictive
maintenance nowadays.

Selective maintenance optimization, as a specific condition-based maintenance
problem, was firstly presented by Rice, Cassady, and Nachlas in the 7th Industrial
Engineering Research Conference. In selective maintenance optimization, a system
intends to perform successive assigned missions with a break between two adjacent
missions, and maintenance actions can be executed in breaks to ensure the success of
the subsequent missions. However, due to the limited maintenance resources, such
as time and budget, it is impossible to carry out all the desired maintenance actions
for aged and failed components. Alternatively, a subset of maintenance actions has
to be selected from the set of all the optional maintenance actions, so as to maximize
the success of the future missions. The preliminary model for selective maintenance
of series–parallel systems with independent and identical copies of a component
was generalized to a basic framework by Cassady and co-authors in the follow-up
research works. As selective maintenance optimization exactly matches up with the
many industrial and military scenarios where only a limited amount of maintenance
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resources have to be allocated among components of a system, it has been exten-
sively studied in the past decade from various angles and implemented in a diversity
of industrial applications. Research articles on this subject are continuously being
published in journals and conference proceedings. Nevertheless, to the best of our
knowledge, the subject has never been adequately or systematically reported in reli-
ability book. The increased and sustained interest in this subject drives us to publish
this book.

This book systematically introduces the basic selective maintenance optimization
model. It is, to a large extent, a collection of our recent research advances on selective
maintenance optimization from the Center for System Reliability and Safety at the
University of Electronic Science and Technology of China. The layout of this book
is as following:

Chapter 1 introduces the role of maintenance optimization in lifecycle manage-
ment of engineering assets and gives an overview picture of research topics in main-
tenance optimization. It is followed by a systematical literature review on the existing
research efforts on selective maintenance optimization.

Chapter 2 offers an introduction to the basic mathematical model of selective
maintenance problem, in which both a system and its components are assumed to be
binary-state. Three selective maintenance models with distinct objectives functions
and constraints are formulated.

Chapter 3 discusses the selectivemaintenance optimization formulti-state systems
with binary-capacitated components. TheKijima type II age reductionmodel, serving
as a specific imperfect maintenance model, is incorporated in the selective mainte-
nance optimization. The universal generating function is utilized to evaluate the prob-
ability of a system successfully completing the next mission. The genetic algorithm
is introduced to resolve the resulting optimization model.

Chapter 4 focuses on the selective maintenance optimization for multi-state
systems with the load sharing mechanism. A joint optimization model is formu-
lated to simultaneously optimize the load distribution and the allocation of the limited
maintenance budget among components. The genetic algorithm is employed to solve
the optimization problem.

Chapter 5 discusses selective maintenance optimization under stochastic time
durations of breaks and maintenance actions. The distribution of the number of
completedmaintenance actions in a break with time duration uncertainty is evaluated
by using the saddlepoint approximation.A tailored ant colony optimization algorithm
is developed to solve the resulting combinational optimization problem in the cases
of large-scale systems.

Chapter 6 presents a robust selective maintenance optimization model to treat
the uncertainty produced by imperfect observations. A multi-objective optimization
model is formulated with the aims ofmaximizing the expectation and simultaneously
minimizing the variance of a system successfully completing the next mission.

Chapter 7 takes account of uncertainties frombothmaintenance and inspection and
introduces a joint selective maintenance and inspection optimization model. A finite-
horizon mixed observability Markov decision process is formulated as the remaining
resource is fully observable and the component states are partially observable. The
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dynamic programing and the deep reinforcement learning algorithm are implemented
to resolve small-scale problems and large-scale problems, respectively.

Chapter 8 discusses selective maintenance optimization for systems executing
multiple consecutive missions. The uncertainties associated with the time duration
of each future mission and the working time of each component in each future
mission are addressed. The selective maintenance problem is formulated as a max-
min optimization model, and it is resolved by a customized simulated annealing-
based genetic algorithm.

Chapter 9 introduces a dynamic selective maintenance for multi-state systems
operating multiple consecutive missions. The resulting sequential decision problem
is formulated as aMarkov decision process with a mixed integer-discrete-continuous
state space. A deep reinforcement learning method is customized based on the actor-
critic framework, and a postprocess is utilized to search for the optimal maintenance
actions in a constrained large-scale action space.

The target audience of this book is undergraduate and graduate students, relia-
bility practitioners, and researchers. The readers should have background in basic
probability theory, stochastic models, and optimization algorithms. The book offers
a great mount of knowledge and insights on system maintenance modelling methods
and optimization algorithms, with which readers can deal with many real-world
engineering cases.

This book is a collection of materials developed in the dissertations and
journal/conference papers of several former and current graduate students from the
Center for System Reliability and Safety at the University of Electronic Science and
Technology of China. The majority of the chapters have been developed based on the
dissertations and researchworks ofDr. Tao Jiang (M.Sc. student from2014–2017 and
Ph.D. student from 2017–2022), Dr. Yiming Chen (Ph.D. student from 2015–2022),
Mr. Jian Gao (M.Sc. student from 2019–2022), Mr. Chujie Chen (M.Sc. student
from 2012–2015), and Mr. Qin Zhang (M.Sc. student from 2020–2022). The book
was edited with the additional assistance of Dr. Tangfan Xiahou (Ph.D. student from
2018–2022) and Dr. Mingang Yin (Post-doctoral research fellow from 2021–2023).
We would like to express our sincere gratitude and appreciation to researchers and
friends who have discussed with the concepts and models of this book, or have co-
authored with us on some topics of this book. To name a few, Prof. Ming J. Zuo at
University of Alberta, Prof. Wei Chen at Northwestern University, Prof. Min Xie at
CityUniversity ofHongKong, Prof. LirongCui atQingdaoUniversity, Prof. Liudong
Xing at University of Massachusetts-Dartmouth, Dr. Gregory Levitin at Israel Elec-
tric Corporation, Prof. Yi-Kuei Lin at Taiwan YangMing Chiao Tung, Prof. Tongdan
Jin at Texas State University, Prof. Haitao Liao at University of Arkansas, Prof.
Zhisheng Ye at National University of Singapore, Prof. Zhiguo Zeng at Centrale-
Supélec—Université Paris-Saclay, Prof. Yisha Xiang at Texas Tech University, Prof.
Yuchang Mo at Huaqiao University, and Prof. Hui Xiao at Southwestern University
of Finance and Economics.

Last but not least, wewould like to thank Prof. Hoang Pham at Rutgers University,
who gave a great support to the publication of this book. It is also indeed our pleasure
working with Mr. Kavitha Sathish and the Springer editorial team.
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Chapter 1
Introduction

1.1 Overview of Maintenance Optimization

Reliability refers to the ability of a system or component to perform its intended
functions under the stated conditions for a specified period of time [36]. Advanced
engineered systems are designed for greater size, higher precision, andmore complex
functionality, along with the involvement of state-of-the-art artificial intelligent tech-
niques. The reliability of these systems (e.g., nuclear plants, wind turbines, aircrafts,
power systems, and machining centers) has been intensively studied across their
entire lifecycle. Failure of these advanced systems often results in unexpected pro-
duction delays and/or significant economic losses and can even cause severe threats
to human life. Examples of recent major accidents, as shown in Fig. 1.1, include the
Fukushima Daiichi nuclear power plant disaster in 2011, Samsung Galaxy Note 7
battery explosion in 2016, ItalyApulia train crash in 2016, andBoeing 737Max crash
in 2019. However, the causes of failures are diverse, ranging from the system design
and manufacturing stages to the system operation and maintenance stages [121].

Industrial practitioners strive tominimize the occurrence and consequences of fail-
ures. Consequently, many attempts have been made by both industry and academia
in the past decades to understand why and with which patterns system failures occur
[143]. Figure1.2 shows a typical pattern of the hazard rate function of engineered sys-
tems, which is well-known as a bathtub curve because of its shape. Systemswith such
a hazard rate function experience a decreasing failure rate at the early stage of their
lifecycle (also called infantmortality), followed by a nearly constant failure rate stage
(also called useful life) and by an increasing failure rate stage (also called wear-out).
In the infant mortality region, the failure rate of systems is high because of defective
components, manufacturing defects, and poor quality control. By removing defective
components, the failure rate function of the system will continuously fall, and it will
reach the useful life region. The failure rate function in the useful life region is fairly
constant, and system failures are caused randomly by environmental loads, human
errors, and chance events. Engineered systems are expected to operate for as long as
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Fig. 1.1 Examples of major accidents in recent years

Fig. 1.2 Bathtub curve

possible in this region. Eventually, the failure rate function of the systems rises again
in the wear-out region as the components in the systems start to deteriorate. Typical
causes of component deteriorations include fatigue, corrosion, friction, and aging.
By replacing or recovering the wear-out components in a timely manner, the failure
rate function of the system will decline immediately, leading to a lower probability
of failure in the future than that of the case without replacement or recovery. Such a
system that can be repaired in its lifecycle is called a repairable system.
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Fig. 1.3 Maintenance
decision-making

Component replacement is a typical maintenance activity in industrial practice.
Further, all activities aimed at maintaining a system in or restoring it to the phys-
ical state considered necessary for the fulfillment of its production function can
be regarded as maintenance activities [43]. Examples of maintenance activities for
engineered systems include oil change in rotating systems, rotor balance of mechan-
ical systems, shaft/coupling alignment, filter replacement, and coating of corroded
components. Despite that maintenance activities can prolong the usage lifetime and
maintain the performance capacity of systems, unoptimized maintenance planning
may not guarantee a reduction in operation costs and the fulfillment of reliability
targets, and systems are over-maintained or under-maintained during the operation
stage. By constructing a proper maintenance decision model, the maintenance plan
for engineered systems can be optimized to minimize maintenance costs and/or
maximize the reliability or availability of a specific system. An example of mainte-
nance decision making is delineated in Fig. 1.3. With an increase in the preventive
maintenance (PM) frequency, the cost associated with corrective maintenance (CM)
declines, whereas that of PM increases. From the perspective of the totalmaintenance
cost, an optimal PM frequency that possesses a minimal total maintenance cost is
readily found. Such an optimal maintenance strategy can be identified by formulat-
ing a maintenance decision model and resolving it using an appropriate optimization
algorithm.

1.1.1 Paradigms of Maintenance Optimization

Looking back on the history of maintenance optimization, the paradigm of mainte-
nance strategy has shifted fromCM to PM and then to condition-based and predictive
maintenance. The following are the definitions of these maintenance paradigms:

CM is also called reactive maintenance or run-to-failure strategy; that is, main-
tenance activities will be confined to reactive tasks of repair actions or component
replacement upon the failure of components or systems. Examples of systems with
CM strategies include light bulb replacement and computer repair. Non-essential
items and systems in which failure causes marginal economic loss can be replaced
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or repaired when they run to failure. The advantages of CM include low cost associ-
ated with monitoring, minimal planning requirements, and simplicity of processing.
Conversely, the disadvantages of CM are unpredictable failures and unscheduled
downtime, shorter lifecycle, and potential for high long-term cost.

PM (also known as preventative maintenance) is conducted regularly on a pop-
ulation of identical engineered systems to reduce their likelihood of failure. It can
be considered a proactive maintenance paradigm and further divided into two types:
time-based PM and usage-based PM. In the former case, PM is executed at a fixed
calendar time instant. For example, this could be a weekly or monthly maintenance
routine for the production lines. In the latter case, PM is triggered after a set number
of production cycles, hours in use, or even distance travelled. For example, the oil fil-
ter of a vehicle is periodically replaced every 10,000 mileages. Improved reliability,
reduced cost associated with unexpected failures, and less disruption or unscheduled
downtime are key features of PM. However, such a maintenance paradigm incurs
additional costs and personnel for executing PM actions, and a poorly prepared PM
planmay lead to a specific individual system fromapopulationbeingover-maintained
or under-maintained.

Condition-based maintenance (CBM) is also a proactive maintenance paradigm.
Using advanced sensing techniques, the actual health status of engineered systems
can be monitored to facilitate a timely and cost-efficient proactive maintenance plan
for each individual system. CBM is triggered when certain monitored indicators
show signs of decreasing performance or upcoming failure. The indicators could be
the vibration signals of rotating machines, temperatures, and debris of lubricating
oil. In specific engineering applications, condition monitoring data can be collected
continuously or periodically at certain time intervals [49]. As CBM leverages the
monitoring data of each individual system, unnecessary maintenance tasks can be
avoided unlike either time-based or usage-based PM. Meanwhile, the repair cost
and sudden downtime caused by random failures can be reduced further. However,
equipping conditionmonitoring incurs additional upfront system setup costs. Inmost
cases, these costs are offset by the potential costs of unnecessary maintenance or
unexpected failures.

Predictive maintenance (PdM) is an emerging maintenance paradigm in recent
years, and it is flourishing very fast with the development of predictive techniques.
Slightly different from CBM, PdM not only monitors the actual health status of
engineered systems using sensors or inspection instruments, but also predicts the
evolution of the health status and remaininguseful life of each individual systemusing
historical monitoring data and future mission profiles [49]. Such a prediction activity
that facilitates PdM is termed a prognosis in the reliability community [113]. Physical
model-based and data-driven methods are two major research lines of prognosis.
Recently, machine learning and artificial intelligence techniques, such as support
vector machines, deep neural networks, and generative adversarial networks, have
been intensively implemented as data-driven tools for prognosis [70, 144]. With
progressively updated prognosis results, the PdM strategy is dynamically scheduled
for each individual system. Because maintenance is only executed as required for
each system when failure is imminent, PdM is often more cost-effective than the
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other maintenance paradigms. Similar to CBM, PdM requires condition monitoring
devices for data acquisition. However, its effectiveness relies heavily on prognosis
accuracy [8].

1.1.2 System Degradation Characteristics

The health status of an engineered system inevitably deteriorates over time. To
schedule effective maintenance planning, decision makers should first mathemat-
ically characterize the deterioration behaviors of a system. Throughout the entire
history of maintenance optimization, the most straightforward and simplest method
of characterizing the failure behavior of a system is to assume an appropriate lifetime
distribution (e.g., exponential and Weibull distributions). However, the lifetime dis-
tribution of a repairable system is based on a coarse probabilistic model. It is more
suitable to consider an underlying stochastic process to manifest a set of stages that
the system experienced before completely failing.

Owing to the development of advanced sensors and inspection techniques, the
degradation trajectories of engineered systems can be recorded completely or par-
tially. A plethora of degradation models have been developed over the past few
decades to characterize deterioration behaviors in an effective and accurate manner.
The degradation models of repairable systems can generally be categorized based
on two categories of state spaces: discrete-state and continuous-state degradation
models.

For engineered systems in which health status can be easily distinguished into dif-
ferent distinct states, discrete-state degradationmodels can be utilized. Discrete-state
degradation models can be further categorized into binary-state, three-state, and gen-
eralized multi-state models. Essentially, the lifetime distribution of a repairable sys-
tem is a binary-state degradationmodel (perfectly functioning and completely failed).
The three-state degradation model herein refers to the delay-time model wherein the
deterioration process of a system is defined as a two-stage process [125]. The first
stage is the normal operating stage from the new stage to the point where a hidden
defect has been identified, whereas the second stage is defined as the failure delay
time from the time of defect identification to failure [125]. Moreover, many engi-
neered systems can govern multiple (more than three) distinct states. For concrete-
ness, power systems can operate at different performance capacities. Another typical
example is that the health status of a cutting tool can be roughly classified into “nor-
mal,” “moderately worn out,” “seriously worn out,” and “completely worn out.” The
Markov property is a conventional and basic hypothesis in multi-state degradation
models. Markov models, such as discrete-time and continuous-time (homogenous)
Markov chains, and semi-Markov models are effective tools for characterizing the
multi-state degradation trajectories of degradation systems. Additionally, the hid-
den Markov and hidden semi-Markov models are implemented if the uncertainty
associated with inspections is considered. Based on whether the system can transit
from its current state to a non-adjacent state, multi-state degradation models can be
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distinguished into progressive and non-progressive models. The delay-time model
can also be extended to a generalized multi-state degradation model by considering
defect severity.

Typically, the deterioration of engineered systems is gradual over time and diffi-
cult to classify into multiple distinct states. In such cases, continuous-state degrada-
tion models should be used. Continuous-state degradation models in the context of
maintenance optimizationmainly include stochastic process-basedmodels, typically
Wiener, Gamma, and inverse Gaussian processes. TheWiener process is appropriate
for characterizing non-monotonically increasing (or decreasing) degradation, such
as the resistance of an electronic component and the capacity of batteries. Degrada-
tion in the form of cumulative damage, that is, monotonic increasing (or decreasing)
degradation, can be modeled by both Gamma and inverse Gaussian processes, such
as the wear process and fatigue crack propagation. Inverse Gaussian process-based
degradation model has recently gained significant attention owing to their ability and
flexibility in incorporating random effects and covariates [133].

In many real-world situations, degradation processes of engineered systems may
be caused or indicated by various time-varying environmental factors and/or exter-
nal shocks. Environmental factors include general external factors (e.g., temperature,
vibration, load, and running speed) and internal factors (e.g., inherent deterioration
mechanism and deterioration level). For example, the wear process of a cutting tool
can be affected by running speed and material properties. Meanwhile, the propor-
tional hazard model (PHM), as one of the most reported covariate-based models,
has been extensively applied in reliability analysis and maintenance optimization
owing to its flexibility and simplicity. The conventional PHM assumes that the haz-
ard rate function comprises two multiplicative parts: a baseline hazard rate function
and a function of covariates. Time-varying environmental factors per se can be easily
incorporated into degradation processes. Various PHMs and their variants have been
developed to accommodate various industrial scenarios. However, the influence of
shocks can be versatile: (1) some parameters in a degradation model are related to
the number of shocks, (2) an additional degradation increment is incurred directly by
the occurrence of a shock, and (3) a shock can induce a system failure, which poses
the case of competing failure.

1.1.3 Maintenance Efficiencies

In maintenance optimization problems, various maintenance actions are optional
to retain a deteriorated system or recover it to a better condition. Repair refers to
actions carried out upon the failure of a system and thus corresponds to CM. Before
implementing a maintenance action on a deteriorated system, decision makers must
determine the degree to which the system can be restored by the action. Maintenance
actions can be classified into the following five categories:

Perfect maintenance or prefect repair can restore the condition of a system to
“as good as new”; that is, the condition of aged or failed system is recovered to
the status that is the same as a brand-new system. A typical example of perfect


