
Reinforcement
Learning for
Finance

Solve Problems in Finance with
CNN and RNN Using the
TensorFlow Library
—
Samit Ahlawat

Reinforcement
Learning for Finance

Solve Problems in Finance
with CNN and RNN Using
the TensorFlow Library

Samit Ahlawat

Reinforcement Learning for Finance: Solve Problems in Finance with CNN

and RNN Using the TensorFlow Library

ISBN-13 (pbk): 978-1-4842-8834-4 ISBN-13 (electronic): 978-1-4842-8835-1
https://doi.org/10.1007/978-1-4842-8835-1

Copyright © 2023 by Samit Ahlawat

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Joel Filipe on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

Samit Ahlawat
Irvington, NJ, USA

https://doi.org/10.1007/978-1-4842-8835-1

To my family and friends without whose support this book
would not have been possible.

v

Table of Contents

About the Author ���ix

Acknowledgments ���xi

Preface ��xiii

Introduction ��xv

Chapter 1: Overview ���1

1.1 Methods for Training Neural Networks ...2

1.2 Machine Learning in Finance ..3

1.3 Structure of the Book ..4

Chapter 2: Introduction to TensorFlow ���5

2.1 Tensors and Variables ...5

2.2 Graphs, Operations, and Functions ...11

2.3 Modules ..14

2.4 Layers ...17

2.5 Models ..25

2.6 Activation Functions ..33

2.7 Loss Functions ..37

2.8 Metrics ..46

2.9 Optimizers ...77

2.10 Regularizers ..96

2.11 TensorBoard ..120

vi

2.12 Dataset Manipulation ..122

2.13 Gradient Tape ..126

Chapter 3: Convolutional Neural Networks ���������������������������������������139

3.1 A Simple CNN ..140

3.2 Neural Network Layers Used in CNNs ...148

3.3 Output Shapes and Trainable Parameters of CNNs150

3.4 Classifying Fashion MNIST Images ...152

3.5 Identifying Technical Patterns in Security Prices ..159

3.6 Using CNNs for Recognizing Handwritten Digits ...172

Chapter 4: Recurrent Neural Networks ���177

4.1 Simple RNN Layer ...178

4.2 LSTM Layer ...182

4.3 GRU Layer ...186

4.4 Customized RNN Layers ..188

4.5 Stock Price Prediction ...190

4.6 Correlation in Asset Returns ...207

Chapter 5: Reinforcement Learning Theory ��������������������������������������233

5.1 Basics ...234

5.2 Methods for Estimating the Markov Decision Problem240

5.3 Value Estimation Methods ...241

5.3.1 Dynamic Programming ...242

5.3.2 Generalized Policy Iteration ..265

5.3.3 Monte Carlo Method ...277

5.3.4 Temporal Difference (TD) Learning ...284

5.3.5 Cartpole Balancing ...305

Table of ConTenTs

vii

5.4 Policy Learning..319

5.4.1 Policy Gradient Theorem ...319

5.4.2 REINFORCE Algorithm ...321

5.4.3 Policy Gradient with State-Action Value Function Approximation323

5.4.4 Policy Learning Using Cross Entropy ..325

5.5 Actor-Critic Algorithms ..326

5.5.1 Stochastic Gradient–Based Actor-Critic Algorithms329

5.5.2 Building a Trading Strategy ..330

5.5.3 Natural Actor-Critic Algorithms ...346

5.5.4 Cross Entropy–Based Actor-Critic Algorithms347

Chapter 6: Recent RL Algorithms��349

6.1 Double Deep Q-Network: DDQN ..349

6.2 Balancing a Cartpole Using DDQN ...353

6.3 Dueling Double Deep Q-Network ..356

6.4 Noisy Networks ...357

6.5 Deterministic Policy Gradient ..359

6.5.1 Off-Policy Actor-Critic Algorithm ...360

6.5.2 Deterministic Policy Gradient Theorem ..361

6.6 Trust Region Policy Optimization: TRPO ..362

6.7 Natural Actor-Critic Algorithm: NAC ...368

6.8 Proximal Policy Optimization: PPO ..369

6.9 Deep Deterministic Policy Gradient: DDPG ..370

6.10 D4PG ...373

6.11 TD3PG..376

6.12 Soft Actor-Critic: SAC ..379

Table of ConTenTs

viii

6.13 Variational Autoencoder ..384

6.14 VAE for Dimensionality Reduction ...389

6.15 Generative Adversarial Networks ..399

 Bibliography ���403

 Index ���411

Table of ConTenTs

ix

About the Author

Samit Ahlawat is Senior Vice President in

Quantitative Research, Capital Modeling, at

JPMorgan Chase in New York, USA. In his

current role, he is responsible for building

trading strategies for asset management

and for building risk management models.

His research interests include artificial

intelligence, risk management, and

algorithmic trading strategies. He has given CQF Institute talks on artificial

intelligence, has authored several research papers in finance, and holds a

patent for facial recognition technology. In his spare time, he contributes

to open source code.

xi

Acknowledgments

I would like to express my heartfelt appreciation for my friends and

coworkers, in academia and the workplace, who encouraged me to write

this book.

xiii

Preface

When I began using artificial intelligence tools in quantitative financial

research, I could not find a comprehensive introductory text focusing on

financial applications. Neural network libraries like TensorFlow, PyTorch,

and Caffe had made tremendous contributions in the rapid development,

testing, and deployment of deep neural networks, but I found most

applications restricted to computer science, computer vision, and robotics.

Having to use reinforcement learning algorithms in finance served as

another reminder of the paucity of texts in this field. Furthermore, I found

myself referring to scholarly articles and papers for mathematical proofs of

new reinforcement learning algorithms. This led me to write this book to

provide a one-stop resource for Python programmers to learn the theory

behind reinforcement learning, augmented with practical examples drawn

from the field of finance.

In practical applications, reinforcement learning draws upon deep

neural networks. To facilitate exposition of topics in reinforcement

learning and for continuity, this book also provides an introduction to

TensorFlow and covers neural network topics like convolutional neural

networks (CNNs) and recurrent neural networks (RNNs).

Finally, this book also introduces readers to writing modular, reusable,

and extensible reinforcement learning code. Having worked on developing

trading strategies using reinforcement learning and publishing papers,

I felt existing reinforcement learning libraries like TF-Agents are tightly

coupled with the underlying implementation framework and do not

xiv

express central concepts in reinforcement learning in a manner that is

modular enough for someone conversant with concepts to pick up

TF- Agent library usage or extend its algorithms for specific applications.

The code samples covered in this book provide examples of how to write

modular code for reinforcement learning.

PrefaCe

xv

Introduction

Reinforcement learning is a rapidly growing area of artificial intelligence

that involves an agent learning from past experience of rewards gained

by taking specific actions in certain states. The agent seeks to learn a

policy prescribing the optimum action in each state with the objective of

maximizing expected discounted future rewards. It is an unsupervised

learning technique where the agent learns the optimum policy by past

interactions with the environment. Supervised learning, by contrast, seeks

to learn the pattern of output corresponding to each state in training

data. It attempts to train the model parameters in order to get a close

correspondence between predicted and actual output for a given set of

inputs. This book outlines the theory behind reinforcement learning

and illustrates it with examples of implementations using TensorFlow.

The examples demonstrate the theory and implementation details of the

algorithms, supplemented with a discussion of corresponding APIs from

TensorFlow and examples drawn from quantitative finance. It guides

a reader familiar with Python programming from basic to advanced

understanding of reinforcement learning algorithms, coupled with a

comprehensive discussion on how to use state-of-the-art software libraries

to implement advanced algorithms in reinforcement learning.

Most applications of reinforcement learning have focused on robotics

or computer science tasks. By focusing on examples drawn from finance,

this book illustrates a spectrum of financial applications that can benefit

from reinforcement learning.

1

CHAPTER 1

Overview
Deep neural networks have transformed virtually every scientific human

endeavor – from image recognition, medical imaging, robotics, and self-

driving cars to space exploration. The extent of transformation heralded

by neural networks is unrivaled in contemporary human history, judging

by the range of new products that leverage neural networks. Smartphones,

smartwatches, and digital assistants – to name a few – demonstrate the

promise of neural networks and signal their emergence as a mainstream

technology. The rapid development of artificial intelligence and machine

learning algorithms has coincided with increasing computational power,

enabling them to run rapidly. Keeping pace with new developments in

this field, various open source libraries implementing neural networks

have blossomed. Python has emerged as the lingua franca of the artificial

intelligence programming community. This book aims to equip Python-

proficient programmers with a comprehensive knowledge on how to use

the TensorFlow library for coding deep neural networks and reinforcement

learning algorithms effectively. It achieves this by providing detailed

mathematical proofs of key theorems, supplemented by implementation of

those algorithms to solve real-life problems.

Finance has been an early adopter of artificial intelligence algorithms

with the application of neural networks in designing trading strategies

as early as the 1980s. For example, White (1988) applied a simple

neural network to find nonlinear patterns in IBM stock price. However,

recent cutting-edge research on reinforcement learning has focused

© Samit Ahlawat 2023
S. Ahlawat, Reinforcement Learning for Finance,
https://doi.org/10.1007/978-1-4842-8835-1_1

https://doi.org/10.1007/978-1-4842-8835-1_1

2

predominantly on robotics, computer science, or interactive game-

playing. The lack of financial applications has led many to question

the applicability of deep neural networks in finance where traditional

quantitative models are ubiquitous. Finance practitioners feel that the

lack of rigorous mathematical proofs and transparency about how neural

networks work has restricted their wider adoption within finance. This

book aims to address both of these concerns by focusing on real-life

financial applications of neural networks.

1.1 Methods for Training Neural Networks
Neural networks can be trained using one of the following three methods:

 1. Supervised learning involves using a training

dataset with known output, also called ground

truth values. For a classification task, this would

be the true labels, while for a regression task, it

would be the actual output value. A loss function

is formulated that measures the deviation of the

model output from the true output. This function is

minimized with respect to model parameters using

stochastic gradient descent.

 2. Unsupervised learning methods use a training

dataset made up of input features without any

knowledge of the true output values. The objective

is to classify inputs into clusters for clustering or

dimension reduction applications or for identifying

outliers.

 3. Reinforcement learning involves an agent that

learns an optimal policy within the framework of

a Markov decision problem (MDP). The training

Chapter 1 Overview

3

dataset consists of a set of actions taken in different

states by an agent, followed by rewards earned and

the next state to which the agent transitions. Using

the history of rewards, reinforcement learning

attempts to learn an optimal policy to maximize the

expected sum of discounted future rewards. This

book focuses on reinforcement learning.

1.2 Machine Learning in Finance
Machine learning applications in finance date back to the 1980s with the

use of neural networks in stock price prediction (White, 1988). Within

finance, automated trading strategies and portfolio management have

been early adopters of artificial intelligence and machine learning tools.

Allen and Karjalainen (1999) applied genetic algorithms to combine

simple trading rules to form more complex ones. More recent applications

of machine learning in finance can be seen in the works of Savin et al.

(2007), who used the pattern recognition method presented by Lo et al.

(2000) to test if the head-and-shoulders pattern had predictive power;

Chavarnakul and Enke (2008), who employed a generalized regression

neural network (GRNN) to construct two trading strategies based on

equivolume charting that predicted the next day’s price using volume-

and price-based technical indicators; and Ahlawat (2016), who applied

probabilistic neural networks to predict technical patterns in stock

prices. Other works include Enke and Thawornwong (2005), Li and Kuo

(2008), and Leigh et al. (2005). Chenoweth et al. (1996) have studied the

application of neural networks in finance. Enke and Thawornwong (2005)

tested the hypothesis that neural networks can provide superior prediction

of future returns based on their ability to identify nonlinear relationships.

They employed only fundamental measures and did not consider

technical ones. Their neural network provided higher returns than the

buy-and-hold strategy, but they did not consider transaction costs.

Chapter 1 Overview

4

There are many other applications of machine learning in finance

besides trading strategies, perhaps less glamorous but equally significant

in business impact. This book gives a comprehensive exposition of several

machine learning applications in finance that are at cutting edge of

research and practical use.

1.3 Structure of the Book
This book begins with an introduction to the TensorFlow library in

Chapter 2 and illustrates the concepts with financial applications that

involve building models to solve practical problems. The datasets for

problems are publicly available. Relevant concepts are illustrated with

mathematical equations and concise explanations.

Chapter 3 introduces readers to convolutional neural networks

(CNNs), and Chapter 4 follows up with a similar treatment of recurrent

neural networks (RNNs). These networks are frequently used in building

value function models and policies in reinforcement learning, and a

comprehensive understanding of CNN and RNN is indispensable for

using reinforcement learning effectively on practical problems. As before,

all foundational concepts are illustrated with mathematical theory,

explanation, and practical implementation examples.

Chapter 5 introduces reinforcement learning concepts: from Markov

decision problem (MDP) formulation to defining value function and

policies, followed by a comprehensive discussion of reinforcement

learning algorithms illustrated with examples and mathematical proofs.

Finally, Chapter 6 provides a discussion of recent, groundbreaking

advances in reinforcement learning by discussing technical papers and

applying those algorithms to practical applications.

Chapter 1 Overview

5

CHAPTER 2

Introduction to
TensorFlow
TensorFlow is an open source, high-performance machine learning library

developed by Google and released for public use in 2015. It has interfaces

for Python, C++, and Java programming languages. It has the option of

running on multiple CPUs or GPUs. TensorFlow offers two modes of

execution: eager mode that can be run immediately and graph mode

that creates a dependency graph and executes nodes in that graph only

where needed.

This book uses TensorFlow 2.9.1. Older TensorFlow constructs from

version 1 of the library such as Session and placeholder are not covered

here. Their use has been rendered obsolete in TensorFlow version 2.0 and

higher. Output shown in the code listings has been generated using the

PyCharm IDE’s interactive shell.

2.1 Tensors and Variables
Tensors are n-dimensional arrays, similar in functionality to the numpy

library’s ndarray object. They are instances of the tf.Tensor object. A three-

dimensional tensor of 32-bit floating-point numbers can be created using

code in Listing 2-1. Tensor has attributes shape and dtype that tell the

shape and data type of the tensor. Once created, tensors retain their shape.

© Samit Ahlawat 2023
S. Ahlawat, Reinforcement Learning for Finance,
https://doi.org/10.1007/978-1-4842-8835-1_2

https://doi.org/10.1007/978-1-4842-8835-1_2

6

Listing 2-1. Creating a Three-Dimensional Tensor

 1 import tensorflow as tf

 2

 3 tensor = tf.constant([[list(range(3))],

 4 [list(range(1, 4))],

 5 [list(range(2, 5))]], dtype=tf.

float32)

 6

 7 print(tensor)

 8

 9 tf.Tensor(

10 [[[0. 1. 2.]]

11 [[1. 2. 3.]]

12 [[2. 3. 4.]]], shape=(3, 1, 3), dtype=float32)

Most numpy functions for creating ndarrays have analogs in

TensorFlow, for example, tf.ones, tf.zeros, tf.eye, tf.ones_like, etc. Tensors

support usual mathematical operations like +, −, etc., in addition to matrix

operations like transpose, matmul, and einsum, as shown in Listing 2-2.

Listing 2-2. Mathematical Operations on Tensors

 1 import tensorflow as tf

 2

 3 ar = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)

 4

 5 print(ar)

 6 <tf.Tensor: id=1, shape=(2, 2), dtype=float32, numpy=

 7 array([[1., 2.],

 8 [2., 2.]], dtype=float32)>

 9

10 # elementwise multiplication

Chapter 2 IntroduCtIon to tensorFlow

7

11 print(ar * ar)

12 Out[8]:

13 <tf.Tensor: id=2, shape=(2, 2), dtype=float32, numpy=

14 array([[1., 4.],

15 [4., 4.]], dtype=float32)>

16

17 # matrix multiplication C = tf.matmul(A, B) => cij =

sum_k (aik * bkj)

18 print(tf.matmul(ar, tf.transpose(ar)))

19

20 <tf.Tensor: id=5, shape=(2, 2), dtype=float32, numpy=

21 array([[5., 6.],

22 [6., 8.]], dtype=float32)>

23

24 # generic way of matrix multiplication

25 print(tf.einsum("ij,kj->ik", ar, ar))

26

27 <tf.Tensor: id=23, shape=(2, 2), dtype=float32, numpy=

28 array([[5., 6.],

29 [6., 8.]], dtype=float32)>

30

31 # cross product

32 print(tf.einsum("ij,kl->ijkl", ar, ar))

33

34 <tf.Tensor: id=32, shape=(2, 2, 2, 2),

dtype=float32, numpy=

35 array([[[[1., 2.],

36 [2., 2.]],

37 [[2., 4.],

38 [4., 4.]]],

39 [[[2., 4.],

Chapter 2 IntroduCtIon to tensorFlow

8

40 [4., 4.]],

41 [[2., 4.],

42 [4., 4.]]]], dtype=float32)>

Tensors can be sliced using the usual Python notation with a

semicolon. For advanced slicing, use tf.slice that accepts a begin index

and the number of elements along each axis to slice. tf.strided_slice can

be used for adding a stride. To obtain specific indices from a tensor, use

tf.gather. To extract specific elements of a multidimensional tensor

specified by a list of indices, use tf.gather_nd. These APIs are illustrated

using examples in Listing 2-3.

Listing 2-3. Tensor Slicing Operations

 1 import tensorflow as tf

 2

 3 tensor = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)

 4

 5 print(tensor[1:, :])

 6 <tf.Tensor: id=37, shape=(1, 2), dtype=float32,

numpy=array([[2., 2.]], dtype=float32)>

 7

 8 print(tf.slice(tensor, begin=[0,1], size=[2, 1]))

 9 tf.Tensor(

10 [[2.]

11 [2.]], shape=(2, 1), dtype=float32)

12

13 print(tf.gather_nd(tensor, indices=[[0, 1], [1, 0]]))

14 Out[18]: <tf.Tensor: id=42, shape=(2,), dtype=float32,

numpy=array([2., 2.], dtype=float32)>

Ragged tensors are tensors with a nonuniform shape along an axis, as

illustrated in Listing 2-4.

Chapter 2 IntroduCtIon to tensorFlow

9

Listing 2-4. Ragged Tensors

1 import tensorflow as tf

2

3 jagged = tf.ragged.constant([[1, 2], [2]])

4 print(jagged)

5 <tf.RaggedTensor [[1, 2], [2]]>

TensorFlow allows space-efficient storage of sparse arrays, that is,

arrays with most elements as 0. The tf.sparse.SparseTensor API takes

the indices of non-zero elements, their values, and the dense shape of the

sparse array. This is shown in Listing 2-5.

Listing 2-5. Sparse Tensors

 1 import tensorflow as tf

 2

 3 tensor = tf.sparse.SparseTensor(indices=[[1,0], [2,2]],

values=[1, 2], dense_shape=[3, 4])

 4 print(tensor)

 5 SparseTensor(indices=tf.Tensor(

 6 [[1 0]

 7 [2 2]], shape=(2, 2), dtype=int64), values=tf.Tensor([1 2],

shape=(2,), dtype=int32), dense_shape=tf.Tensor([3 4],

shape=(2,), dtype=int64))

 8

 9 print(tf.sparse.to_dense(tensor))

10 tf.Tensor(

11 [[0 0 0 0]

12 [1 0 0 0]

13 [0 0 2 0]], shape=(3, 4), dtype=int32)

Chapter 2 IntroduCtIon to tensorFlow

10

In contrast to tf.Tensor that is immutable after creation, a TensorFlow

variable can be changed. A variable is an instance of the tf.Variable

class and can be created by initializing it with a tensor. Variables can be

converted to tensors using tf.convert_to_tensor. Variables cannot be

reshaped after creation, only modified. Calling tf.reshape on a variable

returns a new tensor. Variables can also be created from another variable,

but the operation copies the underlying tensor. Variables do not share

underlying data. assign can be used to update the variable by changing

its data tensor. assign_add is another useful method of a variable that

replicates the functionality of the += operator. Operations on tensors like

matmul or einsum can also be applied to variables or to a combination of

tensor and variable. Variable has a Boolean attribute called trainable that

signifies if the variable is to be trained during backpropagation. Operations

on variables are shown in Listing 2-6.

Listing 2-6. Variables

 1 import tensorflow as tf

 2

 3 tensor = tf.constant([[1, 2], [3, 4]])

 4 variable = tf.Variable(tensor)

 5 print(variable)

 6 <tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=

 7 array([[1, 2],

 8 [3, 4]])>

 9

10 # return the index of highest element

11 print(tf.math.argmax(variable))

12

13 tf.Tensor([1 1], shape=(2,), dtype=int64)

14

15 print(tf.convert_to_tensor(variable))

16 tf.Tensor(

Chapter 2 IntroduCtIon to tensorFlow

11

17 [[1 2]

18 [3 4]], shape=(2, 2), dtype=int32)

19

20 print(variable.assign([[1,2], [1, 1]]))

21 <tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32,

numpy=

22 array([[1, 2],

23 [1, 1]])>

2.2 Graphs, Operations, and Functions
There are two modes of execution within TensorFlow: eager execution

and graph execution. Eager mode of execution processes instructions as

they occur in the code, while graph execution is delayed. Graph mode

builds a dependency graph connecting the data represented as tensors

(or variables) using operations and functions. After the graph is built, it is

executed. Graph execution offers a few advantages over eager execution:

 1. Graphs can be exported to files or executed in non-

Python environments such as mobile devices.

 2. Graphs can be compiled to speed up execution.

 3. Nodes with static data and operations on those

nodes can be precomputed.

 4. Node values that are used multiple times can

be cached.

 5. Branches of the graph can be identified for parallel

execution.

Operations in TensorFlow are represented using the tf.Operation class

and can be used as a node. Operation nodes are created using one of the

predefined operations such as tf.matmul, tf.reduce_sum, etc. To create a

Chapter 2 IntroduCtIon to tensorFlow

12

new operation, use the tf.Operation class. A few important operations are

enumerated in the following. All of them can be accessed directly using the

tf.operation_name syntax.

 1. Operations defined in the tf.math library:

• tf.abs: Calculates the absolute value of a tensor.

• tf.divide: Divides two tensors.

• tf.maximum: Returns the element-wise maximum

of two tensors.

• tf.reduce_sum: Calculates the sum of all tensor

elements. It takes an optional axis argument to

calculate the sum along that axis.

 2. Operations defined in the tf.linalg library:

(a). tf.det: Calculates the determinant of a

square matrix

(b). tf.svd: Calculates the SVD decomposition of a

rectangular matrix provided as a tensor

(c). tf.trace: Returns the trace of a tensor

Functions are defined using the tf.function method, passing the

Python function as an argument. tf.function is a decorator that augments

a Python function with attributes necessary for running it in a TensorFlow

graph. A few examples of TensorFlow operations and functions are

illustrated in Listing 2-7. Each TensorFlow function generates an internal

graph from its arguments. By default, a TensorFlow function uses a graph

execution model. To switch to eager execution mode, set tf.config.run_
functions_eagerly(True). Please note that the following output may not

match output from another run because of random numbers used.

Chapter 2 IntroduCtIon to tensorFlow

13

Listing 2-7. TensorFlow Operations and Functions

 1 import tensorflow as tf

 2 import numpy as np

 3

 4 tensor = tf.constant(np.ones((3, 3), dtype=np.int32))

 5

 6 print(tensor)

 7

 8 <tf.Tensor: id=0, shape=(3, 3), dtype=int32, numpy=

 9 array([[1, 1, 1],

10 [1, 1, 1],

11 [1, 1, 1]])>

12

13 print(tf.reduce_sum(tensor))

14 <tf.Tensor: id=2, shape=(), dtype=int32, numpy=9>

15

16 print(tf.reduce_sum(tensor, axis=1))

17 <tf.Tensor: id=4, shape=(3,), dtype=int32, numpy=

array([3, 3, 3])>

18

19 @tf.function

20 def sigmoid_activation(inputs, weights, bias):

21 x = tf.matmul(inputs, weights) + bias

22 return tf.divide(1.0, 1 + tf.exp(-x))

23

24 inputs = tf.constant(np.ones((1, 3), dtype=np.float64))

25 weights = tf.Variable(np.random.random((3, 1)))

26 bias = tf.ones((1, 3), dtype=tf.float64)

Chapter 2 IntroduCtIon to tensorFlow

14

27

28 print(sigmoid_activation(inputs, weights, bias))

29 <tf.Tensor: id=195, shape=(1, 3), dtype=float64,

numpy=array([[0.89564016, 0.89564016, 0.89564016]])>

Code shown in Listing 2-8 sets the default execution mode to

graph mode.

Listing 2-8. Running TensorFlow Operations in Graph

(Non- eager) Mode

1 import timeit

2

3 tf.config.experimental_run_functions_eagerly(False)

4 t1 = timeit.timeit(lambda: sigmoid_activation(inputs,

weights, tf.constant(np.random.random((1, 3)))),

number=1000)

5 print(t1)

6 0.7758807

2.3 Modules
TensorFlow uses the base class tf.Module to build layers and models. A

module is a class that keeps track of its state using instance variables and can

be called as a function. To achieve this, it must provide an implementation

for the method __call__. This is illustrated in Listing 2-9. Due to the use of

random numbers, output values may vary from those shown.

Listing 2-9. Custom Module

 1 import tensorflow as tf

 2 import numpy as np

 3

 4

Chapter 2 IntroduCtIon to tensorFlow

15

 5 class ExampleModule(tf.Module):

 6 def __init__(self, name=None):

 7 super(ExampleModule, self).__init__(name=name)

 8 self.weights = tf.Variable(np.random.random(5),

name="weights")

 9 self.const = tf.Variable(np.array([1.0]),

dtype=tf.float64,

10 trainable=False, name="constant")

11

12 def __call__(self, x, *args, **kwargs):

13 return tf.matmul(x, self.weights[:, tf.newaxis]) +

self.const[tf.newaxis, :]

14

15

16 em = ExampleModule()

17 x = tf.constant(np.ones((1, 5)), dtype=tf.float64)

18 print(em(x))

19

20

21 <tf.Tensor: id=24631, shape=(1, 1), dtype=float64,

numpy=array([[2.45019464]])>

Module is the base class for both layers and models. It can be used as

a model, serving as a collection of layers. Module shown in Listing 2-10

defers the creation of weights for the first layer until inputs are provided.

Once input shape is known, it creates the tensors to store the weights.

Decorator tf.function can be added to the __call__ method to convert it to

a graph.

Chapter 2 IntroduCtIon to tensorFlow

16

Listing 2-10. Module

 1 import tensorflow as tf

 2

 3

 4 class InferInputSizeModule(tf.Module):

 5 def __init__(self, noutput, name=None):

 6 super().__init__(name=name)

 7 self.weights = None

 8 self.noutput = noutput

 9 self.bias = tf.Variable(tf.zeros([noutput]),

name="bias")

10

11 def __call__(self, x, *args, **kwargs):

12 if self.weights is None:

13 self.weights = tf.Variable(tf.random.

normal([x.shape[-1], self.noutput]))

14

15 output = tf.matmul(x, self.weights) + self.bias

16 return tf.nn.sigmoid(output)

17

18 class SimpleModel(tf.Module):

19 def __init__(self, name=None):

20 super().__init__(name=name)

21

22 self.layer1 = InferInputSizeModule(noutput=4)

23 self.layer2 = InferInputSizeModule(noutput=1)

24

25 @tf.function

26 def __call__(self, x, *args, **kwargs):

27 x = self.layer1(x)

28 return self.layer2(x)

Chapter 2 IntroduCtIon to tensorFlow

17

29

30 model = SimpleModel()

31 print(model(tf.ones((1, 10))))

32

33 <tf.Tensor: id=24700, shape=(1, 1), dtype=float32,

numpy=array([[0.632286]], dtype=float32)>

Objects of type tf.Module can be saved to checkpoint files. Creating a

checkpoint creates two files: one with module data and another containing

metadata with extension .index. Saving a module to a checkpoint and

loading it back from a checkpoint is illustrated in Listing 2-11.

Listing 2-11. Checkpoint a Model

 1 import tensorflow as tf

 2

 3 path = r"C:\temp\simplemodel"

 4 checkpoint = tf.train.Checkpoint(model=model)

 5 checkpoint.write(path)

 6

 7

 8 model2 = SimpleModel()

 9 model_orig = tf.train.Checkpoint(model=model2)

10 model_orig.restore(path)

2.4 Layers
Layers are objects with tf.keras.layers.Layer as the base class. The Keras

library is used in TensorFlow for implementing layers and models. The

tf.keras.layers.Layer class derives from the tf.Module class and has

a method call in place of the __call__ method in tf.Module. There are

several advantages to using Keras instead of tf.Module. For instance,

training variables of nested Keras layers are automatically collected for

Chapter 2 IntroduCtIon to tensorFlow

