Reinforcement
Learning for
Finance

Solve Problems in Finance with
CNN and RNN Using the
TensorFlow Library

Samit Ahlawat

ApPress’

Reinforcement
Learning for Finance

Solve Problems in Finance
with CNN and RNN Using
the TensorFlow Library

Samit Ahlawat

Apress’

Reinforcement Learning for Finance: Solve Problems in Finance with CNN
and RNN Using the TensorFlow Library

Samit Ahlawat
Irvington, NJ, USA

ISBN-13 (pbk): 978-1-4842-8834-4 ISBN-13 (electronic): 978-1-4842-8835-1
https://doi.org/10.1007/978-1-4842-8835-1

Copyright © 2023 by Samit Ahlawat

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Joel Filipe on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8835-1

To my family and friends without whose support this book
would not have been possible.

Table of Contents

About the AULNOr ... ————— ix
Acknowledgments.......cccveumsssssmsssnmmmmsssssssssssssnsssesssssssssssnnsssssssssssnnnnnns Xi
- T Xiii
Introduction........cccuiimeemmmmnmnnnnssss s ———————— Xv
Chapter 1: OVErVIEWcccceeeesssmrsssssssssssssnsssssssssssssssnnnsssssssssssnnnnnssssssssssns 1
1.1 Methods for Training Neural NETWOIKScccccvvrernnnsnienenssense s sessesennns 2
1.2 Machine Learning in FINANCE........ccvvvvvverevesnensereseesessesessesessessessessssessessesaes 3
1.3 Structure of the BOOK..........cccvvverrinnncrne s 4
Chapter 2: Introduction to TenSorFIOWcccuccermnssssnnnnnssssnsnsssssssnssess 5
2.1 Tensors and VariabIesccccvvvvererivrersee s s s s see e s enes 5
2.2 Graphs, Operations, and FUNCLIONS ... 1
2.3 MOUUIES ...ttt e e s e s e e s e s e e s e e s e e saresanesanesanenns 14
24 LAYEIS ..oereeceecirie st e s n e e n e e p e e n e r e ae e 17
2.5 MOGEIS ...ttt 25
2.6 Activation FUNCHONS.........ccocvininccrcrc e 33
2.7 L0SS FUNCHIONSceeeceerireestecerses e se s s see e s e s e s sae s s seessesaesaessessesaennenns 37
2.8 MBITICS .urreereerererree s s e e s s e s e e s e s s e s s e s aesae e e e s e saesae s e e naesaenae e s ennenaennnnns 46
2.9 OPHMIZEIS... o 77
2.10 REQUIANIZEISvevveerererie s sere s s e s se e sse s e s sae s s e s s s se s naenaes 96
2.11TeNSOIrBOAIMccveereerrecirire s nnens 120

TABLE OF CONTENTS

2.12 Dataset Manipulationc.cccvvenninnnnnnnir s 122

P R €T o 1T oL N T T TR 126
Chapter 3: Convolutional Neural NetwWorks.........cceuusssssnnsesssssnsssssssnns 139
3.1 ASIMPIE CNN ... e s nne s 140
3.2 Neural Network Layers Used in CNNS.........c.ccorvrevnenmrsnesnsesessesesssesessesenns 148
3.3 Output Shapes and Trainable Parameters of CNNS.........c.cccovererenereniennnne 150
3.4 Classifying Fashion MNIST IMAQESc.ccervrerrerierererserseressssessessessessssessessens 152
3.5 Identifying Technical Patterns in Security PriCeS......ccccvvvvrrverierierensensennens 159
3.6 Using CNNs for Recognizing Handwritten Digits..........ccccoovevnrenricncrenccnnn. 172
Chapter 4: Recurrent Neural Networks.......ccccussseessssssssnssssssssssnsssssnns 177
4.1 SIMPIE BNN LAYceeeecereereereseresee e se e e e nenns 178
4.2 LSTM LAYET ...ooeevreeerreerrsesessssesssssssssesssssssssssssssssssssssssssnssssssssssssssssnsssnssssnns 182
4.3 GRU LAYET ...ocvrvrrrrreirisirinerese et ss s 186
4.4 Customized RNN LAYEIS.......ccucererrrrerserersenessessessessssessessessssessessessessssessessens 188
4.5 Stock Price Prediction..........cocccecvennnnnsncsnnsssssse s 190
4.6 Correlation in ASSEt REIUINScccovreicrcrrrseescse s 207
Chapter 5: Reinforcement Learning Theory........ccccusssesnsesssssnssssssnnns 233
LT 72T [0S 234
5.2 Methods for Estimating the Markov Decision Problem...........ccccoovvinicnnens 240
5.3 Value Estimation Methods...........cccovvennennnsninnennesss e 241
5.3.1 Dynamic Programming.........cccueeeererernsesessesssssessssesssssssssesssssssssssensnns 242
5.3.2 Generalized Policy Iteration...........ccccvvvnvennesennse e 265
5.3.3 Monte Carlo Methodccoveeiennnsnnsnese e 277
5.3.4 Temporal Difference (TD) LEArNing........ccueererrenerrsseressessssesessesessnsesenns 284

5.3.5 Cartpole BalanCingcooueevmenerenennsesnsesessssssse s sessssessssesenns 305

TABLE OF CONTENTS

5.4 POlICY LEAINMING.....cccceririiriiesiertren e sessn e se s s s se s sae s e saesaesae s 319
5.4.1 Policy Gradient TREOIEM........ccveererrerersereressssessessessesessessessessssessessees 319
5.4.2 REINFORCE AlQOFithm........ccccououinnnnninisinsnesesesesesssssssssssssssssssssssanas 321
5.4.3 Policy Gradient with State-Action Value Function Approximation323
5.4.4 Policy Learning Using Cross ENtropyccccvevvvverievenensensesensssessensenes 325

5.5 Actor-Critic AlgQOrithmsS ..o 326
5.5.1 Stochastic Gradient—Based Actor-Critic Algorithmsccccccerrvuenene. 329
5.5.2 Building a Trading Strategyccccrrvrrienerennssc s 330
5.5.3 Natural Actor-Critic Algorithms........ccccccovvevriernncrrre e 346
5.5.4 Cross Entropy—Based Actor-Critic Algorithmscccceevvevievevrensenaenes 347

Chapter 6: Recent RL Algorithms.......ccccuusemmmmmsssssnnmssssssssssssssssssssssnns 349

6.1 Double Deep Q-Network: DDQAN ... 349

6.2 Balancing a Cartpole Using DDQN..........ccccorvnmrnnmsemenmssnesessesesesesssesessesenns 353

6.3 Dueling Double Deep Q-NetWOrKc.cucccvvrernsesnenesssesssesesesese e sessesenns 356

6.4 NOISY NEIWOIKSccereruerreririereresessere s sssses e ssessesessessessessssessessesasssssensessens 357

6.5 Deterministic Policy Gradient...........ccocvrervremrerierenessensesesssessessesessssensensens 359
6.5.1 Off-Policy Actor-Critic Algorithm..........ccevievvrniniennren e 360
6.5.2 Deterministic Policy Gradient THEOIEMcccvverrerererserseressesessensees 361

6.6 Trust Region Policy Optimization: TRPOccccoievrinininnsnsene s 362

6.7 Natural Actor-Critic Algorithm: NAC...........cooorrerrerereereer e 368

6.8 Proximal Policy Optimization: PPOccooeernennenensnerssesese e 369

6.9 Deep Deterministic Policy Gradient: DDPG............c.ccocvrvnernsesrnnenenenerensenenns 370

B. 10 DAPG ... 373

B.11 TD3BPG.....cocirirrrrrnrrrsrsssere e e sr e 376

6.12 SOft ACLOr-CritiC: SACcoeevrerrecerereres e 379

vii

TABLE OF CONTENTS

6.13 Variational AUTOENCOUETcvvveeiiieiriieriseeisses e s ssresssessssssssessssessnees 384
6.14 VAE for Dimensionality Reduction............ccccvvvevnininiennsnsense s 389
6.15 Generative Adversarial NetWOrkS........cvcvevvverrveerseersseersssessssesssseessssesssees 399
Bibliographycccccmnssssmmnmmsssssnmmmssssssnssssssssnssssssnnnssssssnnnsssssnnnnssssnnnnnss 403
[0 411

viii

About the Author

Samit Ahlawat is Senior Vice President in
Quantitative Research, Capital Modeling, at
JPMorgan Chase in New York, USA. In his
current role, he is responsible for building
trading strategies for asset management
and for building risk management models.
His research interests include artificial

intelligence, risk management, and
algorithmic trading strategies. He has given CQF Institute talks on artificial
intelligence, has authored several research papers in finance, and holds a
patent for facial recognition technology. In his spare time, he contributes
to open source code.

ix

Acknowledgments

I'would like to express my heartfelt appreciation for my friends and
coworkers, in academia and the workplace, who encouraged me to write
this book.

Preface

When I began using artificial intelligence tools in quantitative financial
research, I could not find a comprehensive introductory text focusing on
financial applications. Neural network libraries like TensorFlow, PyTorch,
and Caffe had made tremendous contributions in the rapid development,
testing, and deployment of deep neural networks, but I found most
applications restricted to computer science, computer vision, and robotics.
Having to use reinforcement learning algorithms in finance served as
another reminder of the paucity of texts in this field. Furthermore, I found
myself referring to scholarly articles and papers for mathematical proofs of
new reinforcement learning algorithms. This led me to write this book to
provide a one-stop resource for Python programmers to learn the theory
behind reinforcement learning, augmented with practical examples drawn
from the field of finance.

In practical applications, reinforcement learning draws upon deep
neural networks. To facilitate exposition of topics in reinforcement
learning and for continuity, this book also provides an introduction to
TensorFlow and covers neural network topics like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).

Finally, this book also introduces readers to writing modular, reusable,
and extensible reinforcement learning code. Having worked on developing
trading strategies using reinforcement learning and publishing papers,

I felt existing reinforcement learning libraries like TF-Agents are tightly
coupled with the underlying implementation framework and do not

xiii

PREFACE

express central concepts in reinforcement learning in a manner that is
modular enough for someone conversant with concepts to pick up
TF-Agent library usage or extend its algorithms for specific applications.
The code samples covered in this book provide examples of how to write
modular code for reinforcement learning.

Xiv

Introduction

Reinforcement learning is a rapidly growing area of artificial intelligence
that involves an agent learning from past experience of rewards gained

by taking specific actions in certain states. The agent seeks to learn a
policy prescribing the optimum action in each state with the objective of
maximizing expected discounted future rewards. It is an unsupervised
learning technique where the agent learns the optimum policy by past
interactions with the environment. Supervised learning, by contrast, seeks
to learn the pattern of output corresponding to each state in training

data. It attempts to train the model parameters in order to get a close
correspondence between predicted and actual output for a given set of
inputs. This book outlines the theory behind reinforcement learning

and illustrates it with examples of implementations using TensorFlow.
The examples demonstrate the theory and implementation details of the
algorithms, supplemented with a discussion of corresponding APIs from
TensorFlow and examples drawn from quantitative finance. It guides
areader familiar with Python programming from basic to advanced
understanding of reinforcement learning algorithms, coupled with a
comprehensive discussion on how to use state-of-the-art software libraries
to implement advanced algorithms in reinforcement learning.

Most applications of reinforcement learning have focused on robotics
or computer science tasks. By focusing on examples drawn from finance,
this book illustrates a spectrum of financial applications that can benefit
from reinforcement learning.

CHAPTER 1

Overview

Deep neural networks have transformed virtually every scientific human
endeavor - from image recognition, medical imaging, robotics, and self-
driving cars to space exploration. The extent of transformation heralded
by neural networks is unrivaled in contemporary human history, judging
by the range of new products that leverage neural networks. Smartphones,
smartwatches, and digital assistants - to name a few - demonstrate the
promise of neural networks and signal their emergence as a mainstream
technology. The rapid development of artificial intelligence and machine
learning algorithms has coincided with increasing computational power,
enabling them to run rapidly. Keeping pace with new developments in
this field, various open source libraries implementing neural networks
have blossomed. Python has emerged as the lingua franca of the artificial
intelligence programming community. This book aims to equip Python-
proficient programmers with a comprehensive knowledge on how to use
the TensorFlow library for coding deep neural networks and reinforcement
learning algorithms effectively. It achieves this by providing detailed
mathematical proofs of key theorems, supplemented by implementation of
those algorithms to solve real-life problems.

Finance has been an early adopter of artificial intelligence algorithms
with the application of neural networks in designing trading strategies
as early as the 1980s. For example, White (1988) applied a simple
neural network to find nonlinear patterns in IBM stock price. However,
recent cutting-edge research on reinforcement learning has focused

© Samit Ahlawat 2023 1
S. Ahlawat, Reinforcement Learning for Finance,
https://doi.org/10.1007/978-1-4842-8835-1_1

https://doi.org/10.1007/978-1-4842-8835-1_1

CHAPTER 1 OVERVIEW

predominantly on robotics, computer science, or interactive game-
playing. The lack of financial applications has led many to question

the applicability of deep neural networks in finance where traditional
quantitative models are ubiquitous. Finance practitioners feel that the
lack of rigorous mathematical proofs and transparency about how neural
networks work has restricted their wider adoption within finance. This
book aims to address both of these concerns by focusing on real-life
financial applications of neural networks.

1.1 Methods for Training Neural Networks

Neural networks can be trained using one of the following three methods:

1. Supervised learning involves using a training
dataset with known output, also called ground
truth values. For a classification task, this would
be the true labels, while for a regression task, it
would be the actual output value. A loss function
is formulated that measures the deviation of the
model output from the true output. This function is
minimized with respect to model parameters using

stochastic gradient descent.

2. Unsupervised learning methods use a training
dataset made up of input features without any
knowledge of the true output values. The objective
is to classify inputs into clusters for clustering or
dimension reduction applications or for identifying
outliers.

3. Reinforcement learning involves an agent that
learns an optimal policy within the framework of
a Markov decision problem (MDP). The training

CHAPTER1 OVERVIEW

dataset consists of a set of actions taken in different
states by an agent, followed by rewards earned and
the next state to which the agent transitions. Using
the history of rewards, reinforcement learning
attempts to learn an optimal policy to maximize the
expected sum of discounted future rewards. This

book focuses on reinforcement learning.

1.2 Machine Learning in Finance

Machine learning applications in finance date back to the 1980s with the
use of neural networks in stock price prediction (White, 1988). Within
finance, automated trading strategies and portfolio management have
been early adopters of artificial intelligence and machine learning tools.
Allen and Karjalainen (1999) applied genetic algorithms to combine
simple trading rules to form more complex ones. More recent applications
of machine learning in finance can be seen in the works of Savin et al.
(2007), who used the pattern recognition method presented by Lo et al.
(2000) to test if the head-and-shoulders pattern had predictive power;
Chavarnakul and Enke (2008), who employed a generalized regression
neural network (GRNN) to construct two trading strategies based on
equivolume charting that predicted the next day’s price using volume-
and price-based technical indicators; and Ahlawat (2016), who applied
probabilistic neural networks to predict technical patterns in stock
prices. Other works include Enke and Thawornwong (2005), Li and Kuo
(2008), and Leigh et al. (2005). Chenoweth et al. (1996) have studied the
application of neural networks in finance. Enke and Thawornwong (2005)
tested the hypothesis that neural networks can provide superior prediction
of future returns based on their ability to identify nonlinear relationships.
They employed only fundamental measures and did not consider
technical ones. Their neural network provided higher returns than the
buy-and-hold strategy, but they did not consider transaction costs.

CHAPTER 1 OVERVIEW

There are many other applications of machine learning in finance
besides trading strategies, perhaps less glamorous but equally significant
in business impact. This book gives a comprehensive exposition of several
machine learning applications in finance that are at cutting edge of
research and practical use.

1.3 Structure of the Book

This book begins with an introduction to the TensorFlow library in
Chapter 2 and illustrates the concepts with financial applications that
involve building models to solve practical problems. The datasets for
problems are publicly available. Relevant concepts are illustrated with
mathematical equations and concise explanations.

Chapter 3 introduces readers to convolutional neural networks
(CNNs), and Chapter 4 follows up with a similar treatment of recurrent
neural networks (RNNs). These networks are frequently used in building
value function models and policies in reinforcement learning, and a
comprehensive understanding of CNN and RNN is indispensable for
using reinforcement learning effectively on practical problems. As before,
all foundational concepts are illustrated with mathematical theory,
explanation, and practical implementation examples.

Chapter 5 introduces reinforcement learning concepts: from Markov
decision problem (MDP) formulation to defining value function and
policies, followed by a comprehensive discussion of reinforcement
learning algorithms illustrated with examples and mathematical proofs.

Finally, Chapter 6 provides a discussion of recent, groundbreaking
advances in reinforcement learning by discussing technical papers and
applying those algorithms to practical applications.

CHAPTER 2

Introduction to
TensorFlow

TensorFlow is an open source, high-performance machine learning library
developed by Google and released for public use in 2015. It has interfaces
for Python, C++, and Java programming languages. It has the option of
running on multiple CPUs or GPUs. TensorFlow offers two modes of
execution: eager mode that can be run immediately and graph mode

that creates a dependency graph and executes nodes in that graph only
where needed.

This book uses TensorFlow 2.9.1. Older TensorFlow constructs from
version 1 of the library such as Session and placeholder are not covered
here. Their use has been rendered obsolete in TensorFlow version 2.0 and
higher. Output shown in the code listings has been generated using the
PyCharm IDE’s interactive shell.

2.1 Tensors and Variables

Tensors are n-dimensional arrays, similar in functionality to the numpy
library’s ndarray object. They are instances of the tf.Tensor object. A three-
dimensional tensor of 32-bit floating-point numbers can be created using
code in Listing 2-1. Tensor has attributes shape and dtype that tell the
shape and data type of the tensor. Once created, tensors retain their shape.

© Samit Ahlawat 2023 5
S. Ahlawat, Reinforcement Learning for Finance,
https://doi.org/10.1007/978-1-4842-8835-1_2

https://doi.org/10.1007/978-1-4842-8835-1_2

CHAPTER 2 INTRODUCTION TO TENSORFLOW

Listing 2-1. Creating a Three-Dimensional Tensor

1
2
3
4
5

O 00 N O

10
11
12

import tensorflow as tf

tensor = tf.constant([[list(range(3))],
[list(range(1, 4))],
[list(range(2, 5))]1], dtype=tf.
float32)

print(tensor)

tf.Tensor(

[[[o0. 1. 2.]]
[[1. 2. 3.]]
[[2. 3. 4.]]], shape=(3, 1, 3), dtype=float32)

Most numpy functions for creating ndarrays have analogs in

TensorFlow, for example, tf.ones, tf.zeros, tf.eye, tf.ones_like, etc. Tensors

support usual mathematical operations like +, —, etc., in addition to matrix

operations like transpose, matmul, and einsum, as shown in Listing 2-2.

Listing 2-2. Mathematical Operations on Tensors

1
2
3
4
5
6
7
8
9

10

import tensorflow as tf

ar = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)
print(ar)

<tf.Tensor: id=1, shape=(2, 2), dtype=float32, numpy=
array([[1., 2.],

[2., 2.]], dtype=float32)>

elementwise multiplication

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39

CHAPTER 2 INTRODUCTION TO TENSORFLOW

print(ar * ar)

Out[8]:

<tf.Tensor: id=2, shape=(2, 2), dtype=float32, numpy=
array([[1., 4.1,

(4., 4.]], dtype=float32)>

matrix multiplication C = tf.matmul(A, B) => cij =
sum_k (aik * bkj)
print(tf.matmul(ar, tf.transpose(ar)))

<tf.Tensor: id=5, shape=(2, 2), dtype=float32, numpy=

array([[5., 6.1,
[6., 8.]], dtype=float32)>

generic way of matrix multiplication
print(tf.einsum("ij,kj->ik", ar, ar))

<tf.Tensor: id=23, shape=(2, 2), dtype=float32, numpy=

array([[5., 6.1,
[6., 8.]], dtype=float32)>

cross product
print(tf.einsum("ij,k1->ijk1", ar, ar))

<tf.Tensor: id=32, shape=(2, 2, 2, 2),
dtype=float32, numpy=

array([[[[2., 2.1,

[2., 2.]],

[[2., 4.7,

(4., 4.111,

[[[2., 4.],

CHAPTER 2 INTRODUCTION TO TENSORFLOW

4 [4., 4.]],
41 [[2., 4.],
42 [4., 4.111]1, dtype=float32)>

Tensors can be sliced using the usual Python notation with a
semicolon. For advanced slicing, use tf.slice that accepts a begin index
and the number of elements along each axis to slice. tf.strided_slice can
be used for adding a stride. To obtain specific indices from a tensor, use
tf.gather. To extract specific elements of a multidimensional tensor
specified by a list of indices, use tf.gather_nd. These APIs are illustrated
using examples in Listing 2-3.

Listing 2-3. Tensor Slicing Operations

1 import tensorflow as tf

2

3 tensor = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)

4

5 print(tensor[1:, :])

6 <tf.Tensor: id=37, shape=(1, 2), dtype=float32,
numpy=array([[2., 2.]], dtype=float32)>

7

8 print(tf.slice(tensor, begin=[0,1], size=[2, 1]))

9 tf.Tensor(

10 [[2.]

11 [2.]], shape=(2, 1), dtype=float32)

12

13 print(tf.gather nd(tensor, indices=[[0, 1], [1, 0]]))
14 Out[18]: <tf.Tensor: id=42, shape=(2,), dtype=float32,
numpy=array([2., 2.], dtype=float32)>

Ragged tensors are tensors with a nonuniform shape along an axis, as
illustrated in Listing 2-4.

CHAPTER 2 INTRODUCTION TO TENSORFLOW
Listing 2-4. Ragged Tensors

import tensorflow as tf

print(jagged)

1
2
3 jagged = tf.ragged.constant([[1, 2], [2]])
4
5 <tf.RaggedTensor [[1, 2], [2]]>

TensorFlow allows space-efficient storage of sparse arrays, that is,
arrays with most elements as 0. The tf.sparse.SparseTensor API takes
the indices of non-zero elements, their values, and the dense shape of the
sparse array. This is shown in Listing 2-5.

Listing 2-5. Sparse Tensors

1 import tensorflow as tf

2

3 tensor = tf.sparse.SparseTensor(indices=[[1,0], [2,2]],
values=[1, 2], dense shape=[3, 4])

4 print(tensor)

5 SparseTensor(indices=tf.Tensor(

6 [[10]

7 [2 2]], shape=(2, 2), dtype=int64), values=tf.Tensor([1 2],

shape=(2,), dtype=int32), dense_shape=tf.Tensor([3 4],
shape=(2,), dtype=int64))

print(tf.sparse.to dense(tensor))
10 tf.Tensor(
11 [[0o 00 0]
12 [100 0]
13 [0 0 2 0]], shape=(3, 4), dtype=int32)

CHAPTER 2 INTRODUCTION TO TENSORFLOW

In contrast to tf.Tensor that is immutable after creation, a TensorFlow
variable can be changed. A variable is an instance of the tf.Variable
class and can be created by initializing it with a tensor. Variables can be
converted to tensors using tf.convert_to_tensor. Variables cannot be
reshaped after creation, only modified. Calling tf.reshape on a variable
returns a new tensor. Variables can also be created from another variable,
but the operation copies the underlying tensor. Variables do not share
underlying data. assign can be used to update the variable by changing
its data tensor. assign_add is another useful method of a variable that
replicates the functionality of the += operator. Operations on tensors like
matmul or einsum can also be applied to variables or to a combination of
tensor and variable. Variable has a Boolean attribute called trainable that
signifies if the variable is to be trained during backpropagation. Operations
on variables are shown in Listing 2-6.

Listing 2-6. Variables

import tensorflow as tf

1

2

3 tensor = tf.constant([[1, 2], [3, 4]])

4 variable = tf.Variable(tensor)

5 print(variable)

6 <tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=
7 array([[1, 2],

8

9

(3, 4]])>

10 # return the index of highest element

11 print(tf.math.argmax(variable))

12

13 tf.Tensor([1 1], shape=(2,), dtype=int64)
14

15 print(tf.convert to_tensor(variable))

16 tf.Tensor(

10

17
18
19
20
21

22
23

CHAPTER 2 INTRODUCTION TO TENSORFLOW

[[1 2]
[3 4]], shape=(2, 2), dtype=int32)

print(variable.assign([[1,2], [1, 1]]))

<tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32,
numpy=

array([[1, 2],

[1, 1]1)>

2.2 Graphs, Operations, and Functions

There are two modes of execution within TensorFlow: eager execution

and graph execution. Eager mode of execution processes instructions as

they occur in the code, while graph execution is delayed. Graph mode

builds a dependency graph connecting the data represented as tensors

(or variables) using operations and functions. After the graph is built, it is

executed. Graph execution offers a few advantages over eager execution:

1.

Graphs can be exported to files or executed in non-
Python environments such as mobile devices.

Graphs can be compiled to speed up execution.

Nodes with static data and operations on those
nodes can be precomputed.

Node values that are used multiple times can
be cached.

Branches of the graph can be identified for parallel
execution.

Operations in TensorFlow are represented using the tf.Operation class

and can be used as a node. Operation nodes are created using one of the

predefined operations such as tf.matmul, tf.reduce_sum, etc. To create a

11

CHAPTER 2 INTRODUCTION TO TENSORFLOW

new operation, use the tf.Operation class. A few important operations are
enumerated in the following. All of them can be accessed directly using the
tf.operation_name syntax.

1. Operations defined in the tf.math library:
« tf.abs: Calculates the absolute value of a tensor.
o tf.divide: Divides two tensors.

o tf.maximum: Returns the element-wise maximum
of two tensors.

o tf.reduce_sum: Calculates the sum of all tensor
elements. It takes an optional axis argument to
calculate the sum along that axis.

2. Operations defined in the tf.linalg library:

(a). tf.det: Calculates the determinant of a
square matrix

(b). tf.svd: Calculates the SVD decomposition of a

rectangular matrix provided as a tensor
(c). tf.trace: Returns the trace of a tensor

Functions are defined using the tf.function method, passing the
Python function as an argument. tf.function is a decorator that augments
a Python function with attributes necessary for running it in a TensorFlow
graph. A few examples of TensorFlow operations and functions are
illustrated in Listing 2-7. Each TensorFlow function generates an internal
graph from its arguments. By default, a TensorFlow function uses a graph
execution model. To switch to eager execution mode, set tf.config.run_
functions_eagerly(True). Please note that the following output may not
match output from another run because of random numbers used.

12

CHAPTER 2 INTRODUCTION TO TENSORFLOW

Listing 2-7. TensorFlow Operations and Functions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

import tensorflow as tf
import numpy as np

tensor = tf.constant(np.ones((3, 3), dtype=np.int32))
print(tensor)

<tf.Tensor: id=0, shape=(3, 3), dtype=int32, numpy=
array([[1, 1, 1],

[1, 1, 1],

[1, 1, 1]])>

print(tf.reduce sum(tensor))
<tf.Tensor: id=2, shape=(), dtype=int32, numpy=9>

print(tf.reduce sum(tensor, axis=1))
<tf.Tensor: id=4, shape=(3,), dtype=int32, numpy=
array([3, 3, 3])>

@tf.function

def sigmoid activation(inputs, weights, bias):
x = tf.matmul(inputs, weights) + bias
return tf.divide(1.0, 1 + tf.exp(-x))

inputs = tf.constant(np.ones((1, 3), dtype=np.float64))

weights = tf.Variable(np.random.random((3, 1)))
bias = tf.ones((1, 3), dtype=tf.float64)

13

CHAPTER 2 INTRODUCTION TO TENSORFLOW

27

28 print(sigmoid_activation(inputs, weights, bias))

29 <tf.Tensor: id=195, shape=(1, 3), dtype=float64,
numpy=array([[0.89564016, 0.89564016, 0.89564016]])>

Code shown in Listing 2-8 sets the default execution mode to
graph mode.

Listing 2-8. Running TensorFlow Operations in Graph
(Non-eager) Mode

import timeit

1
2
3 tf.config.experimental run functions eagerly(False)
4 t1 = timeit.timeit(lambda: sigmoid activation(inputs,
weights, tf.constant(np.random.random((1, 3)))),
number=1000)
print(t1)
0.7758807

2.3 Modules

TensorFlow uses the base class tf.Module to build layers and models. A
module is a class that keeps track of its state using instance variables and can
be called as a function. To achieve this, it must provide an implementation
for the method __call__. This is illustrated in Listing 2-9. Due to the use of
random numbers, output values may vary from those shown.

Listing 2-9. Custom Module

1 import tensorflow as tf
2 import numpy as np

3

4

14

10
11
12
13

14
15
16
17
18
19
20
21

CHAPTER 2 INTRODUCTION TO TENSORFLOW

class ExampleModule(tf.Module):
def init (self, name=None):

super (ExampleModule, self). init (name=name)
self.weights = tf.Variable(np.random.random(5),
name="weights")
self.const = tf.Variable(np.array([1.0]),
dtype=tf.float64,
trainable=False, name="constant")

def call (self, x, *args, **kwargs):
return tf.matmul(x, self.weights[:, tf.newaxis]) +
self.const[tf.newaxis, :]

em = ExampleModule()
x = tf.constant(np.ones((1, 5)), dtype=tf.float64)
print(em(x))

<tf.Tensor: id=24631, shape=(1, 1), dtype=float64,
numpy=array([[2.45019464]])>

Module is the base class for both layers and models. It can be used as

amodel, serving as a collection of layers. Module shown in Listing 2-10

defers the creation of weights for the first layer until inputs are provided.

Once input shape is known, it creates the tensors to store the weights.

Decorator tf.function can be added to the __call__ method to convert it to

a graph.

15

CHAPTER 2

INTRODUCTION TO TENSORFLOW

Listing 2-10. Module

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

16

import tensorflow as tf

class InferInputSizeModule(tf.Module):

def

def

__init_ (self, noutput, name=None):
super(). init (name=name)

self.weights = None

self.noutput = noutput

self.bias = tf.Variable(tf.zeros([noutput]),
name="bias")

__call (self, x, *args, **kwargs):

if self.weights is None:
self.weights = tf.Variable(tf.random.
normal([x.shape[-1], self.noutput]))

output = tf.matmul(x, self.weights) + self.bias
return tf.nn.sigmoid(output)

class SimpleModel(tf.Module):

def

@tf.

def

__init_ (self, name=None):
super(). init (name=name)

self.layer1
self.layer2

InferInputSizeModule(noutput=4)
InferInputSizeModule(noutput=1)

function

__call (self, x, *args, **kwargs):
x = self.layer1(x)

return self.layer2(x)

CHAPTER 2 INTRODUCTION TO TENSORFLOW

29

30 model = SimpleModel()

31 print(model(tf.ones((1, 10))))

32

33 <tf.Tensor: id=24700, shape=(1, 1), dtype=float32,
numpy=array([[0.632286]], dtype=float32)>

Objects of type tf.Module can be saved to checkpoint files. Creating a
checkpoint creates two files: one with module data and another containing
metadata with extension .index. Saving a module to a checkpoint and
loading it back from a checkpoint is illustrated in Listing 2-11.

Listing 2-11. Checkpoint a Model

import tensorflow as tf

1

2

3 path = r"C:\temp\simplemodel”

4 checkpoint = tf.train.Checkpoint(model=model)
5 checkpoint.write(path)
6
7
8
9

model2 = SimpleModel()
model orig = tf.train.Checkpoint(model=model2)
10 model orig.restore(path)

2.4 Layers

Layers are objects with tf.keras.layers.Layer as the base class. The Keras
library is used in TensorFlow for implementing layers and models. The
tf.keras.layers.Layer class derives from the tf.Module class and has
amethod call in place of the __call__ method in tf.Module. There are
several advantages to using Keras instead of tf.Module. For instance,
training variables of nested Keras layers are automatically collected for

17

