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Preface

When I began using artificial intelligence tools in quantitative financial 

research, I could not find a comprehensive introductory text focusing on 

financial applications. Neural network libraries like TensorFlow, PyTorch, 

and Caffe had made tremendous contributions in the rapid development, 

testing, and deployment of deep neural networks, but I found most 

applications restricted to computer science, computer vision, and robotics. 

Having to use reinforcement learning algorithms in finance served as 

another reminder of the paucity of texts in this field. Furthermore, I found 

myself referring to scholarly articles and papers for mathematical proofs of 

new reinforcement learning algorithms. This led me to write this book to 

provide a one-stop resource for Python programmers to learn the theory 

behind reinforcement learning, augmented with practical examples drawn 

from the field of finance.

In practical applications, reinforcement learning draws upon deep 

neural networks. To facilitate exposition of topics in reinforcement 

learning and for continuity, this book also provides an introduction to 

TensorFlow and covers neural network topics like convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs).

Finally, this book also introduces readers to writing modular, reusable, 

and extensible reinforcement learning code. Having worked on developing 

trading strategies using reinforcement learning and publishing papers, 

I felt existing reinforcement learning libraries like TF-Agents are tightly 

coupled with the underlying implementation framework and do not 



xiv

express central concepts in reinforcement learning in a manner that is 

modular enough for someone conversant with concepts to pick up  

TF- Agent library usage or extend its algorithms for specific applications. 

The code samples covered in this book provide examples of how to write 

modular code for reinforcement learning.

PrefaCe
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Introduction

Reinforcement learning is a rapidly growing area of artificial intelligence 

that involves an agent learning from past experience of rewards gained 

by taking specific actions in certain states. The agent seeks to learn a 

policy prescribing the optimum action in each state with the objective of 

maximizing expected discounted future rewards. It is an unsupervised 

learning technique where the agent learns the optimum policy by past 

interactions with the environment. Supervised learning, by contrast, seeks 

to learn the pattern of output corresponding to each state in training 

data. It attempts to train the model parameters in order to get a close 

correspondence between predicted and actual output for a given set of 

inputs. This book outlines the theory behind reinforcement learning 

and illustrates it with examples of implementations using TensorFlow. 

The examples demonstrate the theory and implementation details of the 

algorithms, supplemented with a discussion of corresponding APIs from 

TensorFlow and examples drawn from quantitative finance. It guides 

a reader familiar with Python programming from basic to advanced 

understanding of reinforcement learning algorithms, coupled with a 

comprehensive discussion on how to use state-of-the-art software libraries 

to implement advanced algorithms in reinforcement learning.

Most applications of reinforcement learning have focused on robotics 

or computer science tasks. By focusing on examples drawn from finance, 

this book illustrates a spectrum of financial applications that can benefit 

from reinforcement learning.
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CHAPTER 1

Overview
Deep neural networks have transformed virtually every scientific human 

endeavor – from image recognition, medical imaging, robotics, and self- 

driving cars to space exploration. The extent of transformation heralded 

by neural networks is unrivaled in contemporary human history, judging 

by the range of new products that leverage neural networks. Smartphones, 

smartwatches, and digital assistants – to name a few – demonstrate the 

promise of neural networks and signal their emergence as a mainstream 

technology. The rapid development of artificial intelligence and machine 

learning algorithms has coincided with increasing computational power, 

enabling them to run rapidly. Keeping pace with new developments in 

this field, various open source libraries implementing neural networks 

have blossomed. Python has emerged as the lingua franca of the artificial 

intelligence programming community. This book aims to equip Python- 

proficient programmers with a comprehensive knowledge on how to use 

the TensorFlow library for coding deep neural networks and reinforcement 

learning algorithms effectively. It achieves this by providing detailed 

mathematical proofs of key theorems, supplemented by implementation of 

those algorithms to solve real-life problems.

Finance has been an early adopter of artificial intelligence algorithms 

with the application of neural networks in designing trading strategies 

as early as the 1980s. For example, White (1988) applied a simple 

neural network to find nonlinear patterns in IBM stock price. However, 

recent cutting-edge research on reinforcement learning has focused 

© Samit Ahlawat 2023 
S. Ahlawat, Reinforcement Learning for Finance,  
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predominantly on robotics, computer science, or interactive game- 

playing. The lack of financial applications has led many to question 

the applicability of deep neural networks in finance where traditional 

quantitative models are ubiquitous. Finance practitioners feel that the 

lack of rigorous mathematical proofs and transparency about how neural 

networks work has restricted their wider adoption within finance. This 

book aims to address both of these concerns by focusing on real-life 

financial applications of neural networks.

1.1  Methods for Training Neural Networks
Neural networks can be trained using one of the following three methods:

 1. Supervised learning involves using a training 

dataset with known output, also called ground 

truth values. For a classification task, this would 

be the true labels, while for a regression task, it 

would be the actual output value. A loss function 

is formulated that measures the deviation of the 

model output from the true output. This function is 

minimized with respect to model parameters using 

stochastic gradient descent.

 2. Unsupervised learning methods use a training 

dataset made up of input features without any 

knowledge of the true output values. The objective 

is to classify inputs into clusters for clustering or 

dimension reduction applications or for identifying 

outliers.

 3. Reinforcement learning involves an agent that 

learns an optimal policy within the framework of 

a Markov decision problem (MDP). The training 

Chapter 1  Overview
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dataset consists of a set of actions taken in different 

states by an agent, followed by rewards earned and 

the next state to which the agent transitions. Using 

the history of rewards, reinforcement learning 

attempts to learn an optimal policy to maximize the 

expected sum of discounted future rewards. This 

book focuses on reinforcement learning.

1.2  Machine Learning in Finance
Machine learning applications in finance date back to the 1980s with the 

use of neural networks in stock price prediction (White, 1988). Within 

finance, automated trading strategies and portfolio management have 

been early adopters of artificial intelligence and machine learning tools. 

Allen and Karjalainen (1999) applied genetic algorithms to combine 

simple trading rules to form more complex ones. More recent applications 

of machine learning in finance can be seen in the works of Savin et al. 

(2007), who used the pattern recognition method presented by Lo et al. 

(2000) to test if the head-and-shoulders pattern had predictive power; 

Chavarnakul and Enke (2008), who employed a generalized regression 

neural network (GRNN) to construct two trading strategies based on 

equivolume charting that predicted the next day’s price using volume- 

and price-based technical indicators; and Ahlawat (2016), who applied 

probabilistic neural networks to predict technical patterns in stock 

prices. Other works include Enke and Thawornwong (2005), Li and Kuo 

(2008), and Leigh et al. (2005). Chenoweth et al. (1996) have studied the 

application of neural networks in finance. Enke and Thawornwong (2005) 

tested the hypothesis that neural networks can provide superior prediction 

of future returns based on their ability to identify nonlinear relationships. 

They employed only fundamental measures and did not consider 

technical ones. Their neural network provided higher returns than the 

buy-and-hold strategy, but they did not consider transaction costs.

Chapter 1  Overview
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There are many other applications of machine learning in finance 

besides trading strategies, perhaps less glamorous but equally significant 

in business impact. This book gives a comprehensive exposition of several 

machine learning applications in finance that are at cutting edge of 

research and practical use.

1.3  Structure of the Book
This book begins with an introduction to the TensorFlow library in 

Chapter 2 and illustrates the concepts with financial applications that 

involve building models to solve practical problems. The datasets for 

problems are publicly available. Relevant concepts are illustrated with 

mathematical equations and concise explanations.

Chapter 3 introduces readers to convolutional neural networks 

(CNNs), and Chapter 4 follows up with a similar treatment of recurrent 

neural networks (RNNs). These networks are frequently used in building 

value function models and policies in reinforcement learning, and a 

comprehensive understanding of CNN and RNN is indispensable for 

using reinforcement learning effectively on practical problems. As before, 

all foundational concepts are illustrated with mathematical theory, 

explanation, and practical implementation examples.

Chapter 5 introduces reinforcement learning concepts: from Markov 

decision problem (MDP) formulation to defining value function and 

policies, followed by a comprehensive discussion of reinforcement 

learning algorithms illustrated with examples and mathematical proofs.

Finally, Chapter 6 provides a discussion of recent, groundbreaking 

advances in reinforcement learning by discussing technical papers and 

applying those algorithms to practical applications.

Chapter 1  Overview
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CHAPTER 2

Introduction to 
TensorFlow
TensorFlow is an open source, high-performance machine learning library 

developed by Google and released for public use in 2015. It has interfaces 

for Python, C++, and Java programming languages. It has the option of 

running on multiple CPUs or GPUs. TensorFlow offers two modes of 

execution: eager mode that can be run immediately and graph mode 

that creates a dependency graph and executes nodes in that graph only 

where needed.

This book uses TensorFlow 2.9.1. Older TensorFlow constructs from 

version 1 of the library such as Session and placeholder are not covered 

here. Their use has been rendered obsolete in TensorFlow version 2.0 and 

higher. Output shown in the code listings has been generated using the 

PyCharm IDE’s interactive shell.

2.1  Tensors and Variables
Tensors are n-dimensional arrays, similar in functionality to the numpy 

library’s ndarray object. They are instances of the tf.Tensor object. A three- 

dimensional tensor of 32-bit floating-point numbers can be created using 

code in Listing 2-1. Tensor has attributes shape and dtype that tell the 

shape and data type of the tensor. Once created, tensors retain their shape.

© Samit Ahlawat 2023 
S. Ahlawat, Reinforcement Learning for Finance,  
https://doi.org/10.1007/978-1-4842-8835-1_2
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Listing 2-1. Creating a Three-Dimensional Tensor

 1   import tensorflow as tf

 2

 3   tensor = tf.constant([[list(range(3))],

 4                          [list(range(1, 4))],

 5                           [list(range(2, 5))]], dtype=tf.

float32)

 6

 7   print(tensor)

 8

 9   tf.Tensor(

10   [[[0. 1. 2.]]

11   [[1. 2. 3.]]

12   [[2. 3. 4.]]], shape=(3, 1, 3), dtype=float32)

Most numpy functions for creating ndarrays have analogs in 

TensorFlow, for example, tf.ones, tf.zeros, tf.eye, tf.ones_like, etc. Tensors 

support usual mathematical operations like +, −, etc., in addition to matrix 

operations like transpose, matmul, and einsum, as shown in Listing 2-2.

Listing 2-2. Mathematical Operations on Tensors

 1   import tensorflow as tf

 2

 3   ar = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)

 4

 5   print(ar)

 6   <tf.Tensor: id=1, shape=(2, 2), dtype=float32, numpy=

 7   array([[1., 2.],

 8   [2., 2.]], dtype=float32)>

 9

10   # elementwise multiplication

Chapter 2  IntroduCtIon to tensorFlow
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11   print(ar * ar)

12   Out[8]:

13   <tf.Tensor: id=2, shape=(2, 2), dtype=float32, numpy=

14   array([[1., 4.],

15   [4., 4.]], dtype=float32)>

16

17    # matrix multiplication C = tf.matmul(A, B) => cij =  

sum_k (aik * bkj)

18   print(tf.matmul(ar, tf.transpose(ar)))

19

20   <tf.Tensor: id=5, shape=(2, 2), dtype=float32, numpy=

21   array([[5., 6.],

22   [6., 8.]], dtype=float32)>

23

24   # generic way of matrix multiplication

25   print(tf.einsum("ij,kj->ik", ar, ar))

26

27   <tf.Tensor: id=23, shape=(2, 2), dtype=float32, numpy=

28   array([[5., 6.],

29   [6., 8.]], dtype=float32)>

30

31   # cross product

32   print(tf.einsum("ij,kl->ijkl", ar, ar))

33

34    <tf.Tensor: id=32, shape=(2, 2, 2, 2), 

dtype=float32, numpy=

35   array([[[[1., 2.],

36   [2., 2.]],

37   [[2., 4.],

38   [4., 4.]]],

39   [[[2., 4.],

Chapter 2  IntroduCtIon to tensorFlow



8

40   [4., 4.]],

41   [[2., 4.],

42   [4., 4.]]]], dtype=float32)>

Tensors can be sliced using the usual Python notation with a 

semicolon. For advanced slicing, use tf.slice that accepts a begin index 

and the number of elements along each axis to slice. tf.strided_slice can 

be used for adding a stride. To obtain specific indices from a tensor, use  

tf.gather. To extract specific elements of a multidimensional tensor 

specified by a list of indices, use tf.gather_nd. These APIs are illustrated 

using examples in Listing 2-3.

Listing 2-3. Tensor Slicing Operations

 1   import tensorflow as tf

 2

 3   tensor = tf.constant([[1, 2], [2, 2]], dtype=tf.float32)

 4

 5   print(tensor[1:, :])

 6    <tf.Tensor: id=37, shape=(1, 2), dtype=float32, 

numpy=array([[2., 2.]], dtype=float32)>

 7

 8   print(tf.slice(tensor, begin=[0,1], size=[2, 1]))

 9   tf.Tensor(

10   [[2.]

11   [2.]], shape=(2, 1), dtype=float32)

12

13   print(tf.gather_nd(tensor, indices=[[0, 1], [1, 0]]))

14    Out[18]: <tf.Tensor: id=42, shape=(2,), dtype=float32, 

numpy=array([2., 2.], dtype=float32)>

Ragged tensors are tensors with a nonuniform shape along an axis, as 

illustrated in Listing 2-4.

Chapter 2  IntroduCtIon to tensorFlow
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Listing 2-4. Ragged Tensors

1   import tensorflow as tf

2

3   jagged = tf.ragged.constant([[1, 2], [2]])

4   print(jagged)

5   <tf.RaggedTensor [[1, 2], [2]]>

TensorFlow allows space-efficient storage of sparse arrays, that is, 

arrays with most elements as 0. The tf.sparse.SparseTensor API takes 

the indices of non-zero elements, their values, and the dense shape of the 

sparse array. This is shown in Listing 2-5.

Listing 2-5. Sparse Tensors

 1   import tensorflow as tf

 2

 3    tensor = tf.sparse.SparseTensor(indices=[[1,0], [2,2]], 

values=[1, 2], dense_shape=[3, 4])

 4   print(tensor)

 5   SparseTensor(indices=tf.Tensor(

 6   [[1 0]

 7    [2 2]], shape=(2, 2), dtype=int64), values=tf.Tensor([1 2],  

shape=(2,), dtype=int32), dense_shape=tf.Tensor([3 4], 

shape=(2,), dtype=int64))

 8

 9   print(tf.sparse.to_dense(tensor))

10   tf.Tensor(

11   [[0 0 0 0]

12   [1 0 0 0]

13   [0 0 2 0]], shape=(3, 4), dtype=int32)

Chapter 2  IntroduCtIon to tensorFlow
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In contrast to tf.Tensor that is immutable after creation, a TensorFlow 

variable can be changed. A variable is an instance of the tf.Variable 

class and can be created by initializing it with a tensor. Variables can be 

converted to tensors using tf.convert_to_tensor. Variables cannot be 

reshaped after creation, only modified. Calling tf.reshape on a variable 

returns a new tensor. Variables can also be created from another variable, 

but the operation copies the underlying tensor. Variables do not share 

underlying data. assign can be used to update the variable by changing 

its data tensor. assign_add is another useful method of a variable that 

replicates the functionality of the += operator. Operations on tensors like 

matmul or einsum can also be applied to variables or to a combination of 

tensor and variable. Variable has a Boolean attribute called trainable that 

signifies if the variable is to be trained during backpropagation. Operations 

on variables are shown in Listing 2-6.

Listing 2-6. Variables

 1   import tensorflow as tf

 2

 3   tensor = tf.constant([[1, 2], [3, 4]])

 4   variable = tf.Variable(tensor)

 5   print(variable)

 6   <tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=

 7   array([[1, 2],

 8   [3, 4]])>

 9

10   # return the index of highest element

11   print(tf.math.argmax(variable))

12

13   tf.Tensor([1 1], shape=(2,), dtype=int64)

14

15   print(tf.convert_to_tensor(variable))

16   tf.Tensor(

Chapter 2  IntroduCtIon to tensorFlow
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17   [[1 2]

18   [3 4]], shape=(2, 2), dtype=int32)

19

20   print(variable.assign([[1,2], [1, 1]]))

21    <tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32,  

numpy=

22   array([[1, 2],

23   [1, 1]])>

2.2  Graphs, Operations, and Functions
There are two modes of execution within TensorFlow: eager execution 

and graph execution. Eager mode of execution processes instructions as 

they occur in the code, while graph execution is delayed. Graph mode 

builds a dependency graph connecting the data represented as tensors 

(or variables) using operations and functions. After the graph is built, it is 

executed. Graph execution offers a few advantages over eager execution:

 1.  Graphs can be exported to files or executed in non-

Python environments such as mobile devices.

 2. Graphs can be compiled to speed up execution.

 3.  Nodes with static data and operations on those 

nodes can be precomputed.

 4. Node values that are used multiple times can 

be cached.

 5.  Branches of the graph can be identified for parallel 

execution.

Operations in TensorFlow are represented using the tf.Operation class 

and can be used as a node. Operation nodes are created using one of the 

predefined operations such as tf.matmul, tf.reduce_sum, etc. To create a 

Chapter 2  IntroduCtIon to tensorFlow
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new operation, use the tf.Operation class. A few important operations are 

enumerated in the following. All of them can be accessed directly using the 

tf.operation_name syntax.

 1. Operations defined in the tf.math library:

• tf.abs: Calculates the absolute value of a tensor.

• tf.divide: Divides two tensors.

• tf.maximum: Returns the element-wise maximum 

of two tensors.

• tf.reduce_sum: Calculates the sum of all tensor 

elements. It takes an optional axis argument to 

calculate the sum along that axis.

 2. Operations defined in the tf.linalg library:

(a).  tf.det: Calculates the determinant of a 

square matrix

(b).  tf.svd: Calculates the SVD decomposition of a 

rectangular matrix provided as a tensor

(c). tf.trace: Returns the trace of a tensor

Functions are defined using the tf.function method, passing the 

Python function as an argument. tf.function is a decorator that augments 

a Python function with attributes necessary for running it in a TensorFlow 

graph. A few examples of TensorFlow operations and functions are 

illustrated in Listing 2-7. Each TensorFlow function generates an internal 

graph from its arguments. By default, a TensorFlow function uses a graph 

execution model. To switch to eager execution mode, set tf.config.run_
functions_eagerly(True). Please note that the following output may not 

match output from another run because of random numbers used.
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Listing 2-7. TensorFlow Operations and Functions

 1   import tensorflow as tf

 2   import numpy as np

 3

 4   tensor = tf.constant(np.ones((3, 3), dtype=np.int32))

 5

 6   print(tensor)

 7

 8   <tf.Tensor: id=0, shape=(3, 3), dtype=int32, numpy=

 9   array([[1, 1, 1],

10   [1, 1, 1],

11   [1, 1, 1]])>

12

13   print(tf.reduce_sum(tensor))

14   <tf.Tensor: id=2, shape=(), dtype=int32, numpy=9>

15

16   print(tf.reduce_sum(tensor, axis=1))

17    <tf.Tensor: id=4, shape=(3,), dtype=int32, numpy= 

array([3, 3, 3])>

18

19   @tf.function

20   def sigmoid_activation(inputs, weights, bias):

21       x = tf.matmul(inputs, weights) + bias

22       return tf.divide(1.0, 1 + tf.exp(-x))

23

24   inputs = tf.constant(np.ones((1, 3), dtype=np.float64))

25   weights = tf.Variable(np.random.random((3, 1)))

26   bias = tf.ones((1, 3), dtype=tf.float64)
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27

28   print(sigmoid_activation(inputs, weights, bias))

29    <tf.Tensor: id=195, shape=(1, 3), dtype=float64, 

numpy=array([[0.89564016, 0.89564016, 0.89564016]])>

Code shown in Listing 2-8 sets the default execution mode to 

graph mode.

Listing 2-8. Running TensorFlow Operations in Graph  

(Non- eager) Mode

1   import timeit

2

3   tf.config.experimental_run_functions_eagerly(False)

4    t1 = timeit.timeit(lambda: sigmoid_activation(inputs, 

weights, tf.constant(np.random.random((1, 3)))), 

number=1000)

5   print(t1)

6   0.7758807

2.3  Modules
TensorFlow uses the base class tf.Module to build layers and models. A 

module is a class that keeps track of its state using instance variables and can 

be called as a function. To achieve this, it must provide an implementation 

for the method __call__. This is illustrated in Listing 2-9. Due to the use of 

random numbers, output values may vary from those shown.

Listing 2-9. Custom Module

 1   import tensorflow as tf

 2   import numpy as np

 3

 4
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 5   class ExampleModule(tf.Module):

 6       def __init__(self, name=None):

 7           super(ExampleModule, self).__init__(name=name)

 8            self.weights = tf.Variable(np.random.random(5), 

name="weights")

 9            self.const = tf.Variable(np.array([1.0]), 

dtype=tf.float64,

10           trainable=False, name="constant")

11

12       def __call__(self, x, *args, **kwargs):

13            return tf.matmul(x, self.weights[:, tf.newaxis]) + 

self.const[tf.newaxis, :]

14

15

16   em = ExampleModule()

17   x = tf.constant(np.ones((1, 5)), dtype=tf.float64)

18   print(em(x))

19

20

21    <tf.Tensor: id=24631, shape=(1, 1), dtype=float64,  

numpy=array([[2.45019464]])>

Module is the base class for both layers and models. It can be used as 

a model, serving as a collection of layers. Module shown in Listing 2-10 

defers the creation of weights for the first layer until inputs are provided. 

Once input shape is known, it creates the tensors to store the weights. 

Decorator tf.function can be added to the __call__ method to convert it to 

a graph.
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Listing 2-10. Module

 1   import tensorflow as tf

 2

 3

 4   class InferInputSizeModule(tf.Module):

 5       def __init__(self, noutput, name=None):

 6           super().__init__(name=name)

 7           self.weights = None

 8           self.noutput = noutput

 9            self.bias = tf.Variable(tf.zeros([noutput]), 

name="bias")

10

11       def __call__(self, x, *args, **kwargs):

12           if self.weights is None:

13                self.weights = tf.Variable(tf.random.

normal([x.shape[-1], self.noutput]))

14

15           output = tf.matmul(x, self.weights) + self.bias

16           return tf.nn.sigmoid(output)

17

18   class SimpleModel(tf.Module):

19       def __init__(self, name=None):

20           super().__init__(name=name)

21

22           self.layer1 = InferInputSizeModule(noutput=4)

23           self.layer2 = InferInputSizeModule(noutput=1)

24

25       @tf.function

26       def __call__(self, x, *args, **kwargs):

27           x = self.layer1(x)

28           return self.layer2(x)
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29

30   model = SimpleModel()

31   print(model(tf.ones((1, 10))))

32

33    <tf.Tensor: id=24700, shape=(1, 1), dtype=float32, 

numpy=array([[0.632286]], dtype=float32)>

Objects of type tf.Module can be saved to checkpoint files. Creating a 

checkpoint creates two files: one with module data and another containing 

metadata with extension .index. Saving a module to a checkpoint and 

loading it back from a checkpoint is illustrated in Listing 2-11.

Listing 2-11. Checkpoint a Model

 1   import tensorflow as tf

 2

 3   path = r"C:\temp\simplemodel"

 4   checkpoint = tf.train.Checkpoint(model=model)

 5   checkpoint.write(path)

 6

 7

 8   model2 = SimpleModel()

 9   model_orig = tf.train.Checkpoint(model=model2)

10   model_orig.restore(path)

2.4  Layers
Layers are objects with tf.keras.layers.Layer as the base class. The Keras 

library is used in TensorFlow for implementing layers and models. The 

tf.keras.layers.Layer class derives from the tf.Module class and has 

a method call in place of the __call__ method in tf.Module. There are 

several advantages to using Keras instead of tf.Module. For instance, 

training variables of nested Keras layers are automatically collected for 
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