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Preface

Interpretability is a key issue to develop insightful statistical and machine learning
(ML) approaches in business and industry. This book aims to provide the readers
with a compact, stimulating, and multifaceted introduction to this emerging promis-
ing topic.

The contents covered by the volume were stimulated by the ENBIS (European
Network for Business and Industrial Statistics, https://enbis.org/) Workshop, Inter-
pretability for Industry 4.0, which was held at the University of Naples Federico II
Italy on July 12–13, 2021 https://conferences.enbis.org/event/8/ and offered real-
world industrial motivations and deep methodological insights on the topic of
interpretability. The workshop was divided into the following three pillars:

– Analyze and propose monitoring tools for additive manufacturing systems.
– Explore the connections between ML tools, sensitivity analysis, and rule-based

systems.
– Exploit the contribution of generalized additive models for the development and

visualization of interpretable statistical models.

Each half day, devoted to a specific pillar, ended with a roundtable providing a
closing discussion challenging the different views of interpretability.

The book collects contributions issued from this workshop and accepted after a
review process. It contains four chapters, the first one related to roundtables and
three other chapters related to the three pillars mentioned above. Each chapter can
be read independently with its own bibliography.

Chapter 1 introduces different views of interpretability in the context of Industry
4.0. It is organized in three different sections, after an introductory discussion
about the concepts of explainability and interpretability of ML models. The chapter
offers a philosophical discussion about the implications of ML interpretability for
scientific and industrial studies and extends the concept in many directions, such as
the generalizability of model outputs and implications for Industry 4.0 applications.
The last section provides the reader with more specific materials and is dedicated to
the connections between ML model interpretability and sensitivity analysis.

v
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vi Preface

Chapter 2 discusses how the advent of artificial intelligence for manufacturing
data mining poses new challenges to model interpretability in contrast with the
concept of explainability. Starting from a general overview, the chapter focuses on
examples of big data mining in additive manufacturing. A real case study focusing
on spatter modeling for process optimization is discussed, where a solution based
on robust functional analysis of variance is proposed.

Chapter 3 proposes a contribution to interpretability via random forests (RF) and
is organized into two sections after an introduction about the need in different appli-
cations and domains for interpretable ML models and points out the requirements
desired for interpretable methods. The chapter describes an original way to use RF
to produce a compact set of rules and offers a thorough overview and analysis of
permutation variable importance measures based on RF and describes new variants.

Chapter 4 formally introduces generalized additive models (GAMs) and flexible
GAMs for location shape and scale (GAMLSS) as excellent models to achieve
interpretability in the model building, as well as for communicating modelling
results. Structural assumptions to avoid the curse of dimensionality in the modelling
of the effect of a covariate vector on the distribution of a response variable are
discussed. In particular, the additive assumption, on which GAMs rely, ensures
scalability in the number of covariates and computational convenience in model
fitting. The closing section of the chapter shows how to practically apply GAM and
GAMLSS models via the mgcv and mgcViz R packages.

We are grateful to all the authors for their challenging perspectives on yet non-
consolidated topics but highly relevant in supporting human decisions. We warmly
thank anonymous referees for their conscientious reviews and Eva Hiripi from
Springer-Verlag for supporting this project.

Naples, Italy Antonio Lepore
Naples, Italy Biagio Palumbo
Orsay, France Jean-Michel Poggi
April 2022
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Chapter 1
Different Views of Interpretability

Bertrand Iooss, Ron Kenett, and Piercesare Secchi

Abstract Interpretability, in the context of machine learning, means understanding
the predictions made by the machine learning algorithm, with the aim to support
human decisions based on them. In this view, interpretability can involve identifying
the input features which drive the predictions. This chapter develops different
issues and related methodologies of interpretability of machine learning models.
Their implication for scientific and industrial studies are firstly developed. Then,
the links between the generalizability of model outputs and interpretability are
discussed. Finally, the deep connection between the settings of the machine learning
interpretability and the ones of the model output sensitivity analysis is described.

1.1 Introduction

Machine Learning (ML) is one of the substantial branches of artificial intelligence
technology and provides a large panel of algorithmic tools to learn from data (e.g.,
numerical data, images, sounds, texts). However, a severe drawback is that ML
algorithms may provide predictions which turn out to be difficult to explain or
interpret. From a general point of view, allowing an understandable explanation
for any ML model output helps anybody (e.g., an operator, a decision-maker,
a statistician or an analyst) to catch the underlying reasoning. Such a property
may have positive consequences such as making the debugging process easier,
helping for model improvement and acceptability of the tool. Therefore, industrial
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2 B. Iooss et al.

deployment of these solutions requires tools together with a panel of best practices
to perform explainable and interpretable ML. These two terms “explainability” and
“interpretability” will be discussed, hereafter, in the context of ML.

There is a lack of consensus about rigorous definitions of explainability and
interpretability of ML models. Indeed, these notions refer to profound cognitive
processes related to social sciences and to their different fields of applications
(e.g., medical sciences, law and justice, engineering) or scientific communities (e.g.,
natural language processing and computer vision). Some authors also invoke other
fundamental concepts (see, e.g., completeness, fairness, intelligibility, comprehensi-
bility, transparency) to build a proper definition of what “explainable AI” is and what
it is intended for [5, 23]. In this chapter, we only focus on the ML interpretability
as the property related to the ability of a ML model (or any element related to this
model, i.e., inputs, outputs, predictions) to be associated with concepts held by a
human being.

Interpretability, in the context of ML, means understanding the predictions made
by the ML algorithm, with the aim to support human decisions based on them. In
this view, interpretability can involve identifying the input features which drive the
predictions. The goal of this chapter is to focus on different important issues and
related methodologies of interpretability of ML models.

Firstly, the implication of ML interpretability for scientific and industrial studies
are developed (Sect. 1.2). Then, the links between the generalizability of model
outputs and interpretability are discussed, providing a high-level view with its impli-
cations to Industry 4.0 applications (Sect. 1.3). The approach presented combines an
engineering perspective with empirical modeling and soft data in a blended hybrid
view which integrates technical and non-technical perspectives. Finally, the deep
connection between the settings of the ML interpretability and the ones of the
model output sensitivity analysis is described (Sect. 1.4). This connection, which is
still underdeveloped, offers rich perspective for cross-fertilizing techniques of both
research fields [62].

1.2 Interpretability: In Praise of Transparent Models

The focus of ML is the design of algorithms that learn from a training data set how
to associate an input to an output. The training data set must be massive since the
learning curve of an ML algorithm increases very slowly with the size of the data
set. The performance of a trained algorithm is typically evaluated on the task of
prediction and validated with a hold-out data set. If future data are generated by the
same population from which the training data set has been drawn, well trained ML
algorithms are often excellent predictors.

Interpretability, in the context of ML, means understanding the predictions made
by the algorithm, in order to support human decisions based on them. Interpretability
involves identifying, for example with the tools of sensitivity analysis, the input
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features which drive the predictions. In this section we discuss if interpreting
predictions, important as they are, is sufficient for science and for industry.

Quoting Carlo Rovelli’s recent essay, Helgoland [64]: “The goal of science
is not that of making predictions. Science also aims at presenting an image of
reality, a conceptual framework where to think about things. This is the ambition
which made the scientific thinking successful. If predictions were the only goal of
science, Copernicus would not have discovered anything different from Ptolemy: his
astronomical predictions were not any better than those of Ptolemy. But Copernicus
found the key for rethinking all and for better understanding it”. This passage
presents predictions as a partial objective indicating that interpretability should
consider a wider scope.

A conceptual framework where to think about things is often required in business
and industry. The broader question it therefore when and why, in science as well
in business or in industry, do we use data? Briefly, we use data to answer three
questions: what happened, what will happen, and what shall be done to make it
happen.

1.2.1 What Happened?

This is the question tackled by exploratory and descriptive analyses that, starting
from raw data, organize them, fuse different and heterogenous sources impinging
upon the same population, sort them out deciding about the relevant and the irrele-
vant, clean and transform data, graphically represent and summarize the information
sufficient for the goal of the analysis, already driving it toward certain hypotheses
and conjectures. For being effective, and not mystifying, an exploratory analysis
must be open, totally transparent and highly dialectical. Through it the different
stakeholders, who promoted the final questions moving the problem tackled with
data, should be guided to better formalizations and prioritizations. This is an
intensely Human Intelligence (HI) stage, where the data scientists are, explicitly
or implicitly, guided by models. For instance, when they discriminate between the
features of interest and those that will in fact not be measured and recorded, or when
they choose the proper mathematical representation for data. Are the atoms of the
analysis time series or functional data? How should time dependence be captured
within each datum, explicitly through the autocorrelation function or implicitly
by imposing certain smoothness and regularity to their functional representation?
Researchers are in fact usually called to decide the specific mathematical space
to embed data at hand and thus the geometry that allows for distinct projections
and dimensionality reductions, the main mathematical tools for compressing and
transferring the sufficient and relevant information.

Picture Galileo entering the Pisa Cathedral and observing the swinging chande-
lier. Did he observe and record the temperature and humidity of the air in the room
in previous days and months, the number of people attending mass, their gender or
their age, the phase of the moon, the hour and the day of the year, etc.? In the big
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data era he might have, but at the end of the sixteenth century [52] Galileo decided
to focus only on the periods of the pendulum, the amplitude of the swing, the length
of the rod and the mass of the bob. All other data were discarded and considered in
advance as non-influential, even before measuring them. Surely this must have been
decided based on intuition, a model which was forming in his mind, about the not
yet formalized isochronism law of the pendulum, which in the following decades
elected it as the disruptive new technological device for timekeeping.

1.2.2 What Will Happen?

This is the stage when we want to make predictions. We use training data, validation
data and test data, to build predictor machines and evaluate their performances.
These can be transparent models, like generalized additive models mixing endoge-
nous and exogeneous variables, opaque models, like random forests, or black boxes,
like deep neural networks. They can be subjected to natural interpretability—at
least for the educated data scientist—or they might be inaccessible and require the
tools of sensitivity analysis to elicit the contribution of the input features, and their
interactions, to generate the final output. Uncertainty quantification is here a must.
Different approaches have indeed been cleverly elaborated in the past centuries for
the purpose—frequentist inference, Fisherian inference, Bayesian inference, Monte
Carlo methods, bootstrap, cross-validation. The very concept of uncertainty has
been fragmented many times—aleatoric uncertainty, epistemic uncertainty, forward
uncertainty propagation, inverse uncertainty quantification, etc.

1.2.3 What Shall be Done to Make It Happen?

This is the realm of prescriptive analysis and experimental design. Assuming some
input data provided by idealized scenarios and given the predictions offered by
the models, what actions should be taken in order to generate the desired effects,
with a certain degree of certainty. Once more, quantification of uncertainty is a
must. But how should sensible scenarios be built? Can they be totally ignorant
of the past as captured and represented by the sufficient summaries provided by
the exploratory and descriptive analyses? A domain-based HI, transparency and
a dialectical perspective are the effective trading tools. Indeed, here again the
transparent models—in science, business and industry—are the empowering tools
for sharing empirical and «experiential»knowledge, across different teams and units,
across generations of scientists, engineers and experts.

In fact, the question is at the basis of experimental design and significance
testing. Quoting Fisher [21]: “We may say that a phenomenon is experimentally
demonstrable when we know how to conduct an experiment which will rarely fail to
give us statistically significant results.”
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1.2.4 Patterns and Models

A model is not a magic box. Its value resides in its power to amplify the human
thought. This happens if the model is able to represent the interactions and the
dependencies among the variables that both the stakeholders and the data scientist
believe are describing the system under scrutiny. A model allows for sensible
decision making through the action on independent input variables; a model
provides scope for simulation and manipulation of the system under scrutiny.

Transparent models, opaque models and black boxes permit interpretability
which enable an incremental upgrade of the human knowledge. This requires more
than an automated and theory-free data analysis. Contrary to Chris Anderson’s
dictum on Wired [2], “correlation is NOT enough”.

Beside predictions, the other selling point of ML algorithms is their ability to
find patterns in massive data without the intermediation of a theory, without moving
through the slow process of identifying a formal reference system within which
questions could be asked and hypothesis could be stated.

As argued by James McAllister [47], any “empirical data set can be decomposed
into any one of all conceivable patterns and an associated noise term.” Hence, only
two options seem admissible. Either we assume the ability of the ML algorithm to
discern among patterns those that are indicative of real structures of the world and
those that are not. Or, in the absence of an automatic criterion implementing this
discrimination, we are forced to follow McAllister’s argument and “deny that any
such ontologically significant distinction between patterns can be drawn, to admit
that all patterns exhibited in empirical data sets correspond to structures in the
world, and then to consider the meaning and implications of this claim.”

Without entering any further into this intriguing philosophical debate, let us
notice that if one is looking for patterns, the analysis of a big data set formed by
the decimal digits in the expansion of Pi, the ratio of any circle’s circumference to
its diameter, has the potential to fill one’s life. Pi is an irrational and transcendent
number, whose approximate representation through a decimal expansion is often
used as a test for evaluating the power of new supercomputers; the last record has
been broken in August 2021, when Pi has been accurately approximated to 62.8
trillion decimal places [73]. By using the MyPiday [75] search engine, one of us
found among the digits of Pi his birthday, that of his wife, the day they married and
the birthdays of their children. . . a pattern of a certain relevance, at least to him. An
(unproven) conjecture states in fact that Pi is a normal number (see, e.g., Arndt and
Haenel [4]), which would also imply that “every finite string of numbers eventually
occurs in Pi”. Structures representable by finite string of numbers should be able
to accommodate the answers to all problems business and industry might want a
data scientist to solve, and yet we would not consider as reasonable and practical to
search the digits of Pi for finding them. The problem being that, without knowing it
in advance, we will not be able to recognize a relevant and correct answer if we met
it among the decimal digits of Pi, although we know that is there. . .
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This sounds as an anti-climax for the believers in the automatic heuristic power
of the ML algorithms, but it should not. The problem is with the “automatic”
qualification. We could indeed use ML to explore data in search for patterns if we
admit that our search is driven by our intention, by the objectives of our endeavor.
It is the intention driven by the goal of the analysis and framed within a theory,
explicitly or implicitly formalized, which generates the relevant conjectures and
the hypothesis the data could be challenged with; it is intention which puts the
data scientist in the position to decouple the patterns within the data deemed to
be relevant from those that are not. Eliciting this intentionality is more easily
achieved with a transparent model, where interpretation is—to paraphrase Karl
Pearson [70]—“on the table”, but could in principle also be obtained with the
tools of Artificial Intelligence, through a stronger and still unusual effort and the
development of new mathematical—and transparent—perspectives.

1.3 Generalizability and Interpretability with Industry 4.0
Implications

In this section we focus on the process of moving from numbers to data, to
information and insights [31]. In the information quality framework, this is called
“generalizability” an expanded form of “interpretability” [36]. The section covers
interpretable artificial intelligence (AI), wide angle of statistical generalizability.

1.3.1 Introduction to Interpretable AI

Artificial Intelligence (AI) has focused on predictive analytics with success reflected
by sophisticated black box models. In recent years, the need to interpret and explain
the factors affecting analytic predictions has risen. To achieve this, various methods
have been proposed to help users interpret the predictions of complex models.
Lundberg and Lee [44] introduce SHAP (SHapley Additive exPlanations), a unified
framework for interpreting predictions. SHAP assigns to each feature in the model
an importance value for a particular prediction. It includes the identification of
additive feature importance measures and theoretical results showing there is a
unique SHAP solution with a set of desirable properties.

Local interpretable model-agnostic explanations (LIME) is a local surrogate
interpretable model used to explain individual predictions of black box ML models
[49, 63]. Surrogate models approximate the outputs of a black box model [13, 22].
LIME is based on local surrogate models used to explain individual predictions.
In a first step, LIME uses the black box model to get model predictions, ignoring
the training data. The objective is then to understand why the ML model gives
a certain prediction. LIME generates a new dataset using perturbed samples and


