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Preface

This book is intended primarily to discuss the emerging topics in statistical
methods for interval-censored survival data. This book is prepared for booster
research, education, and training to advance statistical modeling in interval-censored
data, which are commonly collected from public health and biomedical research.
However, this type of data can be easily mistaken for typical right-censored data that
would result in erroneous statistical inference due to the complexity of this type of
data. This book is then constructed to invite a group of nationally and internationally
leading researchers to systematically discuss and explore the historical development
of the associated methods, their computational implementations, and some newly
emerging topics related to interval-censored data. We aim to cover a variety
of topics, including univariate interval-censored, multivariate interval-censored,
clustered interval-censored, and competing risk interval-censored data, data with
interval-censored covariates, interval-censored data in electric medical records, and
misclassified interval-censored data. We invited a group of leading experts at the
forefront of modeling interval-censored survival data to prepare book chapters,
and received many excellent papers on this topic. Fifteen high-quality chapters
are included in this wonderful book. Each chapter has been peer reviewed by two
editors and revised several times before final acceptance. Therefore, this volume
reflects new advances in statistical methods for interval-censored survival data
analysis across biostatistics and interdisciplinary areas. This book has the potential
to have a significant impact on survival data analysis as both an authoritative source
and reference, as it will identify new directions of interval-censored survival data
modeling using modern statistical methods. This book will appeal to statisticians,
biostatisticians, health-related researchers, graduate students, etc. This book will
aid researchers, students, and practitioners on the leading edge of research methods
enabling them to tackle problems in research, education, training, and consultation.

This book is organized into three parts. Part I includes three chapters, which
present an overview of historical development as well as recent topics in interval-
censored modeling. Part II consists of six chapters on emerging topics in method-
ological development, and Part III is composed of six chapters that present emerging
topics in real-life applications of interval-censored data and analysis. All the
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chapters are organized as self-contained units with references at the end of each
chapter. To aid the reader in recreating these techniques, all the statistical procedures
in practice, computer programs, and datasets are included or referenced in this book.
The readers may request guidance from the chapter authors to facilitate statistical
approaches.

Part I: Introduction and Review (Chapters 1–3)

In first chapter, “Overview of historic development in modeling interval-censored
survival data,” Dr. Finkelstein presents an overview of the historical development
of the methods for the analysis of interval-censored survival data. It begins with a
description of how the interval-censored data arise from studies where the subjects
are followed periodically, and the time to the event of interest cannot be observed
exactly. From a historical perspective, such data became more common with the
emergence of new clinical and epidemiological study designs. However, the well-
developed methods that are used for right-censored survival data analysis could
not be applied. This chapter follows the methodological development of this area,
starting in 1970 from a broad historical perspective.

In second chapter, “Overview of recent advances on the analysis of interval-
censored failure time data,” Dr. Du provides a review of recent advances on several
topics related to regression analysis of interval-censored data, mainly from the
last five to seven years. These topics include the analysis of univariate interval-
censored data with time-varying covariates in the presence of a cured subgroup
and in the presence of informative interval censoring, respectively. This chapter
discusses some recent advances in the analysis of interval-censored data arising
from case-cohort studies and the variable selection based on interval-censored data.
Furthermore, some recent work on regression analysis of multivariate interval-
censored data is described as well as regression analysis of doubly censored data.

In third chapter, “Predictive accuracy of prediction models for interval-censored
data,” Dr. Kim proposes a prognostic tool based on survival model to assist in
predicting the occurrence of a clinical event, defining better prescription, and
assessing cost-effectiveness. In this chapter, she comprehensively reviews sev-
eral recently proposed time-varying prognostic tools for interval-censored data.
A classification index including time-dependent receiver operating characteristic
(ROC), time-dependent concordance index, and calibrations such as Brier score and
integrated BRIR score have been adopted in the context of interval-censored data. A
risk score defined as either a single biomarker or a risk probability combined with
potential predictors can have time-varying values. She has also included longitudinal
risk scores to illustrate methods using a set of dementia datasets.



Preface vii

Part II: Emerging Topics in Methodology (Chapters 4–9)

In fourth chapter, “A practical guide to exact confidence intervals for a distribution
of current status data using the binomial approach,” Drs. Kim, Fay, and Proschan
consider the construction of pointwise confidence intervals for the distribution of
the failure time of interest based on current status data. In particular, they discuss
two methods recently developed by the authors using the binomial approach and
compare them to other methods developed with the use of the asymptotic approach.
One advantage of the methods based on the binomial approach is that they apply
to both continuous and discrete assessment distributions. In addition, the related R
package csci and R codes used are discussed and provided.

In fifth chapter, “Accelerated hazards model and its extension for interval-
censored data,” Dr. Xiang discusses the analysis of interval-censored data under
the accelerated hazards model and their generalizations. In particular, a generalized
accelerated hazard mixture cure model is presented for situations where there
exists a subgroup of cured subjects. For example, she investigates the use of sieve
maximum likelihood estimation approach based on spline functions. She provides
extensive simulation results and two real data applications in this chapter.

In sixth chapter, “Maximum likelihood estimation of semiparametric regression
models with interval-censored data,” Drs. Lin and Zeng consider regression analysis
of interval-censored data with time-dependent covariates under the semiparamet-
ric Cox proportional-hazards model. For example, the nonparametric maximum
likelihood estimation approach was developed that treats the unknown cumulative
hazard function to be a step function and a simple and stable EM algorithm
based on Poisson latent variables was provided. Furthermore, the methodology was
generalized to competing risks interval-censored data as well as multivariate or
clustered interval-censored data.

In seventh chapter, “Use of the INLA approach for the analysis of interval-
censored data,” Drs. van Niekerk and Rue present the integrated nested Laplace
approximation (INLA) methodology for interval-censored data. Most survival mod-
els, including those with interval censoring, can be shown to be a latent-Gaussian
model and as such INLA can be used for near real-time Bayesian inference. They
provide a brief summary of the INLA methodology and illustrate the approach on
real data examples with interval censoring, including a joint model. The analysis is
done using the R package INLA and all code is available for reproducibility.

In eighth chapter, “Copula models and diagnostics for multivariate interval-
censored data,” Drs. Ding and Sun discuss the use of the copula model-based
approach for regression analysis of multivariate interval-censored data and the
goodness-of-fit test for the assumed copula model with a focus on bivariate interval-
censored data. On the regression analysis, a class of flexible semiparametric
transformation models was employed to describe covariate effects and a sieve
maximum likelihood estimation approach was developed for inference. To test the
assumed copula model, they introduce a general goodness-of-fit test procedure
based on the information ratio this method applies to any copula family with a
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parametric form. Finally, the authors discuss the R package CopulaCenR for the
implementation of the presented methods and illustrate it through two sets of real
multivariate interval-censored data.

In ninth chapter, “Efficient estimation of the additive risks model for interval-
censored data,” Drs. Wang, Bandyopadhyay, and Sinha discuss the fitting of the
semiparametric additive risks model to interval-censored data. Under the case-
II interval censoring scenario, in contrast to the commonly used EM algorithm,
the authors presented a minorize-maximize (MM) algorithm for nonparametric
maximum likelihood estimators of both nonparametric and finite-dimensional
components of the model. The method applies to both time-independent and time-
varying covariates and has the advantage of allowing separate maximization over the
nonparametric and finite components, thus yielding a stable and fast computation
process. The operating characteristics of the proposed MM approach are assessed
via simulation studies and a corresponding R package, MMIntAdd, is provided and
illustrated through a set of real data.

Part III: Emerging Topics in Applications (Chapters 10–15)

In tenth chapter, “Modeling and analysis of chronic disease processes under
intermittent observation,” Drs. Cook and Lawless describe independence conditions
needed for valid likelihood-based inference about multistate disease processes
under intermittent observation schemes. They further describe how joint models
for disease and observation processes can be used to address disease-related clinic
visits and how joint models can be used to deal with internal time-dependent
markers when marker values are observed only at clinic visits. They also investigate
the limiting values of regression coefficients of marker effects when the common
approach of carrying forward the most recently recorded value is used.

In eleventh chapter, “Case-cohort studies with time-dependent covariates and
interval-censored outcome,” Drs. Gao, Hudgens, and Zou provide an inverse
probability weighting likelihood approach for fitting a parametric model to interval-
censored data with both fixed and time-dependent covariates arising from case-
cohort studies. The method is a generalization of that given in Sparling et al.
(2006) for usual interval-censored data with time-dependent covariates. Simulation
results demonstrated that the proposed estimator is approximately unbiased and the
standard errors are well estimated from the sandwich estimators. The method was
applied to an observational study that examined the association between hormonal
contraceptive use and the risk of HIV acquisition.

In twelfth chapter, “The BivarIntCensored: An R package for nonparametric
inference of bivariate interval-censored data,” Drs. Zhou, Wu, and Zhang consider
nonparametric estimation of a bivariate cumulative distribution function based on
bivariate interval-censored data. After reviewing two existing sieve nonparametric
maximum likelihood estimation approaches, they present and discuss the use of an
R package, BivarIntCensored, which implements the two estimation procedures.
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In the methods, B- or I-spline functions were used. In addition, an association test
is provided and discussed.

In thirteenth chapter, “Joint modeling for longitudinal and interval-censored
survival data: application to IMPI multi-center HIV/AIDS clinical trial,” Drs. Chen
and Singini discuss the joint models for longitudinal and interval-censored survival
data using a cardiology multi-center clinical trial with the illustration of R statistical
software.

In fourteenth chapter, “Regression with interval-censored covariates: application
to liquid chromatography,” motivated by the data from the metabolomic analysis
area, Drs. Melis, Marhuenda-Muñoz, and Langohr discuss the analysis of general-
ized linear models when there exists a covariate that suffers interval censoring. They
use an extension of the method from the linear regression model given in Gómez,
Espinal, and Lagakos (2003) to accommodate non-normal responses belonging to
an exponential family. In addition, they discuss two goodness-of-fit measures that
accommodate interval-censored covariates and apply the methods to determine the
association between glucose, a completely observed response variable, and the sum
of carotenoids, an interval-censored explanatory variable. The implementation of
the discussed methods in R is also discussed.

In fifteenth chapter, “Misclassification simulation extrapolation procedure for
interval-censored log-logistic accelerated failure time model,” Drs. Sevilimedu, Yu,
Chen, and Lio discuss the misclassification of binary covariates since it often occurs
in survival data. Any survival data analysis ignoring such misclassification will
result in estimation bias. To handle such misclassification, the misclassification
simulation extrapolation (MC-SIMEX) procedure is a flexible method proposed in
survival data analysis, which has been investigated extensively for right-censored
survival data. However, the performance of the MC-SIMEX method has not been
explored much for interval-censored survival data. This chapter is then aimed at
investigating the performance of the MC-SIMEX procedure with interval-censored
survival data through Monte-Carlo simulations and real data analysis. They focus
this investigation on the log-logistic accelerated failure time (AFT) model since
the log-logistic distribution plays an important role in evaluating non-monotonic
hazards for survival data.

We sincerely thank all of the people who have given us strong support for
the publication of this book on time. Our acknowledgments go to all the chapter
authors (in the “List of Contributors”) for submitting their excellent works to this
book. We also thank Ms. Anne Rubio at the College of Health Solutions, Arizona
State University, and Ms. Jenny K. Chen at Morgan-Stanley Wealth Management,
for their professional editing of this book, which has substantially improved the
quality of the chapters and the entire book. Furthermore, we are so grateful to Dr.
Eva Hiripi and Ms. Faith Su (Statistics Editors, Springer Nature) from Springer
and Kirthika Selvaraju (Project Coordinator of Books, Springer Nature) for their
full support during the long publication process. In addition, this book was made
possible through funding provided by DST-NRF-SAMRC-SARChI Research Chair
in Biostatistics, Grant number: 114613.
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We look forward to receiving the comments about the book from our readers.
If the readers have any suggestions about further improvements to the book, please
contact us: Drs. Sun and Chen by email.

Columbia, MO, USA Jianguo Sun
Phoenix, AZ, USA Ding-Geng Chen
Pretoria, South Africa
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Overview of Historical Developments
in Modeling Interval-Censored Survival
Data

Dianne Finkelstein

Abstract This chapter serves as an overview of the historical development of
the methods for the analysis of interval-censored survival data. It begins with a
description of how the interval-censored data arise from the studies where the
subjects are followed periodically, and the time to the event of interest cannot be
observed exactly. From a historical perspective, such data become more common
with the emergence of new clinical and epidemiologic study designs. However, the
well-developed methods that are used for right-censored survival data analysis could
not be applied. This chapter follows on the methodological development of this area,
starting in 1970 from a broad historical perspective.

Keywords Clinical trials · Interval-censored data · Non-parametric estimation ·
Periodical follow-up · Semiparametric analysis

1 Emerging Interval-Censored Data

In survival analysis, we are interested in the time to an event, such as death or the
onset of disease. Interval-censored data arise when the event is not observed exactly
and instead is only known to have occurred within a window of time. Such data can
be encountered in studies where subjects are followed up periodically, such as in a
clinical trial or longitudinal observational study. For example, suppose that a survey
is performed at regular intervals (say annually) and the observations are the age of
the participants and whether they have experienced a specific outcome (such as the
onset of puberty). Some subjects may miss observations and return with a change in
status. Thus, the data from the study will consist of overlapping intervals of age at
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4 D. Finkelstein

the time of completed surveys and whether or not the event has occurred within the
interval.

The methods that have been developed for right-censored and exact data may not
be directly applied for the analysis of interval-censored data. It is possible to broadly
group the data and apply methods for discrete data, but some loss of information
may occur since only summary information is used in this way (Sun, 2006). This is
especially the case if wide grouping intervals are used.

2 Emerging Methods in Analyzing Interval-Censored Data

The methods and theory for the analysis of interval-censored data emerged in the
statistical literature at least five decades ago, but were not widely applied until the
1990s, when these data became more common with the arrival of new diseases such
as HIV/AIDS. Also, new technology for the diagnosis and monitoring of diseases,
such as imaging studies and laboratory-detected markers, resulted in the discovery
of a clinical event only at the time the clinical test was done.

An early work by Sir Richard Peto (Peto, 1973) described estimation of the sur-
vival curve from interval-censored data in the context of the analysis of the onset of
puberty from a study using annual surveys in New Guinea (https://rss.onlinelibrary.
wiley.com/doi/abs/10.2307/2346307). In 1976, Bruce Turnbull (Turnbull, 1976)
published a paper on the empirical distribution function for arbitrarily grouped
and truncated data. He noted that interval-censored data can arise in medical or
correctional follow-up or industrial life-testing settings, where subjects enter the
data set at different ages. He also noted that the bioassay problem of Ayer et
al. (1955) resulting in right- and left-censored data could be considered a special
case of interval-censored data. Finkelstein and Wolfe (1985) published a paper
proposing a test for interval-censored data, which included a full data set from a
breast cancer study with a treatment difference in time to cosmetic deterioration
following radiation therapy. The data were censored into an interval between clinic
visits. These data were applied in many subsequent studies, contributing to the 322
citations in Google Scholar. In 1986, Finkelstein (1986) proposed a proportional
hazards model for the analysis of interval-censored data, which was cited 774 times
according to Google Scholar. These papers are really the seminal works in the
analysis of interval-censored data with Turnbull, for example, having over 2200
citations noted in Google Scholar.

While only two papers had the keywords “interval-censored data” between 1900
and 1970, and 12 additional in the 1970s, followed by 25 in 1980–85, the work
in this field grew rapidly as shown in Fig. 1, with over 2700 references in just the
last five years alone. The growth of this field was likely partially in response to the
new data that arose in the medical field, and the first book on the topic that was
published by Sun in 2006, which provides a relatively comprehensive review of the
literature up to 2006. The AIDS epidemic, in particular, produced a wealth of new
data that were interval-censored. For example, the incubation period of the disease
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Fig. 1 The number of published articles with key words “Interval-Censored Data”

was the time between the last time a subject tested HIV negative and the first time
he or she tested HIV positive (De Gruttola & Lagakos, 1989). Similarly, in cancer,
where preventing disease spread was the primary evidence of treatment efficacy, the
patient was monitored by newer imaging and laboratory technology, and the time
of progression was thus censored into the interval between clinic visits in which the
event occurred, often before there were symptoms reported by the patient.

3 More on Emerging Methods in Analyzing
Interval-Censored Data

The focus of the methods for interval-censored data has been on non-parametric or
semi-parametric methods. Before this field became widely known, it was common
practice in medical studies to simplify the interval censoring structure of the
data into a more standard right-censoring situation by, for instance, imputing the
midpoint of the censoring interval. The availability of software for the analysis of
right-censored and exact data could have contributed to this practice. The software
for the analysis of interval-censored data lagged behind the methodology. Prior to
2000, it was challenging to find professional software that provided these methods to
handle interval-censored data. Consequently, often times the data that were interval-
censored were masked as grouped or right-censored in the presentation, as the
methodology was not widely available or understood.

Each observation of interval-censored data is represented by the two endpoints of
the time interval in which the subject’s event occurred. We note that standard right-
censored and exact data can be seen as a subset of interval-censored data in which
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the right endpoint is infinity (if the observation time is right-censored) and the two
endpoints are equal if the event is observed exactly. Similarly, cross-sectional data
can be viewed as left- and right-censored depending on whether the event has or has
not already occurred, and is also a subset of interval-censored data, where one of the
endpoints is negative or positive infinity. The book by Sun (2006) provides several
complete interval-censored data sets.

Failure time data can also be doubly interval-censored, which occurs when the
failure time is the time between two events, both of which are interval-censored
(Sun, 2006). For example, the latency time for HIV/AIDS is the time from infection
(interval-censored as noted above) until HIV diagnosis (De Gruttola & Lagakos,
1989). The onset of HIV/AIDS could be asymptomatic and only diagnosed at a
clinic visit, for example by a blood test. It is possible that interest could focus on
multiple interval-censored events. For example, an AIDS opportunistic infection
could be diagnosed by a laboratory test, and thus the time to onset of the infection
could be interval-censored. The analysis of the relationship between the various
infections (such as CMV and MAC) would require multivariate interval-censored
methods, or possibly methods that allow for an interval-censored time-varying
covariate.

The challenge in developing non-parametric and semi-parametric methods for
the analysis of interval-censored data is that the paradigm used in exact/right-
censored survival analysis cannot be applied because these rely on identification at
each follow-up time and for each subject at risk whether they are free of the event of
interest. However, for interval-censored data, during the interval in which an event
is known to occur, we only know they were free of the event at the left endpoint,
but we do not know when during the interval to assign the occurrence of the event.
This impacts the estimation of the event-time (survival) curve as well as regression
methods used to predict events given demographic, treatment and clinical variables
(covariates) measured on each patient. Sometimes these covariates are longitudinal
and time-varying, and also subject to interval censoring. The availability of the
programs that can be used to analyze interval-censored data is also important. The
book by Chen, Sun and Peace (2013) provides some of these programs. In this
book, we will focus on the methods that have been developed to directly handle
these issues in the context of interval-censored data.
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Overview of Recent Advances on the
Analysis of Interval-Censored Failure
Time Data

Mingyue Du

Abstract As discussed by Dr. Finkelstein in Chap. 1, interval-censored failure time
data are a general type of failure time or time-to-event data that often occur in many
areas, including demographical studies, epidemiological studies, medical or public
health research and social science. In contrast to the historic review of Chap. 1,
this chapter will provide a brief review of some recent advances on several topics
concerning the analysis of interval-censored data. These include the analysis of
interval-censored data with time-dependent covariates, the presence of informative
censoring, or the presence of a cured subgroup, respectively. Also it will cover the
analysis of interval-censored data arising from case-cohort studies and the variable
selection based on interval-censored data as well as the analysis of doubly interval-
censored data.

Keywords Correlated failure times · Cured subgroup · Informative censoring ·
Time-dependent covariates · Variable selection

1 Introduction

As discussed by Dr. Finkelstein in Chap. 1, interval-censored failure time data
are a general type of failure time or time-to-event data that often occur in many
areas, including demographical studies, epidemiological studies, medical or public
health research and social science. Although a large literature, including four books,
Bogaerts et al. (2018), Chen et al. (2012), Sun (2006) and Van den hout (2017), and
several review papers (Du & Sun, 2021; Sun et al., 2018), has been established for
the analysis of interval-censored data, there still exist many open questions or more
research is needed for many existing or new issues. In contrast to the historic review
of Chap. 1, this chapter will provide a brief review of some recent advances on
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several important topics with the focus on regression analysis of interval-censored
data but not to provide a comprehensive review of the recent literature.

An example of interval-censored failure time data is given by Alzheimer’s
Disease Neuroimaging Initiative (ADNI), a longitudinal follow-up study that started
in 2004 and was designed to develop clinical, imaging, genetic, and biochemical
biomarkers for the early detection and tracking of the Alzheimer’s disease (AD)
(Li et al., 2017a, 2020a; Wu et al., 2020). In the study, the participants were
recruited across North America and followed and reassessed periodically to track
the pathology of the disease as it progresses. Among others, one variable of interest
is the time from the baseline visit date to the AD conversion. Since the participants
were only examined intermittently, the AD conversion thus cannot be observed
exactly and is known only to lie between the last examination time when the AD
had not occurred and the first examination time when the AD had already occurred.
In other words, only interval-censored data on the AD conversion are available.

Interval-censored failure time data occur in or can have different forms, or several
formulations are commonly used in the literature (Sun, 2006). Among them, an
important type is case I interval-censored data, also often referred to as current
status data, meaning that each subject is observed only once for the occurrence
of the failure event of interest. In consequence, the failure time T is either left- or
right-censored and the observation on a study subject has the form {C , I (T ≤ C) },
where C represents the observation time. One type of studies that usually produce
current status data is cross-sectional studies, which are commonly used in, for
example, demographical studies among others.

Corresponding to case I interval-censored data, another formulation for interval-
censored data that is often seen in the literature is case II interval-censored data,
which assume that there exist two observation times for each study subject. For the
situation, the observation has the form {U, V, δ1 = I (T < U), δ2 = I (U ≤
T < V ) } with U < V , where U and V denote the two observation times. A more
general formulation or type of interval-censored data is case K interval-censored
data, meaning that there exists a sequence of observation times for each subject. For
the case, the data have the form {K, U0 < U1 < · · · < UK , δk = I (Uj−1 <

T ≤ Uj); j = 1, . . . ,K }, where K denotes the number of observation times
with the Uj ’s being the observation times. In practice, both K and the Uj ’s can
be subject-dependent, and it is easy to see that many observation schemes such as
these commonly used in medical follow-up or longitudinal studies can be naturally
represented by this formulation.

The formulation that is used most to describe interval-censored data in practice
is perhaps I = (L,R] with T ∈ I , which will be referred to as general interval-
censored data below. Under this formulation, it is easy to see that case I interval-
censored data correspond to the situation where either L = 0 or R = ∞, while
right-censored data mean either L = R or R = ∞ for all study subjects. Also it is
apparent that both case II and case K interval-censored data can be reduced to this
format as often happened in reality.

It is worth noting that the analysis of interval-censored data is quite different from
and much more challenging than that of right-censored data. One such difference
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is that for the latter, the counting process approach could be easily adopted, which
makes the analysis much easier, while this is not true for the former. A more specific
difference can be seen from their regression analyses under the Cox model. For
the situation with right-censored data, a simple partial likelihood function could be
conveniently derived and commonly used for inference about regression parameters,
while with interval-censored data, a more complicated full likelihood function has
to be used in general.

One fundamental and important feature of failure time data is censoring and
different formations of the data correspond to different censoring structures. In
reality, one can classify censoring as either independent censoring or dependent
or informative censoring, meaning that the failure time of interest and the censoring
mechanism are correlated (Sun, 2006; Kalbfleisch & Prentice, 2002; Wang et al.,
2018a, 2020a). With the former, the analysis is usually performed conditional on
the censoring process no matter the formats of the data. In contrast, with the latter,
the analysis can be very different and also difficult as one usually has to make
certain assumptions or model the censoring mechanism. In particular, for right-
censored data, the modeling is relatively easy partly as only one variable is needed
to describe the censoring, while for interval-censored data, as discussed below, two
or more variables are usually required to characterize the censoring mechanism. As
pointed out in the literature, in the presence of informative censoring, the analysis
that ignores it may result in biased results or misleading conclusions.

The remainder of this chapter is organized as follows. In Sect. 2, we will first
discuss some recent advances on several topics related to regression analysis of
univariate interval-censored failure time data. They are the analysis with time-
dependent covariates, in the presence of a cured subgroup, and with the focus on
variable selection, respectively. Section 3 will also consider univariate interval-
censored data as in Sect. 2 but with dependent or informative censoring. In Sect. 4,
the attention will be on regression analysis of clustered and multivariate interval-
censored data, and Sect. 5 will briefly discuss several other topics related to
regression analysis of interval-censored data. They include the analysis of the data
arising from case-cohort studies, the analysis of doubly censored data, and the
analysis of the data with missing covariates. Section 6 will give some concluding
remarks and point out some topics for which more research is needed.

2 Regression Analysis of Univariate Interval-Censored
Failure Time Data

As mentioned above, a great deal of literature has been established for the analysis
of univariate interval-censored failure time data and especially, many methods
have been developed for their regression analysis (Chen et al., 2012; Sun, 2006).
In this section, we will discuss three topics on the regression analysis that have
recently attracted a good amount of attentions. They are the regression analysis



12 M. Du

when covariates are time-dependent, there exists a cured subgroup, or when variable
selection is of main interest, respectively.

2.1 Regression Analysis with Time-Dependent Covariates

Consider a failure time study that yields interval-censored data with the main
goal being making inference about the effects of time-dependent covariates. For
estimation of such effects, two approaches are commonly used. One is the marginal
maximum likelihood approach and the other is the joint modeling approach. Among
others, Zeng et al. (2016) considered the former approach to the problem under
a class of semiparametric transformation (ST) models. More specifically, they
developed the maximum likelihood estimation (MLE) approach and showed that
the maximum likelihood (ML) estimators of regression parameters are consistent
and asymptotically efficient and normal. In addition, they developed a flexible
and computationally efficient EM algorithm following Wang et al. (2016a), who
considered the same problem but under the Cox model with time-independent
covariates.

In contrast to the marginal approach, the joint modeling approach treats the
time-dependent covariates as longitudinal processes and is usually preferred when
there also may exist measurement errors on covariates. For this, one commonly
used method is to model the failure time of interest and the longitudinal covariate
process jointly by using, for example, the latent variable approach. Among others,
Yi et al. (2020) proposed a Cox frailty model and developed a MLE procedure
under this framework along with a MCEM algorithm. Note that many methods have
been developed in the literature for joint analysis of longitudinal data and failure
time data with either the failure time or the longitudinal variable as the variable of
interest. However, most of them only focused on right-censored data on the failure
time except Chen et al. (2018). One major difference between the methods given in
Chen et al. (2018) and Yi et al. (2020) is that the former treats the failure time as
the dropout or stopping variable and assumed that there is no more observation after
the dropout. In other words, it cannot give efficient or valid estimation if there exist
more observations after the failure time. In contrast, the latter takes into account
all observations and also the algorithm given in Yi et al. (2020) is faster and more
stable than that given in Chen et al. (2018). More discussion on regression analysis
of interval-censored data with time-dependent covariates can be found in Chaps. 6,
9 and 11 of this book.

2.2 Regression Analysis in the Presence of a Cured Subgroup

By the existence of a cured subgroup, we usually mean that there exists a portion
of study subjects who never experience or are non-susceptible to the failure event
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of interest for various reasons. These individuals are usually considered to be cured
or immune from the failure event and referred to as long-term survivors or cured
subjects. To deal with this, two types of models or methods are commonly used and
they are two-component mixture cure model approach and non-mixture cure model
approach (Hu & Xiang, 2016; Li et al., 2019a). The former models the effects of
covariates on the cure rate of the population and the survival function of non-cured
subjects through two separate regression models, and a drawback of this is that
it does not have the usual survival model property for the whole population. In
contrast, the latter assumes that cured subjects have infinity survival time and uses a
single model to describe the survival function of the entire population (Hu & Xiang,
2016). Sometimes the latter model is also referred to as the promotion time cure
model.

Specifically, under the two-component mixture cure model, the failure time of
interest T is usually written as T = Y T ∗ + (1 − Y )∞, where T ∗ denotes the
failure time of a susceptible subject and Y indicates, by value 1 or 0, whether the
study subject is susceptible or not. To describe the effects of covariates, one could
employ a regular failure time regression model such as the Cox model for the effect
on the failure time and the logistic model for the possible effect on the cure rate.
Among others, Hu and Xiang (2016) discussed this approach when one observes
interval-censored data and proposed a sieve ML method under a class of ST models
and the logistic model.

As mentioned above, the non-mixture cure model uses a single model to describe
the survival function of the entire population, and for the situation, one could easily
extend a regular regression model such as the Cox model to the Cox cure model. An
attractive feature of the Cox cure model is that it inherits the Cox model structure for
the whole population and thus regression parameters have relatively appealing, easy
interpretations. Among others, Li et al. (2019a) recently considered this approach
under a class of ST cure models and developed the MLE procedure for fitting
the model to interval-censored data. Other authors who recently investigated the
analysis of interval-censored data with a cured subgroup include Liu et al. (2020)
and Zhou et al. (2018a). The former discussed the situation when there exist mis-
measured covariates, and the latter proposed a generalized odds rate mixture cure
model.

2.3 Variable Section for Interval-Censored Data

Variable selection has recently attracted a great deal of attention with a huge amount
of literature established under various contexts. This is particularly true for the
analysis of failure time data and a few penalized variable selection methods have
been proposed for interval-censored data under different situations. Among others,
Zhao et al. (2020a) discussed the problem under the Cox model and proposed
a broken adaptive ridge regression procedure. Furthermore, they proved that the
resulting variable selection and estimation procedure has both the oracle property
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and the grouping property, and the approach works too with the use of other
commonly used penalty functions such as LASSO, ALASSO and SCAD. Following
Zhao et al. (2020a), Li et al. (2020a) and Zhao et al. (2020b) generalized the method
to the situations where the failure time of interest follows a class of ST models
and the interval-censored data arise from case-cohort studies, respectively. As Zhao
et al. (2020b), Du et al. (2022) also investigated the variable selection based on
case-cohort interval-censored data but their method allows for informative interval
censoring.

An assumption behind the methods mentioned above is that although it can
diverge with the sample size, the number of covariates cannot be larger than the
sample size. To address this, Wu et al. (2020) generalized the method given in
Zhao et al. (2020a) to the case where the number of covariates to be larger than
the sample size. Furthermore, their generalized procedure allows for the existence
of a vector of low-dimensional covariates that may have non-linear effects on the
failure time of interest. Other authors who also recently studied variable selection
for interval-censored data include Chen and Sun (2022), Du and Sun (2022), Sun
et al. (2019), Xu et al. (2021) and Yi et al. (2022). In particular, Chen and Sun
(2022) considered the situation where covariate effects may be time-varying, and
Sun et al. (2019) and Xu et al. (2021) proposed some variable selection procedures
for interval-censored data where there may exist a cured subgroup. Yi et al. (2020)
considered the variable selection under the context of joint analysis of longitudinal
data and interval-censored data, and Du et al. (2021a) gave a uniform approach for
the problem under the Cox model that allows for informative censoring.

Except Wu et al. (2020), all of the methods mentioned above assume linear
covariate effects, and corresponding to this, Li and Sun (2020) discussed the same
problem but under high-dimensional quadratic Cox model. Note that all of the
work discussed above on interval-censored data only investigated either low- or
high-dimensional situations and sometimes one may face ultra-high-dimensional
covariates. To address the latter situation, Hu et al. (2020) developed a model-free
or nonparametric screening and feature selection procedure based on the idea of
cumulative residuals for interval-censored data. In particular, they proved that their
method has the sure independent screening property and tends to rank the active or
significant covariates above the inactive or non-significant ones in terms of their
association with the failure time of interest. Following Hu et al. (2020), Zhang
et al. (2022) discussed the same problem and gave another model-free screening
procedure. More discussion and more references on variable selection based on
interval-censored data can be found in a recent review paper (Du & Sun, 2022).

3 Regression Analysis with Informative Interval Censoring

In the presence of informative censoring, unlike the non-informative case where
the analysis is usually performed conditional on the censoring mechanism or
observation process, one needs to model the censoring mechanism or observation
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process together with the failure time of interest. For this, two types of approaches
are commonly used and they are the frailty or latent variable-based approach and the
copula model-based approach. The former employs some frailty or latent variables
to characterize the relationship between the censoring mechanism and the failure
time of interest, while the latter uses copula functions to achieve the purpose.

Among others, Li et al. (2017b, 2019b) and Xu et al. (2022) recently discussed
regression analysis of case I informatively interval-censored data and proposed
some latent variable-based sieve MLE procedures. More specifically, Li et al.
(2017b) considered the situation where both the failure time of interest and the
censoring variable follow Cox frailty models and developed a three-stage data
augmentation EM algorithm. Li et al. (2019b) and Xu et al. (2022) studied the
same problem as Li et al. (2017b) except that the failure time of interest follows
an additive frailty model and a class of generalized odds rate frailty models,
respectively. On the analysis of case K interval-censored data, some recent work
can be found in Wang et al. (2016b, 2018a, 2020a), which generalized the methods
given in Li et al. (2017b, 2019b). In addition, Wang et al. (2018b) also discussed
the same problem but under a class of ST models. It is worth noting that with case
I informative censoring, one only needs to deal with one censoring or observation
variable but with case K informative censoring, one usually has to make use of a
stochastic process such as Poisson process to describe the censoring or observation
process.

As mentioned above, to deal with informative censoring, an alternative to the
latent variable-based approach is to employ the copula model-based approach,
which connects the failure time of interest and censoring variables through some
copula functions. Among others, Cui et al. (2018), Du et al. (2019), Xu et al.
(2019a), Xu et al. (2020) and Zhao et al. (2019) recently applied this approach
to regression analysis of case I interval-censored data with informative censoring.
More specifically, they considered the situation where the failure time of interest
marginally follows the Cox model, the generalized probit model, the ST model, the
accelerated failure time model, or the additive hazards (AH) model, respectively.
Note that as other similar methods, all of the methods mentioned above except that
given in Cui et al. (2018) assume that both the copula function and the association
parameter are known. Cui et al. (2018) proposed a two-step estimation procedure
that allows for the association parameter to be estimated.

Some recent work on the application of the copula model-based approach to
regression analysis of general, informatively interval-censored data can be found
in Ma et al. (2016) and Xu et al. (2019b). More specifically, they discussed the
data given by the formulation I = (L, R] where the dependence between the
failure time T of interest and the censoring mechanism can be characterized by the
correlation between T and W = R − L, the length of the censoring interval. For
inference, they developed the MLE procedures for the situation where T follows
the Cox model or a class of ST models, respectively, andW follows the Cox model.
Instead of the two approaches discussed above, Zhou et al. (2022) discussed a third
approach, the marginal approach, for regression analysis of informatively interval-
censored data. For inference, they developed some estimating equations by using
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the inverse probability weighted technique, and it has the advantage of avoiding to
model the censoring process.

4 Regression Analysis of Clustered and Multivariate
Interval-Censored Data

In this section, we will first briefly discuss some recent advances on regression
analysis of clustered interval-censored failure data and then on regression analysis
of multivariate interval-censored data. It is well-known that for the analysis of these
data, one key issue is how to describe or model the correlation among the correlated
failure times.

For regression analysis of clustered interval-censored data, one commonly used
type of procedure is the latent variable-based approach, which employs latent
variables to characterize the relationship among the correlated failure times of
interest. Among others, Lee et al. (2022) and Zeng et al. (2017) recently discussed
the use of this approach for fitting a class of ST model to case II clustered interval-
censored data. In particular, the MLE procedure proposed in Zeng et al. (2017) can
apply to both time-dependent covariates and the combination of multivariate and
clustered interval-censored data. For the two methods described above, the latent
variable has been assumed to follow a known distribution with some unknown
parameters that can be estimated along with other parameters. Sometimes one may
not want to specify the distribution of the latent variable or prefer to leave the
correlation among the failure times of interest arbitrary. For this purpose, Yang
et al. (2021, 2022) and Zhao et al. (2018) proposed some within-cluster-resampling
estimation procedures for general clustered interval-censored data under the Cox
model and a class of ST models, respectively. Both of the methods given in Yang
et al. (2022) and Zhao et al. (2018) allow for the presence of informative cluster
size, while the methods provided by Yang et al. (2021, 2022) apply to the case
where there exists a cured subgroup.

On regression analysis of multivariate interval-censored data, two types of
approaches, the latent variable-based and copula model-based approaches, are
commonly used similarly to the analysis of informatively interval-censored data.
Among others, Li et al. (2020b) and Zhou et al. (2017a) recently investigated the
problem and gave some latent variable-based methods. The former focused on
multivariate current status data under a class of ST frailty models and developed
a MLE procedure. Under similar models, in contrast, the latter proposed a sieve
MLE method with the use of Bernstein polynomials for general bivariate interval-
censored data. Furthermore, Liu and Qin (2018) studied the same problem under
a class of probit models, and Gao et al. (2019) discussed the situation with time-
dependent covariates. In addition, Li et al. (2022) and Yu et al. (2022) also
investigated regression analysis of multivariate current status data and case II
interval-censored data, respectively, under the marginal AH frailty model. Unlike


