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Preface
While concepts related to domination in graphs can be traced back to the Roman
Empire in the fourth century AD and to the mid-1800s in connection with various
chessboard problems, the mathematical concept of domination in graphs was first
suggested by Kőnig in 1936, and then defined as a graph theoretical parameter by
Berge in 1958. Domination in graphs experienced rapid growth from its introduction,
resulting in over 1200 papers published on domination in graphs by the late 1990s.

Much of the interest in domination theory in graphs is due to its applications in
many areas of study, such as genetics, chemistry, computer communication networks,
facility location, social networking, surveying, transporting hazardous materials,
monitoring electrical power networks, school bus routing, voting, and several areas
of mathematics, to name a few.

Noting the need for a comprehensive survey of the literature on domination in
graphs, in 1998 Haynes, Hedetniemi, and Slater published the first two books on
domination, writing Fundamentals of Domination in Graphs (ISBN: 9780429157769)
and editing Domination in Graphs: Advanced Topics (ISBN: 9781315141428). The
explosive growth of this field has continued since 1998, and today more than 5000
papers have been published on domination in graphs, and the material in these two
books is now more than 20 years old. Thus, we thought it was time for an update
on the developments in domination theory since 1998. We also wanted to give a
comprehensive treatment of only the major topics in domination. This coverage of
domination, including the major results and updates, is in the form of three books:
this book and its two companion books, Topics in Domination in Graphs (ISBN:
9783030511173) and Structures of Domination in Graphs (ISBN: 9783030588915),
which we will call Books I, II, and III, respectively.

This book, Domination in Graphs: Core Concepts, is limited to, as the title
suggests, the most core concepts of domination in graphs: domination, total domi-
nation, and independent domination. It contains major results on these three types
of domination, including a wide variety of proofs, both short and long, of selected
results that illustrate many of the proof techniques used in domination theory.

For the companion books, Books II and III, we invited leading researchers in
domination theory to contribute chapters.

Book II focuses on the most-studied types of domination that are not covered
in Book I. Although well over 70 types of domination have been defined, Book II
focuses on those that have received the most attention in the literature, and contains
chapters on paired domination, connected domination, restrained domination, multiple
domination, distance domination, dominating functions, fractional domination, Roman
domination, rainbow domination, locating-domination, eternal and secure domination,
global domination, stratified domination, and power domination.

Book III is divided into three parts. The first part covers several domination-related
concepts: broadcast domination, alliances, domatic numbers, dominator colorings,
irredundance in graphs, private neighbor concepts, game domination, varieties of
Roman domination, and domination in spectral graph theory. The second part contains
chapters on domination in hypergraphs, chessboards, and digraphs and tournaments.
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The third part focuses on the development of algorithms and complexity of signed,
minus, and majority domination, power domination, and alliances in graphs. The
third part also includes a chapter on self-stabilizing algorithms for domination.

This book (Book I) is intended as a reference resource for researchers and is
written to reach the following audiences: first, established researchers in the field of
domination who want an updated, comprehensive coverage of domination theory;
second, researchers in graph theory who wish to become acquainted with newer
topics in domination, along with major developments in the field and some of the
proof techniques used; and third, graduate students with interests in graph theory,
who might find the theory and many real-world applications of domination of interest
for master’s and doctoral theses topics. We also believe that this book provides a good
basis for use in a seminar on either domination theory or domination algorithms and
complexity, including the new algorithm paradigm of self-stabilizing domination
algorithms.

This book is intended as an in-depth introduction to domination in graphs,
limited to its most core concepts of domination, total domination, and independent
domination. We have therefore intentionally focused more on depth than breadth in
Book I, and supplied several in-depth proofs for the reader to acquaint themselves
with a tool box of proof techniques and methods with which to attack open problems
in the field. We have identified many unsolved problems and open conjectures, which
can be used as a launching pad for future researchers in the field.

With the enormous literature that exists on domination in graphs and the dynamic
nature of the subject, we were faced with the challenge of determining which topics
to include and perhaps even more importantly which topics to exclude, even for the
core concepts of domination, total domination, and independent domination. We have
therefore been selective in the material included in this core domination book and
wish to apologize in advance for omitting many important results and proofs due to
space limitations.

We assume that the reader is acquainted with the basic concepts of graph theory
and has had some exposure to graph theory at an introductory level. However, since
graph theory terminology sometimes varies, we provide a glossary as a reference
source for the reader regarding terminology and notation adopted in this book.
Assuming that the reader has some familiarity with graph theory, this book is self-
contained as we include the terminology and definitions involving domination in the
glossary in Appendix A.

The material in this book has been organized into 18 chapters, an epilogue, and
three appendices. It contains an extensive bibliography of more than 900 references,
which we have cited throughout the book. A brief summary of the material covered
in each chapter is presented below.

Chapter 1 In the Beginning: Roots of Domination in Graphs discusses the many
origins, both historical and mathematical, of domination in graphs, dating as far back
as the Roman Empire in the fourth century AD under Emperor Constantine.

Chapter 2 Fundamentals of Domination discusses how it is that the domination
number, total domination number, and independent domination number can be defined
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in a variety of equivalent ways, each of which suggests natural generalizations of
these three types of domination.

Chapter 3 Complexity and Algorithms for Domination in Graphs provides an
overview of the core results on NP-completeness and algorithms for domination, total
domination, and independent domination in graphs. It presents NP-completeness
proofs for each type of domination, when restricted to several subclasses of graphs,
and provides linear algorithms for computing each type of domination on trees.

Chapter 4 General Bounds presents some of the more basic lower and upper
bounds on the domination, total domination, and independent domination numbers
of graphs.

Chapter 5 Domination in Trees presents a wide variety of domination results for
the class of trees, including lower and upper bounds, bounds in terms of the number
of leaves in a tree, the Slater lower bound for trees, vertices in all or no minimum
dominating sets in a tree, trees in which every vertex is a member of some minimum
dominating set, trees having unique minimum dominating sets, trees in which the
domination number equals the independent domination number, and trees in which
the domination number equals the total domination number.

Chapter 6 Upper Bounds in Terms of Minimum Degree presents results which
establish upper bounds on the core domination numbers in terms of the order of a
graph and the minimum degree of a vertex in the graph, where for the domination
number and total domination number the minimum degree ranges between one
and six.

Chapter 7 Probabilistic Bounds and Domination in Random Graphs presents
probabilistic bounds for the core domination numbers of a graph in terms of its order
and minimum degree, and also considers bounds for the domination numbers of
random graphs. It covers the basic questions of the probability that a randomly chosen
set 𝑆 of vertices in a graph 𝐺 is a dominating set of one of the three basic types, if
each vertex in the graph is chosen to be in the set 𝑆 with a given probability.

Chapter 8 Bounds in Terms of Size discusses how the number of edges of a graph
affects the values of the core domination numbers.

Chapter 9 Efficient Domination in Graphs considers classes of graphs that have
dominating or total dominating sets 𝑆 in which specified vertices are adjacent to
exactly one vertex in 𝑆. Included in these classes of graphs are certain circulants,
Cayley graphs, grid graphs, cylindrical graphs, toroidal graphs, prisms, Möbius
ladders, and lexicographic graphs. Also included is a section on NP-completeness
results for graphs having an efficient dominating set.

Chapter 10 Domination and Forbidden Subgraphs presents bounds on the three
core domination numbers in classes of graphs which have certain subgraph restrictions,
such as bipartite (no odd cycles), cubic (every vertex has degree three), and claw-free
(no vertex has three neighbors, no two of which are adjacent).

Chapter 11 Domination in Planar Graphs covers domination and total domination
in planar triangulations, outerplanar graphs, and in planar graphs having small
diameter. Results on independent domination in planar graphs are also presented,
including bipartite, cubic, and minimum diameter planar graphs.
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Chapter 12 covers vertex partitions 𝜋 = {𝑉1, 𝑉2, . . . , 𝑉𝑘} of
a graph𝐺 such that each set𝑉𝑖 is a dominating set. Partitions into total and independent
dominating sets are also considered. The nine possible ways of partitioning the vertices
of a graph into two sets, say 𝑉1 and 𝑉2, such that 𝑉1 is one of the three types of
domination and 𝑉2 is one of the three types of domination are also considered.

Chapter 13 Domination Critical and Stable Graphs presents the classes of graphs
whose types of domination numbers change upon the removal of any vertex, the
removal of any edge, or the addition of any edge. It also considers the classes of
graphs whose domination numbers do not change, regardless of which vertex or edge
is removed or which new edge is added to the graph.

Chapter 14 Upper Domination Parameters covers the upper domination number,
the upper total domination number, and the independence number, that is, the
maximum cardinalities of a minimal type of dominating set. Since the independence
number, that is, the maximum cardinality of an independent set, is very well-studied
in the literature, the focus of this chapter is mainly on the upper domination and upper
total domination numbers, although several important results on the independence
number are presented.

Chapter 15 Relating the Core Parameters presents relationships, inequalities, and
bounds that exist between the three types of domination numbers, for example bounds
on the ratio of the independent domination number to the domination number and the
total domination number to the domination number. Also considered are the classes
of graphs in which two of these domination numbers are always equal, for example
the classes of graphs in which the independence number equals the upper domination
number.

Chapter 16 Nordhaus-Gaddum Bounds discusses bounds on the sum and product
of the domination numbers of a graph 𝐺 and its complement 𝐺. Bounds on the
sum and product for total domination and independent domination numbers are also
presented.

Chapter 17 Domination in Grids and Hypercubes presents results on domination,
total domination, and independent domination in grids, which are chessboard-like
graphs. There is also a brief discussion of cylinders (chessboards with column
wrap-arounds) and tori (chessboards with both column and row wrap-arounds). The
chapter concludes with domination in hypercubes.

Chapter 18 Domination and Vizing’s Conjecture provides an overview of the
most well-known conjecture in domination theory, that the domination number of the
Cartesian product of two graphs 𝐺 and 𝐻 is greater than or equal to the product of
the domination number of 𝐺 and the domination number of 𝐻. Similar conjectures
are also discussed for all six core domination numbers, including the lower and upper
domination, total domination, and independent domination numbers.

The authors would like to thank Elizabeth Loew, the Executive Editor, Mathematics
at Springer, and Saveetha Balasundaram, the Project Coordinator (Books) for Springer
Nature, for their continued support and encouragement, not only in producing this
book but throughout the production of Books II and III. We are especially grateful
to them for their patience in waiting for this manuscript from the date the contract
was signed, and for their cooperation in all aspects of the production of this book.
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Chapter 1

In the Beginning: Roots of
Domination in Graphs

1.1 Introduction

While domination in graphs was first formally defined by Berge in 1958, the roots
of domination can be traced back to defense strategies used by the Roman Empire
in the fourth century AD, to a precursor of the game of chess in India in the sixth
century AD, and later in the mid-to-late 1800s, to a variety of chess problems. Other
sources of domination can be found in a wide array of real-world areas such as radio
broadcasting, computer communication networks, systems of distinct representatives,
school bus routing, electrical power networks, influence in social networks, surveying,
resource allocation, and even transporting hazardous materials.

In the 1900s, a variety of international researchers began to develop the mathe-
matical foundations of domination in graphs, including the British mathematician,
lawyer, and fellow at Trinity College Cambridge, W.W. Rouse Ball; the Hungarian
mathematician who wrote the first book on graph theory, Dénes Kőnig; the English
mathematician and statistician, Patrick Michael Grundy; the Hungarian-American
mathematician, physicist, computer scientist, and engineer, John von Neumann;
the German-American economist, Oskar Morgenstern; the French mathematician
recognized as one of the founders of graph theory, Claude Berge; the Hungarian graph
theorist Tibor Gallai; the Norwegian-American mathematician who worked in ring
theory, Galois theory, and graph theory, Øystein Ore; the Soviet and Ukrainian graph
theorist, Vadim Vizing; the Finnish mathematician, Juho Nieminen; and the Canadian
graph theorists, Amram Meir, John Moon, and E.J. Cockayne. In this chapter, we
discuss the many origins, both historical and mathematical, of domination in graphs
and highlight some of the most significant contributions of these mathematicians to
the theory of domination up to the year 1998 when the first two books on domination
in graphs were produced by the American graph theorists, Teresa Haynes, Stephen
Hedetniemi, and Peter Slater [416, 417].
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2 Chapter 1. In the Beginning: Roots of Domination in Graphs

Before delving into the roots of domination in graphs, we give some basic
definitions and notation in Section 1.2 that will be used throughout the book. To
avoid repeating terminology in every chapter, we also provide a glossary in Appen-
dix A including these basic terms and other definitions and refer the reader to it for
terminology not defined on the spot.

1.2 Basic Terminology

A graph 𝐺 = (𝑉, 𝐸) consists of a finite nonempty set 𝑉 (𝐺) of objects called vertices
together with a possibly empty set 𝐸 (𝐺) of 2-element subsets of 𝑉 (𝐺) called edges.
Throughout, unless otherwise stated, the graphs in this book are simple graphs with
no loops or multiple edges and 𝐺 is a graph with vertex set 𝑉 and edge set 𝐸 . The
number of vertices 𝑛 = |𝑉 | is called the order of 𝐺 and the number of edges 𝑚 = |𝐸 |
is the size of 𝐺. An edge {𝑢, 𝑣} is denoted by 𝑢𝑣. If 𝑢𝑣 ∈ 𝐸 , then 𝑢 and 𝑣 are adjacent
vertices. The vertex 𝑢 (respectively, 𝑣) and edge 𝑢𝑣 are said to be incident to each
other. Two distinct edges are adjacent if they are incident to a common vertex.

The graph consisting of a single vertex is called the trivial graph; a nontrivial
graph has order 𝑛 ≥ 2. Given a graph 𝐺 = (𝑉, 𝐸), the complement 𝐺 of 𝐺 is the
graph 𝐺 = (𝑉, 𝐸), where 𝑢𝑣 ∈ 𝐸 if and only if 𝑢𝑣 ∉ 𝐸 . The complete graph 𝐾𝑛 is a
graph of order 𝑛 in which every two vertices are adjacent, while its complement 𝐾𝑛

is an empty graph, that is, a graph on 𝑛 vertices with no edges. Note that 𝐾1 is the
trivial graph.

The open neighborhood of a vertex 𝑣 ∈ 𝑉 is the set N𝐺 (𝑣) = {𝑢 : 𝑢𝑣 ∈ 𝐸}
of vertices adjacent to 𝑣, called the neighbors of 𝑣, and its closed neighborhood
is the set N𝐺 [𝑣] = N𝐺 (𝑣) ∪ {𝑣}. The open neighborhood of a set 𝑆 ⊆ 𝑉 of
vertices is N𝐺 (𝑆) =

⋃
𝑣∈𝑆 N𝐺 (𝑣), while the closed neighborhood of a set 𝑆 is

the set N𝐺 [𝑆] =
⋃

𝑣∈𝑆 N𝐺 [𝑣]. The degree of a vertex 𝑣 is deg𝐺 (𝑣) = |N𝐺 (𝑣) |. If
the graph 𝐺 is clear from the context, then we omit the 𝐺 subscript in the above
expressions. A vertex 𝑣 ∈ 𝑉 is called an isolated vertex if deg(𝑣) = 0, and is called
a leaf if deg(𝑣) = 1. In a graph 𝐺 of order 𝑛, a vertex 𝑣 for which deg(𝑣) = 𝑛 − 1
is called a dominating vertex. A graph 𝐺 is called 𝑘-regular if every vertex 𝑣 ∈ 𝑉
has deg(𝑣) = 𝑘 . We say that a graph is isolate-free if it has no isolated vertices. The
largest degree among the vertices of 𝐺 is the maximum degree Δ(𝐺) and the smallest
degree is the minimum degree 𝛿(𝐺).

A graph𝐺′ = (𝑉 ′, 𝐸 ′) is a subgraph of a graph𝐺 = (𝑉, 𝐸) if𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸
and 𝐺′ is a spanning subgraph of 𝐺 if 𝑉 ′ = 𝑉 . For a nonempty subset 𝑆 ⊆ 𝑉 , the
subgraph 𝐺 [𝑆] of 𝐺 induced by 𝑆 has 𝑆 as its vertex set and two vertices 𝑢 and 𝑣
are adjacent in 𝐺 [𝑆] if and only if 𝑢 and 𝑣 are adjacent in 𝐺. A clique is a complete
subgraph.

A set 𝑆 of vertices of a graph 𝐺 is a dominating set if every vertex in 𝑉 \ 𝑆 has a
neighbor in 𝑆, that is, N[𝑆] = 𝑉 . The domination number 𝛾(𝐺) equals the minimum
cardinality of a dominating set of 𝐺 and a dominating set with cardinality 𝛾(𝐺) is
called a 𝛾-set of 𝐺.
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A set 𝑆 of vertices of an isolate-free graph𝐺 is a total dominating set, abbreviated
TD-set, if every vertex in𝑉 is adjacent to at least one vertex in 𝑆. Thus, a subset 𝑆 ⊆ 𝑉
is a TD-set of 𝐺 if N(𝑆) = 𝑉 . Note that since every vertex must have a neighbor
in 𝑆, total domination is only defined for isolate-free graphs. The total domination
number 𝛾t (𝐺) equals the minimum cardinality of a TD-set of 𝐺 and a TD-set with
cardinality 𝛾t (𝐺) is called a 𝛾t-set of 𝐺.

A minimal dominating set in a graph 𝐺 is a dominating set that contains no
dominating set of 𝐺 as a proper subset, and a minimal TD-set of 𝐺 is a TD-set that
contains no TD-set of 𝐺 as a proper subset. The upper domination number Γ(𝐺)
equals the maximum cardinality of a minimal dominating set in 𝐺. Similarly, the
upper total domination number Γt (𝐺) equals the maximum cardinality of a minimal
TD-set of 𝐺.

A set 𝑆 ⊆ 𝑉 is independent if no two vertices in 𝑆 are adjacent in 𝐺, and
an independent set 𝑆 is called maximal if no proper superset of 𝑆 is independent.
The vertex independence number, or just independence number, 𝛼(𝐺) equals the
maximum cardinality of an independent set of 𝐺. A set 𝑆 ⊆ 𝑉 is an independent
dominating set, abbreviated ID-set, if it is both independent and dominating. The
independent domination number 𝑖(𝐺) equals the minimum cardinality of any ID-set
of 𝐺 and an ID-set with cardinality 𝑖(𝐺) is called an 𝑖-set of 𝐺. We note that 𝑖(𝐺)
is the minimum cardinality of any maximal independent set of 𝐺. A set 𝑀 ⊆ 𝐸 is
independent if no two edges in 𝑀 are adjacent in 𝐺, and a set of independent edges
is called a matching. The matching number 𝛼′ (𝐺) equals the maximum number of
edges in a matching of 𝐺.

A set 𝑆 ⊆ 𝑉 is a packing in 𝐺 if for any two vertices 𝑢, 𝑣 ∈ 𝑆, N[𝑢] ∩ N[𝑣] = ∅.
The packing number 𝜌(𝐺) equals the maximum cardinality of a packing of 𝐺. A
vertex cover is a set 𝑆 of vertices such that every edge in 𝐸 is incident to at least
one vertex in 𝑆. The vertex covering number 𝛽(𝐺), also denoted 𝜏(𝐺), equals the
minimum cardinality of a vertex cover of 𝐺. An edge cover is a set 𝐹 of edges
such that every vertex in 𝑉 is incident to at least one edge in 𝐹. The edge covering
number 𝛽′ (𝐺) equals the minimum cardinality of an edge cover of𝐺. These concepts
will be explored in more detail in Chapters 2 and 4.

A graph 𝐺 is bipartite if its vertex set 𝑉 can be partitioned into two sets 𝑋 and 𝑌
such that every edge in 𝐺 joins a vertex in 𝑋 and a vertex in 𝑌 . The sets 𝑋 and 𝑌
are called the partite sets of 𝐺. We note that the partite sets of a bipartite graph
are independent sets. The complete bipartite graph 𝐾𝑟 ,𝑠 is a bipartite graph with
partite sets 𝑋 and 𝑌 , where |𝑋 | = 𝑟, |𝑌 | = 𝑠, and every vertex in 𝑋 is adjacent to
every vertex in 𝑌 . The union 𝐺 = 𝐺1 ∪ 𝐺2 of two graphs 𝐺1 and 𝐺2 has vertex set
𝑉 (𝐺) = 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and edge set 𝐸 (𝐺1) ∪ 𝐸 (𝐺2). If 𝐺 is a union of 𝑘 copies
of a graph 𝐹, we write 𝐺 = 𝑘𝐹.

For an integer 𝑘 ≥ 1, let [𝑘] = {1, 2, . . . , 𝑘} and [𝑘]0 = [𝑘] ∪ {0} = {0, 1,
. . . , 𝑘}. A walk in a graph 𝐺 from a vertex 𝑢 to a vertex 𝑣, called a (𝑢, 𝑣)-walk, is
a finite alternating sequence of vertices and edges, starting with the vertex 𝑢 and
ending with the vertex 𝑣, in which each edge of the sequence joins the vertex that
precedes it in the sequence to the vertex that follows it in the sequence. A (𝑢, 𝑣)-trail
is a (𝑢, 𝑣)-walk containing no repeated edges and a (𝑢, 𝑣)-path is a (𝑢, 𝑣)-walk
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containing no repeated vertices. A cycle is a closed (𝑢, 𝑣)-trail. The length of a path
(respectively, cycle) equals the number of edges in the path (respectively, cycle). A
graph of order 𝑛 which itself is a path is called the path 𝑃𝑛. Thus, the path 𝑃𝑛 is
the graph of order 𝑛 whose vertices can be labeled 𝑣1, 𝑣2, . . . , 𝑣𝑛 and whose edges
are 𝑣𝑖𝑣𝑖+1 for 𝑖 ∈ [𝑛 − 1]. For an integer 𝑛 ≥ 3, the cycle 𝐶𝑛 is the graph of order 𝑛
whose vertices can be labeled 𝑣1, 𝑣2, . . . , 𝑣𝑛 and whose edges are 𝑣1𝑣𝑛 and 𝑣𝑖𝑣𝑖+1 for
𝑖 ∈ [𝑛 − 1]. The cycle 𝐶𝑛 is also referred to as an 𝑛-cycle. We write 𝑃𝑛 : 𝑣1 𝑣2 . . .

𝑣𝑛 and 𝐶𝑛 : 𝑣1 𝑣2 . . . 𝑣𝑛 𝑣1 to denote the paths and cycles, respectively, with vertex
sequence (𝑣1, 𝑣2, . . . , 𝑣𝑛).

Two vertices 𝑢 and 𝑣 are connected if there is a (𝑢, 𝑣)-path in 𝐺, and a graph 𝐺
is said to be connected if every two of vertices in 𝑉 are connected. The distance
𝑑 (𝑢, 𝑣) = 𝑑𝐺 (𝑢, 𝑣) between two vertices 𝑢 and 𝑣 in a connected graph 𝐺 is the
minimum length of a (𝑢, 𝑣)-path in 𝐺. The eccentricity ecc(𝑣) = ecc𝐺 (𝑣) of a
vertex 𝑣 in a connected graph 𝐺 is the maximum of the distances from 𝑣 to the other
vertices of 𝐺; that is, ecc(𝑣) = max

{
𝑑 (𝑢, 𝑣) : 𝑢 ∈ 𝑉

}
. The diameter diam(𝐺) is

the maximum eccentricity taken over all vertices of 𝐺 and the radius rad(𝐺) is the
minimum eccentricity taken over all vertices of 𝐺. A vertex of 𝐺 with eccentricity
equal to rad(𝐺) is called a central vertex. Abusing notation slightly, we refer to a
central vertex as simply a center and say that a graph having exactly one central
vertex 𝑥 is centered at 𝑥.

A tree is an acyclic connected graph. A star is a tree with at most one vertex that
is not a leaf, that is, a star is a tree with diameter at most 2. Thus, stars consist of
complete bipartite graphs 𝐾1,𝑠 for 𝑠 ≥ 1 along with the trivial graph 𝐾1. A double
star 𝑆(𝑟, 𝑠), for 1 ≤ 𝑟 ≤ 𝑠, is a tree with exactly two (adjacent) vertices that are not
leaves, with one of the vertices having 𝑟 leaf neighbors and the other 𝑠 leaf neighbors.

The subdivision of edge 𝑢𝑣 ∈ 𝐸 consists of deleting the edge 𝑢𝑣 from 𝐸 , adding
a new vertex 𝑤 to 𝑉 , and adding the new edges 𝑢𝑤 and 𝑤𝑣 to 𝐸 . In this case, we say
that the edge 𝑢𝑣 has been subdivided. In general, for an edge 𝑢𝑣 ∈ 𝐸 to be subdivided
𝑘 ≥ 1 times, we mean that edge 𝑢𝑣 is removed and replaced by a (𝑢, 𝑣)-path of length
𝑘 + 1. The subdivision graph 𝑆(𝐺) is the graph obtained from𝐺 by subdividing every
edge of 𝐺 exactly once.

1.3 Origins
In this section, we present the origins of domination in military tactics and chessboard
problems.

1.3.1 Defensive and Offensive Strategies of the Roman Empire
In the fourth century AD, the Roman Empire dominated large areas of three continents,
Europe, Africa, and Asia Minor. But it had begun to lose its power and it became
increasingly difficult to secure all of its conquered regions. During the reign of
Emperor Constantine the Great, who ruled between 306 and 337 AD, the Roman
Empire controlled Britain, Gaul, Iberia (Spain and Portugal), southern Central Europe
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(including Italy), Asia Minor (including Turkey and Constantinople, a city named
after the Emperor), and North Africa (including Egypt).

Under Emperor Constantine, the Roman army was reorganized to consist of
mobile field units and garrison soldiers, or local militia, capable of countering internal
threats and barbarian invasions. A region was secured by armies being stationed
there, and a region without an army was protected by sending mobile armies from
neighboring regions. But Emperor Constantine decreed that a mobile field army could
not be sent to defend a region if doing so left its original region unsecured.

This defense strategy suggests a type of domination in graphs in which there
are three types of vertices: unsecured (no armies), secured with one army (usually
composed of local militia, which are not mobile armies), and secured with two armies
(one being a highly trained, mobile army). The condition to be met is that every
unsecured vertex must be adjacent to at least one vertex at which two armies are
stationed. In this way, the set of vertices having one or two armies is a dominating set
of the set of vertices having no armies.

This defense strategy inspired the papers of Stewart [691] in 1999 and ReVelle and
Rosing [658] in 2000, and then was formally defined as a type of domination in graphs
for the first time in 2004 by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [183].

1.3.2 Chaturanga
Chaturanga is a war-oriented board game generally considered to have been developed
in India during the sixth century AD. The name is a Sanskrit word meaning “four
arms,” which stood for the four arms of the military, being the chariots, the cavalry,
the elephants, and the infantry. Considered to be the precursor to the modern game of
chess, chaturanga is a chesslike, two-player game played on a board of 8 × 8 squares,
and with pieces very similar to those in chess:
1. Raja (king): moves one square in any direction.
2. Mantri (early form of queen): moves one square diagonally in any direction.
3. Ratha (rook): moves across any number of unoccupied squares either vertically

or horizontally.
4. Gaja (elephant, early form of bishop): moves two squares diagonally but can jump

over the first square.
5. Ashva (horse, knight): moves like the knight in chess, either two squares horizon-

tally and then one square vertically, or two squares vertically and then one square
horizontally, jumping over all intermediate squares.

6. Padáti (foot soldier, pawn): moves only one unoccupied square vertically, but can
capture one square diagonally, as in chess.
A capture in chaturanga consists of a piece of any type moving to a square,

according to the rules for that piece, on which an opponent’s piece is found. The
opponent’s piece is captured and removed from the game, and the piece that was
moved to that square and made the capture remains on that square. In this way,
every piece is said to dominate all squares it can reach in one move. Thus, the set of
squares dominated by the pieces of one of the two players consists of all the squares
occupied by the pieces plus all the squares which can be reached in one move by all
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of the pieces. Although there were other board games that preceded chaturanga, they
are generally called race games in which the objective is to reach some designated
location before your opponent. Chaturanga is one of the first games to consider the
concept of capturing an opponent’s pieces, and hence the concept of domination first
appears.

1.3.3 Eight Queens Problem
A German chess player, named Max Bezzel [75], posed the following problem in the
September 1848 issue of the chess journal Berliner Schachzeitung:

Eight Queens Problem. In how many ways can 8 queens be placed on
the squares of the 8× 8 chessboard so that no two queens can attack each
other, that is, no two queens lie on the same row, or the same column, or
the same diagonal?

A chess piece is said to cover (attack or dominate) any square on a chessboard that it
can reach in a single move. For example, in one move a queen can move any number
of unoccupied squares horizontally, vertically, or diagonally. Thus, a queen covers
all of the squares in the same row, column, or diagonal as the square on which it is
located, as illustrated in Figure 1.1. Figure 1.2 illustrates one placement of 8 pairwise
non-attacking queens.

Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z

5Xq

Figure 1.1 Moves of a queen on an 8 × 8 chessboard

The 8-Queens Problem quickly generalizes to the 𝑛-Queens Problem of placing 𝑛
queens on an 𝑛 × 𝑛 board so that no two queens attack each other.

In graph theory terminology the 𝑛-Queens Problem is easily stated as that of
finding a maximum independent set 𝑆 of 𝑛 vertices in the queens graph Q𝑛. The
queens graph Q𝑛 has a vertex set𝑉 consisting of the 𝑛2 squares of an 𝑛×𝑛 chessboard,
and two vertices are adjacent if and only if the corresponding squares lie on a
common row, a common column, or a common diagonal. The vertex independence
number 𝛼(Q𝑛) of the queens graph Q𝑛, therefore, equals the maximum number of
queens which can be placed on the 𝑛 × 𝑛 chessboard so that no two queens attack
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Figure 1.2 Maximum independent set of 8 queens

each other. It is obvious that 𝛼(Q𝑛) ≤ 𝑛, since any set of more than 𝑛 queens would
have to contain two queens that lie on a common row, column, or diagonal. It remains
to be shown that for any 𝑛, 𝛼(Q𝑛) = 𝑛. In 1910 Ahrens [9] was the first person to
prove that for every positive integer 𝑛 ≥ 4, 𝛼(Q𝑛) = 𝑛, that is, one can always place 𝑛
queens on an 𝑛 × 𝑛 chessboard so that no two queens attack each other.

The 8-Queens Problem, posed by Max Bezzel, was reported to have attracted
the attention of the famous mathematician Gauss, but it was Dr. Franz Nauck [608,
609] who in 1850 pointed out, apparently without proof, that there were 92 different
ways to place 8 non-attacking queens on the standard chessboard. These solutions
fell into 12 classes, 11 of which yield 8 solutions by rotations and reflections, and
the 12th solution generates another 4 solutions. In 1874 Pauls [630] was the first to
prove that 92 is indeed the total number of solutions to the 8-Queens Problem. In
1892, although no proofs were given, W.W. Rouse Ball [51] correctly reported that
for boards of sizes 4, 5, 6, 7, 8, 9, and 10, there are altogether 2, 10, 4, 40, 92, 342,
and 724 solutions, respectively, to the 𝑛-Queens Problem.

1.3.4 Five Queens Problem

Five Queens Problem. Show that 5 queens can be placed on the squares
of the 8× 8 chessboard so that every square is either occupied by a queen
or is attacked by a queen. In how many ways can this be done?

It was known from the earliest times that five queens were sufficient to cover or
dominate every square of the 8 × 8 chessboard; see for example Figure 1.3, in which
the five queens mutually cover one another, and Figure 1.4, in which the five queens
form an independent set.

But this was quickly generalized to the following.

Queens Domination Problem. What is the minimum number of queens
which can be placed on an 𝑛× 𝑛 chessboard so that every square is either
occupied by a queen or is attacked by a queen?
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Figure 1.3 Five queens covering an 8 × 8 chessboard
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Figure 1.4 Five independent queens covering an 8 × 8 chessboard

According to Gibbons and Webb [335], this problem was first stated by Abbe Durand
in 1861, but was also given in 1862 by C.F. de Jaenisch [218], a Finnish and Russian
chess player (1813–1872) and theorist, who in the 1840s was among the top chess
players in the world.

In graph theory terminology the Queens Domination Problem is to determine the
queens domination number 𝛾(Q𝑛), that is, the minimum number of queens necessary
to cover, or dominate, every square of an 𝑛 × 𝑛 chessboard. Although it proved to be
relatively easy to determine the queens independence number 𝛼(Q𝑛) = 𝑛, after all
these years since 1861, the determination of the value of 𝛾(Q𝑛) for all 𝑛 ≥ 1, remains
an unsolved, and quite difficult, problem.

In 1862 De Jaenisch [218] determined the queens domination number 𝛾(Q𝑛),
for 𝑛 ∈ [8], to be 1, 1, 1, 2, 3, 3, 4, 5. In particular, he showed that 𝛾(Q8) = 5; see
Figure 1.4. The values 𝛾(Q9) = 𝛾(Q10) = 𝛾(Q11) = 5 were correctly reported by
Ahrens [9] in 1910; see for example Figure 1.5. These values have since been verified
by computer programs.
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Figure 1.5 Five queens covering an 11 × 11 chessboard

1.3.5 Queens Independent Domination Problem

The independent domination number 𝑖(Q𝑛) of the queens graph Q𝑛 was identified as
an interesting problem by De Jaenisch [218], who in 1862 correctly gave the first
eight values of 𝑖(Q𝑛), which are 1, 1, 1, 3, 3, 4, 4, 5; see Figure 1.4 for 𝑛 = 8. These
have been verified by computer. It is interesting to note that 𝛾(Q5) = 3 < 𝑖(Q5) = 4
and 𝛾(Q6) = 3 < 𝑖(Q6) = 4, while 𝛾(Q7) = 4 = 𝑖(Q7) and 𝛾(Q8) = 5 = 𝑖(Q8).

Determining the domination numbers and independent domination numbers
of the queens graph seem to be extremely difficult problems. As noted in [446]
and [626], only relatively few exact values of these two domination numbers of the
queens graph are known. The value of 𝛾(Q𝑛) is either known, or known to be one
of two consecutive values, for all 𝑛 ≤ 120 (see [626]). The known values of 𝛾(Q𝑛)
and 𝑖(Q𝑛), for 4 ≤ 𝑛 ≤ 20, are summarized in Table 1.1; the values 𝛾(Q20) = 11
and 𝑖(Q19) = 𝑖(Q20) = 11 were discovered in the 2017 PhD thesis [77] of Bird at
the University of Victoria; Bird [77] also found five other new values: 𝛾(Q22) = 12,
𝛾(Q24) = 13, 𝑖(Q22) = 12, 𝑖(Q23) = 13, and 𝑖(Q24) = 13. An independent covering
of five queens for an 11 × 11 chessboard is illustrated in Figure 1.5.

𝑛 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝛾(Q𝑛) 2 3 3 4 5 5 5 5 6 7 8 9 9 9 9 10 11
𝑖(Q𝑛) 3 3 4 4 5 5 5 5 7 7 8 9 9 9 10 11 11

Table 1.1 First 20 values of 𝛾(Q𝑛) and 𝑖(Q𝑛)
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1.3.6 Queens Total Domination Problem
Still another interesting variant of the above three types of problems was formally
introduced in 1892 by W.W. Rouse Ball [51].

Queens Total Domination Problem. What is the minimum number of
queens which can be placed on an 𝑛 × 𝑛 chessboard so that every square
is attacked by a queen, including the squares occupied by a queen?

This is, of course, the total domination number 𝛾t (Q𝑛). Notice for example that
Figure 1.3 shows five queens dominating the standard 8 × 8 chessboard, all of which
lie on a common diagonal, and thus this set of five queens induces a connected
subgraph, and thus this set is both a total dominating set and a connected dominating
set. Hence, for 𝑛 = 8, 𝛾(Q8) = 𝛾t (Q8) = 5.

At this point we have seen examples of dominating sets of queens of several
different types, for example, dominating sets, maximum and minimum independent
dominating sets, and total dominating sets. We next discuss these types of domination
for different chess pieces.

1.3.7 Generalizations to Other Chess Pieces

Figure 1.6 W.W. Rouse Ball

In 1939 W.W. Rouse Ball [52] listed these three basic types of problems that were
being studied on chessboards at the time. A photograph of Rouse Ball is given in
Figure 1.6.

• Covering: Determine the minimum number of chess pieces of a given type that
are required to cover every square of an 𝑛 × 𝑛 chessboard (domination number).

• Independent Covering: Determine the minimum number of mutually non-attacking
chess pieces of a given type that are required to cover every square of an 𝑛 × 𝑛
chessboard (independent domination number).


