

About the Authors

Manfred Baumgartner has more than 30 years of experience in software testing and quality
assurance. Since 2001, he has established and expanded the QA consulting and training services at
Nagarro, a leading software testing services company. He is a board member of the Association for
Software Quality and Further Education (ASQF) and the Association for Software Quality Manage-
ment Austria (STEV). He is also a member of the Austrian Testing Board (ATB). He shares his exten-
sive experience at numerous conferences and in his articles and books on software testing.

Thomas Steirer is a test automation architect, test manager and trainer, and leads Nagarro’s global
test automation unit. He qualified as an ISTQB® Certified Tester - Full Advanced Level in 2010. He is
a lecturer for test automation in the master’s program for software engineering at the UAS Techni-
kum in Vienna, and does research into the use of artificial intelligence for increasing efficiency in
test automation.

Marc-Florian Wendland is a research associate at the Fraunhofer FOKUS institute in Berlin. He has
more than 10 years’ experience in national and international, cross-domain research and industrial
projects that involve the design and execution of test automation. He is a member of the German
Testing Board (GTB) and a trainer for various ISTQB® programs.

Stefan Gwihs is a passionate software developer and tester, and is a test automation architect at
Nagarro, where he currently focuses on test automation for agile software development and
DevOps.

Julian Hartner is based in New York City. He is an ISTQB® certified quality engineer and a passion-
ate software developer and test automation engineer. He currently focuses on streamlining man-
ual and automated testing for CRM applications.

Richard Seidl has seen and tested a lot of software in the course of his career: good and bad, big
and small, old and new, wine and water. His guiding principle is: “Quality is an attitude”. If you want
to create excellent software, you have to think holistically and include people, methods, tools, and
mindset in the development process. As a consultant and coach, he supports companies in their
efforts to turn agility and quality into reality, and to make them part of corporate DNA.

https://www.conformiq.com/
https://www.conformiq.com/
https://www.conformiq.com/
https://www.datadoghq.com/
https://dl.acm.org/doi/proceedings/10.1145/3340433
https://dl.acm.org/doi/proceedings/10.1145/3340433
https://dl.acm.org/doi/proceedings/10.1145/3340433

Manfred Baumgartner · Thomas Steirer · Marc-Florian Wendland ·
Stefan Gwihs · Julian Hartner · Richard Seidl

Test Automation
Fundamentals

A Study Guide for the Certified Test Automation Engineer Exam

 Advanced Level Specialist

 ISTQB® Compliant

Manfred Baumgartner · office@manfred-baumgartner.at

Thomas Steirer · contact@thomas-steirer.com

Marc-Florian Wendland · marc-florian.wendland@fokus.fraunhofer.de

Stefan Gwihs · stefan.gwihs@nagarro.com

Julian Hartner · julhartner@gmail.com

Richard Seidl · office@richard-seidl.com

Editor: Christa Preisendanz
Editorial Assistant: Julia Griebel
Copyediting: Jeremy Cloot
Layout and Type: Frank Heidt, Veronika Schnabel
Production Editor: Stefanie Weidner
Cover Design: Helmut Kraus, www.exclam.de
Printing and Binding: mediaprint solutions GmbH, 33100 Paderborn, and Lightning Source®, Ingram Content Group.

Bibliographic information published by the Deutsche Nationalbibliothek (DNB)
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data can be found on the Internet at http://dnb.dnb.de.

ISBN dpunkt.verlag:
Print 978-3-86490-931-3
PDF 978-3-96910-870-3
ePUB 978-3-96910-871-0
mobi 978-3-96910-872-7

ISBN Rocky Nook:
Print 978-1-68198-981-5
PDF 978-1-68198-982-2
ePUB 978-1-68198-983-9
mobi 978-1-68198-984-6

1. edition 2022 Copyright © 2022 dpunkt.verlag GmbH
Wieblinger Weg 17
69123 Heidelberg

Title of the German Original: Basiswissen Testautomatisierung
Aus- und Weiterbildung zum ISTQB® Advanced Level Specialist – Certified Test Automation Engineer
3., überarbeitete und aktualisierte Auflage 2021
ISBN 978-3-86490-675-6

Distributed in the UK and Europe by Publishers Group UK and dpunkt.verlag GmbH.
Distributed in the U.S. and all other territories by Ingram Publisher Services and Rocky Nook, Inc.

Many of the designations in this book used by manufacturers and sellers to distinguish their products are claimed as trademarks of their
respective companies. Where those designations appear in this book, and dpunkt.verlag was aware of a trademark claim, the designa-
tions have been printed in caps or initial caps. They are used in editorial fashion only and for the benefit of such companies, they are not
intended to convey endorsement or other affiliation with this book.
No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without written permission of the copyright owner. While
reasonable care has been exercised in the preparation of this book, the publisher and author assume no responsibility for errors or omis-
sions, or for damages resulting from the use of the information contained herein.
This book is printed on acid-free paper.
Printed in Germany and in the United States.

5 4 3 2 1 0

http://www.exclam.de

v

Preface
“Automatically better through test automation!?”

One hundred percent test coverage, a four-hundred percent increase in effi-
ciency, significantly reduced risk, faster time to market, and robust quality—
these were, and still are, the promises made by test automation; or rather by
those who make their living with test automation tools and consulting ser-
vices. Since the publication of our first book on the subject in 2011, test
automation has been on the to-do list of almost all companies that produce
or implement software. However, the promised and expected goals are
rarely achieved. In fact, there is a significant discrepancy between the poten-
tial achievements presented in the tool vendors” glossy brochures and the
uncertainty in many companies regarding the successful and sustainable use
of test automation.

This book provides a broad-based and practical introduction that serves
as a comprehensive guide to test automation for a variety of roles in the
field. In the fast-moving IT market, test automation has developed rapidly in
recent years, both technically and as a discipline in its own right. Scalable
agility, continuous deployment, and DevOps make test automation a mis-
sion-critical component of virtually all software development.

These dynamics also affect all test automation tools, whether commer-
cial or open source. Therefore, this book doesn’t go into detail on specific
tools, as any functional evaluation would surely be superseded by the time it
goes to print. Additionally, there are so many great open source and com-
mercial sector tools available that picking favorites would be unfair to the
other manufacturers and communities. Instead, we list tools suitable to the
test automation architecture and solutions discussed in each chapter. Tool
comparisons and market research are available quickly and easily on the
internet, although you have to remember that these are often not updated
regularly.

https://www.atlassian.com/de/software/jira
https://www.atlassian.com/de/software/jira
https://kubernetes.io
https://kubernetes.io
https://www.seppmed.de/de/portfolio/mbtsuite/
https://www.seppmed.de/de/portfolio/mbtsuite/
https://www.seppmed.de/de/portfolio/mbtsuite/
https://nlog-project.org/
https://nlog-project.org/
http://www.qmethods.com/img/res/hp/HP-QuickTest.jpg
http://www.qmethods.com/img/res/hp/HP-QuickTest.jpg
http://www.qmethods.com/img/res/hp/HP-QuickTest.jpg

 Prefacevi
The importance of test automation has also been confirmed by the inter-
national testing community. In 2016, the first English-language version of
the ISTQB® Advanced Level Syllabus Test Automation Engineer was pub-
lished—a milestone for the profession of test automation engineers. In late
2019, the German version of the syllabus was released [ISTQB: CT-TAE],
which was an important step for the German-speaking (“DACH”) coun-
tries. This makes test automation more than ever an indispensible core com-
ponent of software testing in general and provides it with its own certifica-
tion and educational syllabus.

Previous editions of this book were always ahead of the published sylla-
bus, but we felt the time had come to align ourselves with this established
international standard, which is designed to support knowledge sharing and
a common test automation language. Furthermore, the book introduces you
to the contents of the syllabus and helps you to prepare for the certification
exam. The syllabus is highly detailed and is a reference book on its own.
However, this book adds significant value by providing a practical context,
an easy-to-read format, and real-world examples that make it much easier
to gain a firm grasp of the subject matter than you can by studying the sylla-
bus alone.

In short, this book not only prepares you for the certification exam, it
also teaches you practical, hands-on test automation.

The contents of the curriculum (currently the 2016 version) are pre-
sented in a different order and with different emphases to the syllabus itself.
We also supplement the syllabus content with other important topics that
are clearly marked as excursus.

Please note that the certification exam is always based on the current version of
the official syllabus.

In addition to reading this book, we recommend that you attend an appro-
priate training course and use the current version of the syllabus [ISTQB:
CT-TAE] to prepare for the exam.

Covering the curriculum is only one of several major points that we
address in this book and, aside from this, our three main goals are as fol-
lows:

Firstly, we want to help you avoid disappointment due to overblown
expectations. Test automation is not a question of using specific tools and is
not a challenge to implement the marketing buzzwords used by software
manufacturers, but rather a resource that enables you to better cope with
the constantly growing demands made by software testing.

Secondly, we give you guidance on how to make best use of this
resource. We focus on the long-term view, future return on investment, and
the real-world business value it provides. These aspects cannot be measured

https://engineering.atspotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://engineering.atspotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://engineering.atspotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.tricentis.com/products/automate-continuous-testing-tosca/
https://www.tricentis.com/products/automate-continuous-testing-tosca/
https://www.tricentis.com/products/automate-continuous-testing-tosca/

vii Preface
using metrics such as code coverage or the number of test scripts, but rather
by the total cost of ownership of application development, evolution, and
benefits, as well as user feedback in the marketplace.

Thirdly, we have incorporated key aspects of the test automation pro-
cess, such as the role of test automation in the context of artificial intelli-
gence (AI) systems and in the DevOps environment.

Does test automation automatically make things better? Certainly not!
A manufacturing machine that is set up incorrectly will produce only junk;
if it is operated badly, it will produce random, useless results; if it is not
properly maintained, it will break down or perhaps even become unusable.
Appropriately trained employees, sustainable concepts, a responsible
approach, and the awareness that test automation is an essential production
factor are the prerequisites for realizing the potential and the real-world
benefits of this technology. In most cases, test automation is indispensable
for delivering robust quality in agile project environments, making it critical
to the success of a project. It is also essential for keeping pace with the speed
of modern continuous delivery processes while ensuring the long-term eco-
nomic viability of software development projects.

We wish you every possible success implementing test automation at
your company.

Manfred Baumgartner
Thomas Steirer

Marc-Florian Wendland
Stefan Gwihs

Julian Hartner
Richard Seidl

May 2022

 Acknowledgementsviii Acknowledgements
Acknowledgements

For their hands-on support we would like to thank Michael Hombauer,
Sonja Baumgartner, Dominik Schildorfer, Anita Bogner, Himshikha Gupta,
Christian Mastnak, Roman Rohrer, Martin Schweinberger, Stefan Denner,
Stephan Posch, Yasser Aranian, Georg Russe, Vincent Bayer, Andreas
Lenich, Cayetano Lopez-Leiva, Bernhard König, Jürgen Pointinger, and
everyone at Nagarro.

This book is dedicated to Himshikha Gupta, who worked tirelessly to create
the figures and diagrams it contains, and who passed away much too early,
shortly before it was finished in early 2022. She will be sorely missed.

ix
Foreword by Armin Metzger
The second wave is here! I believe we are in the middle of the second wave
of test automation. The first big wave clearly took place in the early 2000s,
and the projects involved were initially very successful in terms of improving
the effectiveness and the efficiency of test processes in some specific areas.
However, in line with the Gartner cycle, the “trough of disillusionment” was
quickly reached and, in my view, most projects didn’t actually reach the
“plateau of productivity”.

What I observed at the time were projects that expended enormous
effort over several years to work their way to a high degree of test automa-
tion. Then came technology changes such as the switch to .NET platforms,
or process changes such as the switch to agile development methodology. A
lot of the test automation frameworks didn’t survive those transitions. Back
then I liked to give talks with provocative titles such as Test Automation
Always Fails.

We saw two core problems: firstly, companies failed to scale isolated
successes to the entire project or organization, and secondly, test automation
platforms were not sufficiently flexible to absorb disruptive changes in the
technology base.

It is therefore no surprise that, over time, test automation began to lose
acceptance. Management aspects also play a supporting role here. In the
long run, the great economic expectations of a one-time investment intended
to significantly reduce regression efforts were often simply not met.

Since the middle of the second decade of the 21st Century, we see a
trending new wave of test automation in large projects. Will test automation
once again fall short of its expectations? I don’t think so. Both the overall
test automation environment and the expectations test automation raises
have changed. Test automation has now re-established itself as an indispen-
sable factor for the success of projects in current technological scenarios.
What changed?

 Foreword by Armin Metzgerx
With the introduction of agile processes, highly automated, tool-sup-
ported development has evolved significantly and has now become standard
practice. Continuous integration concepts are constantly being refined into
DevOps processes to create a seamless platform for the integration of auto-
mated project steps—all the way from the initial idea to final production
and operation. The end-to-end automation of processes naturally forms an
excellent basis for integrating test automation into the overall development
process. Additionally, agile processes have helped process scaling to reach a
new, higher level of importance. This development is an essential factor for
the successful introduction and long-term establishment of test automation
solutions.

However, a key factor in the importance (and necessity) of test automa-
tion is the current technological platform on which we operate. Disruptive
technologies such as IoT (Internet of Things) and AI (artificial intelligence)
are rapidly pushing their way out of their decades-old niche existence and
into our products. With this comes a significant shift of priorities for the
quality attributes we have to test. While 20 years ago, ninety per cent of all
tests were functional tests, the importance of non-functional tests for usabil-
ity, performance, IT security, and so on is slowly but surely gaining ground.
The number of test cases required to assess product quality is therefore
increasing rapidly, and only automated tests can effectively safeguard qual-
ity characteristics such as performance.

The development and maintenance of products takes place in increas-
ingly short cycles. Due to the increasing variance in hardware and software
configurations, entire and partial systems need to be tested in an increasing
number of variants. Non-automated regression testing thus becomes an
increasing burden, and it becomes more and more difficult to achieve the
required test coverage while retaining an adequate level of effort.

And—fortunately—we have also learned a lot about methodology: test
architectures are one of the most important factors (if not the most impor-
tant factor) influencing quality in the maintainability of automated tests. In
fact, test architectures are now so well established that the dedicated role of
test architect is now being introduced in many organizations. This is just one
example of such changes.

But beware: using the right approach and having knowledge of the pit-
falls and best practices involved in introducing and maintaining test auto-
mation are key to long-term success. Introducing appropriate expertise into
projects and organizations is not always easy. This is where the Certified
Tester certification scheme—long established as an industry standard with a
common glossary—can help. The Test Automation Engineer training and
certification covered in this book are intended for advanced testers and
translate the focus and factors that influence the long-term success of test

xi Foreword by Armin Metzger
automation into a structured canon of collected expertise—for example, on
the subject of test automation architectures. This book clearly shows that
these skills are constantly evolving.

We are better equipped than ever and I believe we have taken a signifi-
cant step forward in the field of test automation. I wish you every success
and plenty of creative fun using test automation as a key factor for your pro-
fessional success!

Dr. Armin Metzger
Managing Director of the German Testing Board, 2022

xiii
Overview
1 An Introduction to Test Automation and Its Goals 1

2 Preparing for Test Automation 37

3 Generic Test Automation Architecture 57

4 Deployment Risks and Contingencies 117

5 Reporting and Metrics 165

6 Transitioning Manual Testing to an Automated Environment 177

7 Verifying the Test Automation Solution 211

8 Continuous Improvement 225

9 Excursus: Looking Ahead 235

APPENDICES

A Software Quality Characteristics 243

B Load and Performance Testing 259

C Criteria Catalog for Test Tool Selection 269

D Glossary 279

E Abbreviations 293

F References 297

Index 303

xv
Contents
1 An Introduction to Test Automation and Its Goals 1

1.1 Introduction . 1

1.1.1 Standards and Norms . 2
1.1.2 The Use of Machines . 5
1.1.3 Quantities and Volumes . 6

1.2 What is Test Automation? . 7

1.3 Test Automation Goals . 9

1.4 Success Factors in Test Automation . 12

1.4.1 Test Automation Strategy . 13
1.4.2 Test Automation Architecture (TAA) 15
1.4.3 Testability of the SUT . 16
1.4.4 Test Automation Framework . 17

2 Preparing for Test Automation 37
2.1 SUT Factors that influence Test Automation 37

2.2 Tool Evaluation and Selection . 40

2.2.1 Responsibilities . 40
2.2.2 Typical Challenges . 41

2.3 Testability and Automatability . 55

1.5 Excursus: Test Levels and Project Types . 20

1.5.1 Test Automation on Different Test Levels 21
1.5.2 Test Automation Approaches for

Different Types of Projects . 25

2.2.3 Excursus: Evaluating Automation Tools 43
2.2.4 Excursus: Evaluation made easy 49

 Contentsxvi
3 Generic Test Automation Architecture 57

3.1 Introducing Generic Test Automation Architecture (gTAA) 57

3.1.1 Why is a Sustainable Test Automation
Architecture important? . 58

3.1.2 Developing Test Automation Solutions 58
3.1.3 The Layers in the gTAA . 62
3.1.4 Project Managing a TAS . 71
3.1.5 Configuration Management in a TAS 73
3.1.6 Support for Test Management and other Target Groups . . . 74

3.2 Designing a TAA . 74

3.2.1 Fundamental Questions . 75
3.2.2 Which Approach to Test Case Automation

Should Be Supported? . 83
3.2.3 Technical Considerations for the SUT 106
3.2.4 Considerations for Development and QA Processes 108

3.3 TAS Development . 109

3.3.1 Compatibility between the TAS and the SUT 110
3.3.2 Synchronization between the TAS and the SUT 111
3.3.3 Building Reusability into the TAS 112
3.3.4 Support for Multiple Target Systems 113

4 Deployment Risks and Contingencies 117

4.1 Selecting a Test Automation Approach and Planning
Deployment/Rollout . 117

4.1.1 Pilot Project . 118
4.1.2 Deployment . 121

4.2 Risk Assessment and Mitigation Strategies 125

4.2.1 Specific Risks During the Initial Rollout 126
4.2.2 Specific Risks during Maintenance Deployment 128

4.3 Test Automation Maintenance . 130

4.3.1 Types of Maintenance Activities and What Triggers Them 130
4.3.2 Considerations when Documenting Automated Testware . 137
4.3.3 The Scope of Maintenance Activities 138
4.3.4 Maintenance of Third-Party Components 140
4.3.5 Maintaining Training Materials . 141
4.3.6 Improving maintainability . 142

3.3.5 Excursus: Implementation Using Different
Approaches and Methods . 114

 Contents xvii
5 Reporting and Metrics 165
5.1 Metrics and Validity . 165

5.2 Metrics Examples . 166

5.3 Precise Implementation and Feasibility Within a TAS 171

5.3.1 TAS and SUT as Sources for Logs 171
5.3.2 Centralized Log Management and Evaluation 173
5.3.3 Implementing Logging in a TAS . 173

5.4 Test Automation Reporting . 173

5.4.1 Quality Criteria for Reports . 173

6 Transitioning Manual Testing to an Automated Environment 177

6.1 Criteria for Automation . 177

6.1.1 Suitability Criteria for the Transition to
Automated Testing . 181

6.1.2 Preparing for the Transition to Automated Testing 191
6.2 Steps Required to Automate Regression Testing 199

6.3 Factors to Consider when Automating Testing for
New or Changed Functionality . 207

6.4 Factors to Consider when Automating Confirmation Testing 209

7 Verifying the Test Automation Solution 211

7.1 Why Quality Assurance Is Important for a TAS 211

7.2 Verifying Automated Test Environment Components 213

7.3 Verifying the Automated Test Suite . 220

8 Continuous Improvement 225

8.1 Ways to Improve Test Automation . 225

8.2 Planning the Implementation of Test Automation Improvement . . . 230

4.4 Excursus: Application Areas According to System Types 143

4.4.1 Desktop Applications . 144
4.4.2 Client-Server Systems . 144
4.4.3 Web Applications . 146
4.4.4 Mobile Applications . 147
4.4.5 Web Services . 153
4.4.6 Data Warehouses . 155
4.4.7 Dynamic GUIs: Form Solutions 157
4.4.8 Cloud-Based Systems . 159
4.4.9 Artificial Intelligence and Machine Learning 161

 Contentsxviii
APPENDICES

A Software Quality Characteristics 243

A.1 Functional Suitability . 244

A.2 Performance Efficiency . 247

A.3 Compatibility . 249

A.4 Usability . 251

A.5 Reliability . 252

A.6 Security . 255

A.7 Maintainability . 256

A.8 Portability . 257

B Load and Performance Testing 259

B.1 Types of Load and Performance Tests . 259

B.2 Load and Performance Testing Activities . 260

B.3 Defining Performance Goals . 261

B.4 Identifying Transactions and/or Scenarios . 262

B.5 Creating Test Data . 262

B.6 Creating Test Scenarios . 263

B.7 Executing Load And Performance Tests . 264

B.8 Monitoring . 265

B.9 Typical Components of Performance/Load Testing Tools 266

B.10 Checklists . 267

9 Excursus: Looking Ahead 235

9.1 Challenges Facing Test Automation . 236

9.1.1 Omnipresent Connectivity . 236
9.1.2 Test Automation in IT Security 236
9.1.3 Test Automation in Autonomous Systems 237

9.2 Trends and Potential Developments . 237

9.2.1 Agile Software Development Is Inconceivable without
Test Automation . 238

9.2.2 New Outsourcing Scenarios for Automation 238
9.2.3 Automating Automation . 239
9.2.4 Training and Standardization . 239

9.3 Innovation and Refinement . 240

 Contents xix
C Criteria Catalog for Test Tool Selection 269

D Glossary 279

E Abbreviations 293

F References 297

F.1 Literature . 297

F.2 Norms and Standards . 299

F.3 URLs . 299

Index 303

1

1 An Introduction to Test Automation
and Its Goals
Software development is rapidly becoming an independent area of
industrial production. The increasing digitalization of business pro-
cesses and the increased proliferation of standardized products and
services are key drivers for the use of increasingly efficient and
effective methods of software testing, such as test automation. The
rapid expansion of mobile applications and the constantly changing
variety of end-user devices also have a lasting impact.

1.1 Introduction

A key characteristic of the industrialization of society that began at the end
of the 18th Century has been the mechanization of energy- and time-con-
suming manual activities in virtually all production processes. What began
more than 200 years ago with the introduction of mechanical looms and
steam engines in textile mills in England has become the goal and mantra of
all today’s manufacturing industries, namely: the continuous increase and
optimization of productivity. The aim is always to achieve the desired quan-
tity and quality using the fewest possible resources in the shortest possible
time. These resources include human labor, the use of machines and other
equipment, and energy.

Software development

and software testing on

the way to industrial mass

production

In the pursuit of continuous improvement and survival in the face of
global competition, every industrial company has to constantly optimize its
manufacturing processes. The best example of this is the automotive indus-
try, which has repeatedly come up with new ideas and approaches in the
areas of process control, production design and measurement, and quality
management. The auto industry continues to innovate, influencing other
branches of industry too. A look at a car manufacturer’s factories and pro-
duction floor reveals an impressive level of precision in the interaction
between man and machine, as well as smooth, highly automated manufac-
turing processes. A similar pattern can now be seen in many other produc-
tion processes.

1 An Introduction to Test Automation and Its Goals2
The software development industry is, however, something of a negative
exception. Despite many improvements in recent years, it is still a long way
from the quality of manufacturing processes found in other industries. This
is surprising and perhaps even alarming, as software is the technology that
has probably had the greatest impact on social, economic, and technical
change in recent decades. This may be because the software industry is still
relatively young and hasn’t yet reached the maturity of other branches of
industry. Perhaps it is because of the intangible nature of software systems,
and the technological diversity that makes it so difficult to define and consis-
tently implement standards. Or maybe it is because many still see software
development in the context of the liberal, creative arts rather than as an
engineering discipline.

Software development has also had to establish itself in the realm of
international industrial standards. For example, Revision 4 of the Interna-
tional Standard Industrial Classification of All Economic Activities (ISIC),
published in August 2008, includes the new section J Information and Com-
munication, whereas the previous version hid software development services
away at the bottom of the section called Real estate, renting and business
activities ([ISIC 08], [NACE 08]).

Software development as

custom manufacturing

Although the “young industry” argument is losing strength as time goes
on, software development is still often seen as an artistic rather than an engi-
neering activity, and is therefore valued differently to the production of
thousands of identical door fittings. However, even if software development
is not a “real” mass production process, today it can surely be viewed as
custom industrial manufacturing.

But what does “industrial” mean in this context? An industrial process
is characterized by several features: by the broad application of standards
and norms, the intensive use of mechanization, and the fact that it usually
involves large quantities and volumes. Viewed using these same attributes,
the transformation of software development from an art to a professional
discipline is self-evident.

1.1.1 Standards and Norms

Since the inception of software development there have been many and var-
ied attempts to find the ideal development process. Many of these
approaches were expedient and represented the state of the art at the time.
Rapid technical development, the exponential increase in technical and
application-related complexity and constantly growing economic challenges
require continuous adaptation of the procedures, languages and process
models used in software development—waterfall, V-model, iterative and
agile software development; ISO 9001:2008, ISO 15504 (SPICE), CMMI,

31.1 Introduction
ITIL; unstructured, structured, object-oriented programming, ISO/IEC/
IEEE 29119 software testing—and that’s just the tip of the iceberg. Software
testing has also undergone major changes, especially in recent years. Since
the establishment of the International Software Testing Qualifications
Board (ISTQB) in November 2002 and the standardized training it offers
for various Certified Tester skill levels, the profession and the role of soft-
ware testers have evolved and are now internationally established [URL:
ISTQB]. The ISTQB® training program is continuously expanded and
updated and, as of 2021, comprises the following portfolio:

Fig. 1–1
The ISTQB® training

product portfolio, as of

2022

AGILE

EXPERT LEVEL

TEST MANAGEMENT

AGILE TECHNICAL TESTER

TEST MANAGER

AI TESTING

SECURITY TESTER

TEST AUTOMATION
ENGINEER

MODEL-BASED TESTER

USABILITY TESTING

AUTOMOTIVE SOFTWARE
TESTER

GAMBLING INDUSTRY
TESTER

MOBILE APPLICATION
TESTING

PERFORMANCE TESTING

ACCEPTANCE TESTING

TEST ANALYST

TECHNICAL TEST ANALYST

CERTIFIED TESTER

AGILE TESTER

AGILE TEST LEADERSHIP
AT SCALE

IMPROVING THE
TEST PROCESS

ADVANCED LEVELADVANCED LEVEL

FOUNDATION LEVEL

FOUNDATION LEVEL

CORE SPECIALIST

GAME TESTING
BETA

1 An Introduction to Test Automation and Its Goals4
Nevertheless, software testing is still in its infancy compared to other engi-
neering disciplines with their hundreds, or even thousands, of years of tradi-
tion and development. This relative lack of maturity applies to the subject
matter and its pervasiveness in teaching and everyday practice.

One of the main reasons many software projects are still doomed to
large-scale failure despite the experience enshrined in its standards is
because the best practices involved in software development are largely non-
binding. Anyone ordering software today cannot count on a product made
using a verifiable manufacturing standard.

Not only do companies generally decide individually whether to apply
certain product and development standards, the perpetuation of the non-
binding nature of standards is often standard practice at many companies
too. After all, every project is different. The “Not Invented Here” syndrome
remains a constant companion in software development projects [Katz &
Allen 1982].

Norms and standards are

often missing in test

automation

Additionally, in the world of test automation, technical concepts are
rarely subject to generalized standards. It is the manufacturers of commer-
cial tools or open source communities who determine the current state of the
art. However, these parties are less concerned with creating a generally
applicable standard or implementing collective ideas than they are with gen-
erating a competitive advantage in the marketplace. After all, standards
make tools fundamentally interchangeable—and which company likes to
have its market position affected by the creation of standards? One excep-
tion to this rule is the European Telecommunication Standards Institute
(ETSI) [URL: ETSI] testing and test control notation (TTCN-3). In practice,
however, the use of this standard is essentially limited to highly specific
domains, such as the telecommunications and automotive sectors.

For a company implementing test automation, this usually means com-
mitting to a single tool manufacturer. Even in the foreseeable future, it won’t
be possible to simply transfer a comprehensive, automated test suite from
one tool to another, as both the technological concepts and the automation
approaches may differ significantly. This also applies to investment in staff
training, which also has a strongly tool-related component.

Nevertheless, there are some generally accepted principles in the design,
organization, and execution of automated software testing. These factors
help to reduce dependency on specific tools and optimize productivity
during automation.

The ISTQB® Certified Tester Advanced Level Test Automation Engineer
course and this book, which includes a wealth of hands-on experience,
introduce these fundamental aspects and principles, and provide guidance
and recommendations on how to implement a test automation project.

51.1 Introduction
1.1.2 The Use of Machines

Another essential aspect of industrial manufacturing is the use of machines
to reduce and replace manual activities. In software development, software
itself is such a machine—for example, a development environment that sim-
plifies or enables the creation and management of program code and other
software components. However, these “machines” are usually just editing
and management systems with certain additional control mechanisms, such
as those performed by a compiler. The programs themselves still need to be
created by human hands and minds. Programming mechanization is the goal
of the model-based approaches, where the tedious work of coding is per-
formed by code generators. The starting point for code generation is a
model of the software system in development written, for example, in UML
notation. In some areas this technology is already used extensively (for
example, in the generation of data access routines) or where specifications
are available in formal languages (for example, in the development of
embedded systems). On a broad scale, however, software development is
still pure craftsmanship.

Mechanization in Software Testing

Use of tools for test case

generation and test

execution

One task of the software tester is the identification of test conditions and the
design of corresponding test cases. Analogous to model-based development
approaches, model-based testing (MBT) aims to automatically derive and
generate test cases from existing model descriptions of the system under test
(SUT). Sample starting points can be object models, use case descriptions or
flow graphs written in various notations. By applying a set of semantic rules,
domain-oriented test cases are derived based on written specifications. Cor-
responding parsers also generate abstract test cases from the source code
itself, which are then refined into concrete test cases. A variety of suitable
test management tools are available for managing these test cases, and such
tools can be integrated into different development environments. Like the
generation of code from models, the generation of test cases from test
models is not yet common practice. One reason for this is that the outcome
(i.e., the generated test case) depends to a high degree on the model’s quality
and the suitability of its description details. In most cases, these factors are
not a given.

Another task performed by software testers is the execution and report-
ing of test cases. At this point, a distinction must be made between tests that
are performed on a technical interface level, on system components, and on
modules or methods; or functional user-oriented tests that are rather per-
formed via the user interface. For the former, technical tools such as test
frameworks, test drivers, unit test frameworks and utility programs are

1 An Introduction to Test Automation and Its Goals6
already in widespread use. These tests are mostly performed by “techni-
cians” who can provide their own “mechanical tools”. Functional testing,
on the other hand, is largely performed manually by employees from the
corresponding business units or by dedicated test analysts. In this area, tools
are also available that support and simplify manual test execution, although
their usage involves corresponding costs and learning effort. This is one of
the reasons why, in the past, the use of test automation tools has not been
generally accepted. However, in recent years, further development of these
tools has led to a significant improvement in their cost-benefit ratio. The
simplification of automated test case creation and maintainability due to the
increasing separation of business logic and technical implementation has led
to automation providing an initial payoff when complex manual tests are
automated for the first time, rather than only when huge numbers of test
cases need to be executed or the nth regression test needs to be repeated.

1.1.3 Quantities and Volumes

While programming involves the one-time development of a limited number
of programs or objects and methods that, at best, are then adapted or cor-
rected, testing involves a theoretically unlimited number of test cases. In
real-world situations, the number of test cases usually runs into hundreds or
thousands. A single input form or processing algorithm that has been devel-
oped once must be tested countless times using different input and dialog
variations or, for a data-driven test, by entering hundreds of contracts using
different tariffs. However, these tests aren’t created and executed just once.
With each change to the system, regression tests have to be performed and
adjusted to prove the system’s continuing functionality. To detect the poten-
tial side effects of changes, each test run should provide the maximum pos-
sible test coverage. However, experience has shown that this is not usually
feasible due to cost and time constraints.

The required scope of

testing can only be

effectively handled with

the help of mechanization

This requirement for the management of large volumes and quantities
screams out for the use of industrial mechanization—i.e., test automation
solutions. And, if the situation doesn’t scream, the testers do! Unlike
machines, testers show human reactions such as frustration, lack of concen-
tration, or impatience when performing the same test case for the tenth time.
In such situations, individual prioritization may lead to the wrong, mission-
critical test case being dropped.

In view of these factors, it is surprising that test automation hasn’t been
in universal use since way back. A lack of standardization, unattractive cost-
benefit ratios, and the limited capabilities of the available tools may have
been reasons for this. Today, however, there is simply no alternative to test
automation. Increasing complexity in software systems and the resulting

71.2 What is Test Automation?
need for testing, increasing pressure on time and costs, the widespread adop-
tion of agile development approaches, and the rise of mobile applications
are forcing companies to rely on ongoing test automation in their software
development projects.

1.2 What is Test Automation?

The ISTQB® definition of test automation is: “The use of software to per-
form or support test activities”. You could also say: “Test automation is the
execution of otherwise manual test activities by machines”. The concept
thus includes all activities for testing software quality during the develop-
ment process, including the various development phases and test levels, and
the corresponding activities of the developers, testers, analysts, and users
involved in the project.

Accordingly, test automation is not just about executing a test suite, but
rather encompasses the entire process of creating and deploying all kinds of
testware. In other words, all the work items required to plan, design, exe-
cute, evaluate, and report on automated tests.

Relevant testware includes:

 Software
Various tools (automation tools, test frameworks, virtualization solu-
tions, and so on) are required to manage, design, implement, execute,
and evaluate automated test suites. The selection and deployment of
these tools is a complex task that depends on the technology and scope
of the SUT and the selected test automation strategy.

 Documentation
This not only includes the documentation of the test tools in use, but
also all available business and technical specifications, and the architec-
ture and the interfaces of the SUT.

 Test cases
Test cases, whether abstract or specific, form the basis for the implemen-
tation of automated tests. Their selection, prioritization, and functional
quality (for example: functional relevance, functional coverage, accu-
racy) as well as the quality of their description have a significant influ-
ence on the long-term cost-benefit ratio of a test automation solution
(TAS) and thus directly on its long-term viability.

 Test data
Test data is the fuel that drives test execution. It is used to control test
scenarios and to calculate and verify test results. It provides dynamic

1 An Introduction to Test Automation and Its Goals8
input values, fixed or variable parameters, and (configuration) data on
which processing is based. The generation, production, and recovery of
existing and process data for and by test automation processes require
special attention. Incorrect test data (such as faulty test scripts) lead to
incorrect test results and can severely hinder testing progress. On the
other hand, test data provides the opportunity to fully leverage the
potential of test automation. The importance and complexity of efficient
and well-organized test data management is reflected in the GTB Certi-
fied Tester Foundation Level Test Data Specialist [GTB: TDS] training
course (only in German).

 Test environments
Setting up test environments is usually a highly complex task and is
naturally dependent on the complexity of the SUT as well as on the
technical and organizational environment at the company. It is there-
fore important to discuss general operation, test environment manage-
ment, application management, and so on, with all stakeholders in
advance. It is essential to clarify who is responsible for providing the
SUT, the required third-party systems, the databases, and the test auto-
mation solution within the test environment, and for granting the neces-
sary access rights and monitoring execution.

If possible, the test automation solution should be run separately from
the SUT to avoid interference. Embedded systems are an exception
because the test software needs to be integrated with the SUT.

Although the term “test automation” refers to all activities involved in the
testing process, in practice it is commonly associated with the automated
execution of tests using specialized tools or software.

In this process, one or more tasks that are defined the same way as they
are for the execution of dynamic tests [Spillner & Linz 21], are executed
based on the previously mentioned testware:

 Implement the automated test cases based on the existing specifications,
the business test cases and the SUT, and provide them with test data.

 Define and control the preconditions for automated execution.

 Execute, control, and monitor the resulting automated test suites.

 Log and interpret the results of execution—i.e., compare actual to
expected results and provide appropriate reports.

From a technical point of view, the implementation of automated tests can
take place on different architectural levels. When replacing manual test exe-
cution, automation accesses the graphical user interface (GUI testing) or,
depending on the type of application, the command line interface of the SUT

91.3 Test Automation Goals
(CLI testing). One level deeper, automation can be implemented through the
public interfaces of the SUT’s classes, modules, and libraries (API testing)
and also through corresponding services (service testing) and protocols (pro-
tocol testing). Test cases implemented at this lower architectural level have
the advantage of being less sensitive to frequent changes in the user inter-
faces. In addition to being much easier to maintain, this approach usually
has a significant performance advantage over GUI-based automation. Valu-
able tests can be performed before the software is deployed to a runtime
environment—for example, unit tests can be used to perform automated
testing of individual software components for each build before these com-
ponents are fully integrated and packaged with the software product. The
test automation pyramid popularized by Mike Cohn illustrates the targeted
distribution of automated tests based on their cost-benefit efficiency over
time [Cohn 2009].

Fig. 1–2
The test automation

pyramid

1.3 Test Automation Goals

The implementation of test automation is usually associated with several
goals and expectations. In spite of all its benefits, automation is not (and
will never be) an end in itself. The initial goal is to improve test efficiency
and thus reduce the overall cost of testing. Other important factors are the
reduction of test execution time, shorter test cycles, and the resulting chance
to increase the frequency of test executions. This is especially important for
the DevOps and DevTestOps approaches to testing. Continuous integration,

UI tests

API tests
Service tests

Protocol tests

Unit/Component tests

https://www.amazon.de/Extreme-Programming-Explained-Embrace-Embracing/dp/0321278658/ref=sr_1_1?dchild=1&keywords=kent+beck+extreme+programming&link_code=qs&qid=1594717841&sourceid=Mozilla-search&sr=8-1&tag=firefox-de-21
https://www.amazon.de/Extreme-Programming-Explained-Embrace-Embracing/dp/0321278658/ref=sr_1_1?dchild=1&keywords=kent+beck+extreme+programming&link_code=qs&qid=1594717841&sourceid=Mozilla-search&sr=8-1&tag=firefox-de-21

1 An Introduction to Test Automation and Its Goals10
continuous deployment, and continuous testing can only be effectively
implemented using a properly functioning test automation solution.

In addition to reducing costs and speeding up the test execution phase,
maintaining or increasing quality is also an important test automation goal.
Quality can be achieved by increasing functional coverage and by imple-
menting tests that can only be performed manually using significant invest-
ments in time and resources. Examples include testing a very large number
of relevant data configurations or variations, testing for fault tolerance (i.e.,
test execution at the API/service level with faulty input data to evaluate the
stability of the SUT), or performance testing in its various forms. Also, the
uniform and repeated execution of entire test suites against different ver-
sions of the SUT (regression testing) or in different environments (different
browsers and versions on a variety of mobile devices) is only economically
feasible if the tests involved are automated.

Benefits of Test Automation

One of the greatest benefits of test automation results from building an
automated regression test suite that enables increasing numbers of test cases
to be executed per software release. Manual regression testing very quickly
reaches the limits of feasibility and cost-effectiveness. It also ties up valuable
manual resources and becomes less effective with every execution, mainly
due to the testers’ unavoidable decline in concentration and motivation. In
contrast, automated tests run faster, are less susceptible to operational errors
and, once they have been created, complex test scenarios can be repeated as
often as necessary. Manual test execution requires great effort to understand
the increasing complexity of the test sequences involved and to execute them
with consistent quality.

Certain types of tests are barely feasible in a manual test environment,
while the implementation and execution of distributed and parallel tests is
relatively simple to automate—for example, for the execution of load, per-
formance, and stress tests. Real-time tests—for example, in control systems
technology—also require appropriate tools.

Since automated test cases and test scenarios are created within a
defined framework and (in contrast to manual test cases) are formally
described in a uniform way, they do not allow any room for interpretation,
and thus increase test consistency and repeatability as well as the overall
reliability of the SUT.

From the overall project point of view there are also significant advan-
tages to using test automation. Immediate feedback regarding the quality of
the SUT significantly accelerates the project workflow. Existing problems
are identified within hours instead of days or weeks and can be fixed before
the effort required for correction increases even further.

https://www.amazon.de/Extreme-Programming-Explained-Embrace-Embracing/dp/0321278658/ref=sr_1_1?dchild=1&keywords=kent+beck+extreme+programming&link_code=qs&qid=1594717841&sourceid=Mozilla-search&sr=8-1&tag=firefox-de-21
https://www.amazon.de/Extreme-Programming-Explained-Embrace-Embracing/dp/0321278658/ref=sr_1_1?dchild=1&keywords=kent+beck+extreme+programming&link_code=qs&qid=1594717841&sourceid=Mozilla-search&sr=8-1&tag=firefox-de-21
https://www.german-testing-board.info/wp-content/uploads/2016/07/Certified-Tester-Foundation-Level-Extension-Deutsch.pdf
https://www.german-testing-board.info/wp-content/uploads/2016/07/Certified-Tester-Foundation-Level-Extension-Deutsch.pdf
https://www.german-testing-board.info/wp-content/uploads/2020/01/CTFL-DE_Syllabus_2018_V3.1.pdf
https://www.german-testing-board.info/wp-content/uploads/2020/01/CTFL-DE_Syllabus_2018_V3.1.pdf
https://www.german-testing-board.info/wp-content/uploads/2020/06/ISTQB-CTAL-TTA_Syllabus_V2019_DE-1.pdf
https://www.german-testing-board.info/wp-content/uploads/2020/06/ISTQB-CTAL-TTA_Syllabus_V2019_DE-1.pdf
https://www.german-testing-board.info/wp-content/uploads/2020/06/ISTQB-CTAL-TTA_Syllabus_V2019_DE-1.pdf

