

Introduction to Aerosol Modelling

Introduction to Aerosol Modelling

From Theory to Code

Edited by

David Topping
University of Manchester
Manchester, UK

Michael Bane
Manchester Metropolitan University &
High End Compute Ltd
Manchester, UK

This edition first published 2022
© 2022 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at
https://www.wiley.com/go/permissions.

The right of David Topping and Michael Bane to be identified as the authors of the editorial material in this
work has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit
us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
The contents of this work are intended to further general scientific research, understanding, and discussion
only and are not intended and should not be relied upon as recommending or promoting scientific method,
diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment
modifications, changes in governmental regulations, and the constant flow of information relating to the use
of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in
the package insert or instructions for each medicine, equipment, or device for, among other things, any
changes in the instructions or indication of usage and for added warnings and precautions. While the
publisher and authors have used their best efforts in preparing this work, they make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives, written sales materials
or promotional statements for this work. The fact that an organization, website, or product is referred to in
this work as a citation and/or potential source of further information does not mean that the publisher and
authors endorse the information or services the organization, website, or product may provide or
recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and
when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

A catalogue record for this book is available from the Library of Congress

Paperback ISBN: 9781119625650; ePub ISBN: 9781119625711; ePDF ISBN: 9781119625667

Cover image: Cover illustration kindly provided by Harri Kokkola, Finnish Meteorological Institute.
Photograph ©Tuukka Kokkola
Cover design by Wiley

Set in 9.5/12.5pt STIXTwoText by Integra Software Services Pvt. Ltd, Pondicherry, India

https://www.wiley.com/go/permissions
www.wiley.com

v

Contents

Contributors ix
Preface xi
Acknowledgments xii
About the Companion Website xiii

1 Introduction and the Purpose of this Book 1
1.1 Aerosol Science and Chapter Synopses 4
1.2 Computers and Programming Languages 10
1.3 Representing Aerosol Particles as Model Frameworks 15
1.3.1 Size Distributions 18
1.3.2 The Sectional Distribution 22
1.3.3 The Modal Distribution 25
1.4 Code Availability 28

Bibliography 28

2 Gas-to-particle Partitioning 32
2.1 Adsorption 33
2.2 Equilibrium Absorptive Partitioning 37
2.3 Knudsen Regimes and the Kelvin Effect 43
2.4 Kinetic Absorptive Partitioning: The Droplet Growth Equation 46
2.4.1 Solving the Droplet Growth Equation: A Sectional Approach 49
2.5 Cloud Condensation Nuclei Activation 65
2.5.1 Köhler Theory 65
2.5.2 Hygroscopic Growth Factors and Kappa Köhler Theory 71

Bibliography 75

3 Thermodynamics, Nonideal Mixing, and Phase Separation 78
3.1 Thermodynamics and Nonideal Mixing 78
3.1.1 Chemical Thermodynamics 78
3.2 Activity Coefficient Model 83
3.3 BAT Model Implementation 85
3.3.1 Example 1: Calculation of Binary Mixture Activities Using the

BAT Model 89
3.4 Phase Separation 96
3.4.1 Example 2: Detection and Computation of LLPS in a Binary System 97

vi Contents

3.5 Multicomponent Aerosol Thermodynamics Models 117
3.6 Activity and LLE Computations with the AIOMFACModel 118
3.6.1 Customizing and Running AIOMFAC-LLE 121

Bibliography 129

4 Chemical Mechanisms and Pure Component Properties 133
4.1 Chemical Mechanisms 134
4.1.1 Gas Phase Only Model 134
4.1.2 Coupling the Gaseous and Condensed Phase Using a Fully Moving

Sectional Approach 153
4.1.3 An Example Using the Sectional Model Generator JlBox 158
4.1.4 Modal Model for Condensational Growth 163
4.2 Chemical Identifiers and Parsing Structures 169
4.3 Coding Property Prediction Techniques 172
4.3.1 Group Contribution Methods 175
4.3.2 Vapor Pressure Prediction Methods 176
4.3.3 Example: Adding the SIMPOL Method to UManSysProp 176
4.4 Subcooled Liquid Density 181

Bibliography 183

5 Coagulation 187
5.1 Coagulation Probabilities and Rates 187
5.2 Stochastic Coagulation with Discrete Particle Masses 189
5.2.1 Gillespie’s Basic Algorithm for Discrete Number Concentrations 189
5.2.2 First Speedup: Binning Particles 192
5.2.3 Second Speedup: Discretize Time and Use Tau-leaping 194
5.2.4 Third Speedup: Large-number-limit Using Continuous Number

Concentration 197
5.3 Coagulation with Continuous Particle Masses 202
5.3.1 Particle-resolved Approach for Coagulation 202
5.3.2 Sectional Approach for Coagulation 206
5.3.3 Modal Approach for Coagulation 208
5.4 Advanced Coagulation Topics 213
5.4.1 Coagulation for a Multi-dimensional Composition Space 213
5.4.2 Other Considerations 215
5.5 Introduction to Particle-resolved Monte Carlo (PartMC) 217
5.5.1 PartMC Input (.dat) Files Preparation 218
5.5.2 Spec File Preparation 219
5.5.3 PartMC Execution and Postprocessing 220

Bibliography 220

6 Nucleation: Formation of New Particles from Gases by
Molecular Clustering 223

6.1 Modelling Particle Formation: From Atoms to Molecular
Cluster Populations 224

6.1.1 The Discrete General Dynamic Equation 227
6.1.2 The Discrete Cluster GDE vs. the Continuous Aerosol GDE 229

Contents vii

6.1.3 Rate Constants of the Cluster Dynamics Processes 229
6.1.4 Cluster Formation in Different Atmospheric Environments 232
6.2 Coding the Discrete GDE: The Straight-forward Case of a One-component

System 233
6.3 Multi-component Systems: Need for an Equation Generator 239
6.4 Brief Introduction to Atmospheric Cluster Dynamics Code 241
6.4.1 ACDC Input 242
6.4.2 Running an ACDC Simulation 246
6.4.3 Code Features Useful for Studying Clustering Mechanisms 248
6.4.4 ACDC Applications 250
6.5 From Clustering to Particle Growth: Implementation of Initial Particle

Formation in Aerosol Dynamics Models 252
6.5.1 The Default Approach: Particle Formation Rate as an Input Parameter 252
6.5.2 The Dynamic Approach: Combination of Molecular Cluster and Aerosol

GDEs 255
Bibliography 256

7 Box Models 259
7.1 box_model.py 260
7.2 Remapping Size Distribution When Using the Sectional Method 264
7.2.1 Quasi-Stationary Sectional Method 265
7.2.2 Moving Center Method 269
7.2.3 Hybrid Bin Method 270
7.3 Simulating Absorptive Uptake and New Particle

Formation Simultaneously 279
7.4 Cloud Parcel Models 280
7.4.1 Sectional Cloud Parcel Model 281
7.5 SALSA 284

Bibliography 286

8 Software Optimization 288
8.1 Portability 288
8.2 Performance 289
8.2.1 Compiler Optimization 289
8.2.2 Profiling 290
8.2.3 Case Study: Speeding-up Box Model 291
8.2.4 Vectors 297
8.2.5 Hand Holding the Compiler 298
8.2.6 Case Study: PartMC 298
8.2.7 Interpretted Languages 302
8.2.8 Case Study: Droplet Growth Equation 303
8.3 Parallelization 305
8.3.1 Making the Most of a Single Node 307
8.3.2 Making Use of Multiple Nodes 308
8.3.3 Other Technologies 309
8.4 Collaborative Software Engineering 310
8.4.1 Coding Stylesheets 311
8.4.2 Modularity and Re-use 311

viii Contents

8.4.3 Version Control 312
8.4.4 Software Development Life Cycle 312
8.4.5 Continuous Integration and Unit Tests 312
8.5 In Conclusion 313

Bibliography 314

A Appendix A 316
A.1 Exercises 316
A.2 Physical Constants 329
A.3 Conversion Factor 330
A.4 Variable Definitions 330

Bibliography 345

Index 347

ix

Contributors

Michael Bane has spent several decades in optimizing codes and helping others
understand how they can optimize codes. He is currently a Lecturer at Manch-
esterMetropolitanUniversity, UK, andDirector of High EndCompute LTD.Michael
wrote Chapter 8 and gave supportive input to other chapters, particularly Chapter 1.

Jeffrey Curtis, Postdoctoral Research Associate in the Department of Atmo-
spheric Sciences at the University of Illinois at Urbana-Champaign. Jeffrey con-
tributed to Chapter 5.

Harri Kokkola, Group leader of the Atmospheric Modeling Group at the Atmo-
spheric Research Centre of Eastern Finland. He has developed and applied models
simulating atmospheric aerosol, clouds, and climate from process scale to global
scale. Harri wrote Chapter 7.

BenjaminMurphy, Physical Scientist in the United States Environmental Protec-
tion Agency Office of Research and Development at Research Triangle Park, North
Carolina. Benjamin contributed to Chapters 1, 4, and 5.

TinjaOlenius, research scientist in theAirQualityUnit at SwedishMeteorological
and Hydrological Institute (SMHI). Tinja’s research interests include developing the
chain of modeling tools from quantummechanics to large-scale models for improv-
ing the representation of secondary particle formation from vapors. Tinja wrote
Chapter 6.

Olli Pakarinen, university lecturer at the Institute for Atmospheric and Earth
System Research (INAR), University of Helsinki, Finland. Olli contributed to
Chapter 6.

Nicole Riemer, Professor in the Department of Atmospheric Sciences at the Uni-
versity of Illinois at Urbana-Champaign, IL, USA. Nicole’s research interests include
the development of aerosol models, from the process level to the global scale. Nicole
wrote Chapter 5.

Petroc Shelley, PhD student in the Department of Earth and Environmen-
tal Science at the University of Manchester, UK. His current specialism is in the
measurement and prediction of pure component properties. Petroc contributed to
Chapter 4.

David Topping, Professor in the Department of Earth and Environmental Science
at theUniversity ofManchester, UK. Since his PhD,David has developed and applied

x Contributors

models of aerosol particles across a range of scales. David convened the writing team
behind this book and wrote Chapters 1, 2, and 4.

Matthew West, Associate Professor in the Department of Mechanical Science
and Engineering at the University of Illinois at Urbana-Champaign, IL, USA. His
research interests include stochastic time integration methods and scientific com-
puting. Matt wrote Chapter 5.

Zhonghua Zheng, PhD in Environmental Engineering in Civil Engineering with
a concentration in Computational Science and Engineering at the University of
Illinois at Urbana-Champaign, IL, USA. Zhonghua contributed to Chapter 5.

Andreas Zuend, Professor in the Department of Atmospheric and Oceanic Sci-
ences atMcGillUniversity,Montreal,Quebec, Canada.His research interests include
the development of predictive thermodynamic aerosol models for gas–particle par-
titioning, as well as reduced-complexity methods for mixture properties of aerosols
and cloud droplets. Andreas wrote Chapter 3.

xi

Preface

Aerosol science is one that straddles many disciplines. There is a natural tendency
for the aerosol scientist to therefore work at the interface of the traditional academic
subjects of physics, chemistry, biology, mathematics, and computing. The impacts
that aerosol particles have on the climate, air-quality, and thus human health are
linked to their evolving chemical and physical characteristics. Likewise, the chemical
and physical characteristic of aerosol particles reflect their sources and subsequent
processes they have been subject to. Computational models are not only essential for
constructing evidence-based understanding of important aerosol processes, but also
to predict change and potential impact. Seminal publications provide an extensive
overview on the history and basis of core theoretical frameworks that aerosol models
are based on. However there is little on how we can translate such theory into code.
While we focus on atmospheric aerosol in this book, the theory and tools developed
are based on core aerosol physics that translate across multiple disciplines. Likewise,
demonstrating a programming solution to common numerical operations is valuable
to a large number of scientific disciplines. You may be reading this book as an
undergraduate, postgraduate, seasoned researcher in the private/public sector or as
someonewhowishes to better understand the pathways to aerosolmodel development.
Wherever you position yourself, it is hoped that the tools you will learn through this
book will provide you with the basis to develop your own platforms and to ensure the
next generation of aerosol modelers are equipped with foundational skills to address
future challenges in aerosol science.

Manchester Professor David Topping
July 2022

xii

Acknowledgments

The identified need for this book was inspired by the Aerosol and Droplet Science Cen-
tre for Doctoral Training [CDT], funded by the UK Engineering and Physical Sciences
Research Council (EPSRC)(grant no. EP/S023593/1) (https://www.aerosol-cdt.ac.uk/).
The authors would also like to thank Hanna Vehkamäki, Ana Cristina Carvalho,

Manu Thomas and Cecilia Bennet for useful discussions and comments. The Swedish
ResearchCouncil VR (grant no. 2019-04853) and the SwedishResearchCouncil for Sus-
tainable Development FORMAS (grant no. 2019-01433) are acknowledged for financial
support for Chapter 6.

https://www.aerosol-cdt.ac.uk/

xiii

About the Companion Website

All of the code snippets and examples provided with the book can also be downloaded
from the project Github repository:

https://github.com/aerosol-modelling/Book-Code.git

https://github.com/aerosol-modelling/Book-Code.git

1

1

Introduction and the Purpose of this Book

An aerosol particle is defined a solid or liquid particle suspended in a carrier gas.
The term “aerosol” technically includes both the particle and carrier gas, though it
is common to often hear this used when referring to just the particle. In this book,
we will retain the use of the term “aerosol particle”. Whilst we often treat scientific
challenges in a siloed way, aerosol particles are of interest across many disciplines. For
example, atmospheric aerosol particles are key determinants of air quality [1–3] and
climate change [4–6]. Improving our understanding of sources, processes and sinks is
important as we develop strategies to lesson the impacts we have on human health and
environmental systems. Knowledge of aerosol physics and generation mechanisms is
key to all factors of fuel delivery [7] and drug delivery to the lungs [8]. Likewise, various
manufacturing processes require optimal generation, delivery and removal of aerosol
particles in a range of conditions [9].
The purpose of this book is to provide you, the reader, with the tools to translate

theory on which numerical aerosol models are based into working code. In following
the content provided in this book, youwill be able to reproducemodels of key processes
that can either be used in isolation or brought together to construct a demonstrator 0D
box-model of a coupled gaseous-particulate system.
You may be reading this book as an undergraduate, postgraduate, seasoned

researcher in the private/public sector or as someone who wishes to better understand
the pathways to aerosol model development. Wherever you position yourself, the cou-
pling between experimental andmodeling infrastructure is important in any discipline.
Whilst the driving factors that influence both can vary, Figure 1.1 presents an idealized
workflow of model development and model scales both in response to and as a driving
force behind aerosol experiments. Particular emphasis is given to atmospheric aerosol
particles in this workflow where, as we move from left to right, we move from aerosol
models at the molecular and single particle scale to aerosol models acting as an import
component in regional and global scale models. The purpose of this figure is to repre-
sent a workflow that migrates our understanding of aerosol processes to a framework
that may be used to predict impacts. In a perhaps controversial approach, we can imag-
ine a scale at the bottom of the figure that assumes as we move from left to right we
reduce the physical and chemical complexity of our aerosol models. This sets the scene
for understanding the research landscape of much of the developments you will find
in this book.

Introduction to Aerosol Modelling: From Theory to Code.
First Edition. Edited by David Topping and Michael Bane.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.

2 1 Introduction and the Purpose of this Book

If we start at the left-hand side of the figure, we use the term mechanistic model. In
aerosol modeling parlance, a mechanistic model is one that is built around a numer-
ical representation of an underlying physical theory. For example, this might include
a set of coupled differential equations that describe the movement of mass between
a gaseous and condensed phase, or between different compartments of a condensed
phase. Parameters in these mechanistic models may describe chemical and physical
properties that are included in these differential equations and have been derived from
a series of experiments or provided through separate models. In a mechanistic model,
our mathematical framework provides a clear numerical narrative and separation of
the processeswewish to include.We can then choose an appropriate numericalmethod
to provide, for example, a time-varying solution to a set of initial conditions or pre-
dict a point of equilibrium. Once we have constructed our mechanistic model, we
can consider uncertainties associated with the model architecture itself and/or errors
associated with the parameters we use in our simulation. Indeed, the next phase in
our workflow in Figure 1.1 is to compare with targeted laboratory experiments that
serve to quantify the accuracy of our model or identify uncertainties that need fur-
ther reduction. You may find mechanistic frameworks used at the single particle level,
or indeed in models that are designed to capture the evolution of a population of
particles. Where mechanistic models cannot replicate observed behavior within a spe-
cific level of accuracy, or simply do not have an appropriate theoretical basis to build
on, parameterizations can be developed. This can be used in combination with, or
as an alternative to, the mechanistic model. We often state that a parameterization
has a higher computational efficiency than an equivalent mechanistic model. Specif-
ically, the time to solution is reduced. As we move further right in Figure 1.1, and
typically start to consider populations of particles and multiple processes, we might
refer to hybrid models that combine both mechanistic and parameterizations. We may
also start to consider the computational resource available to conduct more complex
simulations. At the global scale, an aerosol model is one of many components in a
framework that attempts to capture the dynamics of multiple components of the earth
system (e.g., ocean, biosphere, land-air interactions etc.). The level of physical and
chemical complexity retained in our aerosol model is dictated by a number of factors.
These include the computational resource available, the associated detail carried in
components that drive and respond to aerosol processes (e.g., how many emissions
that lead to aerosol formation are captured) and ongoing efforts to resolve how much
detail is needed to resolve potential impacts on, for example, human health. Of course,
this narrative is an ideal one but at least provides an insight into factors that dic-
tate the methods we use to construct our aerosol models. In this manner, we start to
appreciate the ecosystem of aerosols models and why they exist. The aerosol scientist
may come across a range of “simple” and “complex” models that have been designed
to provide benchmark simulations in isolation. You will find a description of these
benchmark models in the chapters of this book. Once we begin to capture processes
across multiple scales, an aerosol model developer starts to consider any approxima-
tions that may be needed according to the numerical methods and compute resource
available.
Whilst we focus on atmospheric aerosol to define our composition space in this

book, the theory and tools developed are based on core aerosol physics that translate

Introduction and the Purpose of this Book 3

Figure 1.1 Ideal workflow of aerosol model development in environmental science.

across multiple disciplines. Likewise, demonstrating a programming solution to com-
mon numerical operations is valuable to a large number of scientific disciplines.
Research developments oftenmove at a rapid pace and, as the global aerosol commu-

nity develop new observational and modeling platforms, we continually hypothesize
and verify new species and/or processes deemed important to improve our understand-
ing. We do not provide a comprehensive coupling of all known and emerging chemical
and process complexity in this book. Indeed, there are remaining challenges on how
we actually do that from a programming and real-world validation perspective. The
landscape of computing hardware and software also moves at a rapid pace. The choice
of programming language to solve a particular problem, or provide a particular service,
is influenced by a number of factors ranging from required time-to-solution and ability
to share across multiple platforms. As with numerical representations of aerosol pro-
cesses, we do not provide a comprehensive multilanguage demonstration in this book.
It is anticipated that readers of this book will have a wide range of programming expe-
rience; from those who have no prior experience to those who regularly develop their
own applications. We expect therefore that you will take away different lessons from
working through the material provided, whether it be the solution to a set of common
operations or learning how to develop your first numericalmodel in your first program-
ming language. You will find there are often multiple ways to write a piece of code that
performs a particular task. You will also find that as we often have our own style in
writing, so too can we develop our own style of developing code. In this book, we pro-
vide complete demonstrations of how to develop working code around key concepts
(highlighted in figure 1.2), but we do not force a particular style beyond requirements
of the language syntax. We also however provide examples of how we can optimize the
code we develop. By looking at a range of examples, this will help you start to more
broadly consider how efficient your code is and perhaps embed these considerations
as you start to develop mode applications. We also discuss best practice in sharing any
code in the public domain and ensuring reproducibility.
Seminal publications [e.g., [2, 19]] provide an extensive overview on the history and

basis of core theoretical frameworks that aerosol models are based on.We do not repeat
that content in this book; rather we present the theoretical basis used in constructing
a model and then focus on how we map this to code development.
The tools you will learn through this book are foundational. As the research com-

munity explore new hardware platforms and programming languages in an attempt
to tackle growing complexity, these foundational skills will provide you with the basis
to develop your own platforms. Will anyone tackle the entirety of aerosol modeling
complexity? Maybe it will be you.

4 1 Introduction and the Purpose of this Book

1.1 Aerosol Science and Chapter Synopses

Aerosol science is multidisciplinary by nature. This is reflected in the huge body of lit-
erature that now exists in peer-reviewed journals. There is a natural tendency for the
aerosol scientist to therefore work at the interface of the traditional academic subjects
of physics, chemistry, biology, mathematics, and computing. Of course, an aerosol sci-
entist working in either medicine or climate change will find themselves focusing on
distinct areas and the level of understanding in each will be dependent on the research
challenge. However, chances are that both will, at some point, require training in key
concepts of aerosol science that apply to both domains. Indeed, one benefit of becoming
an aerosol scientist is that understanding, refinement and application of core concepts
is transferable between disciplines.
In 2018, the Aerosol Society of the United Kingdom published the outcomes of

an industrial engagement workshop [12], defining a pipeline of research, innovation

Figure 1.2 The topics covered in each chapter, summarized in the main body of text in this
chapter, as a visual schematic that connects processes across the aerosol size spectrum. In this
hypothetical example, the aerosol size distribution has three peaks represented as multiple
log-normal contributions. We start to discuss log-normal distributions in Sections 1.3.2 and
1.3.3.

1.1 Aerosol Science and Chapter Synopses 5

and technology development for aerosol science. In this they note that estimates of
the global aerosol market size suggest it will reach $84 billion per year by 2024 with
products in the personal care, household, automotive, food, paints, and medical sec-
tors. However, they also note that despite the growing interest into the macro-effects
and industrial exploitation of aerosols, aerosol science is a relatively young discipline
encompassing research topics which can concomitantly be understood as biological,
chemical, engineering, environmental, material, medical, pharmaceutical, or physical
science.
We focus on atmospheric aerosol particles for the remaining portions of this book.

The impacts that aerosol particles have on the climate, air-quality and thus human
health, are linked to their evolving chemical and physical characteristics [3, 5]. Like-
wise, the chemical and physical characteristic of aerosol particles reflect their sources
and subsequent processes they have been subject to [2, 14]. Atmospheric aerosol par-
ticles can range in size from a few nanometers to hundreds of microns. They can be of
primary or secondary origin. Primary particles are directly emitted into the atmosphere,
whilst secondary particles are produced from gas-to-particle conversion processes. An
aerosol particle may comprise inorganic and/or organic components which can be
associated with both primary and secondary particles. Whilst the inorganic fraction
may be comprised by a relatively small number of components [2], the organic frac-
tion may comprise many thousands of compounds from multiple sources [15, 16]. As
an aerosol particle resides in the atmosphere, we know that many processes taking
place in/on atmospheric aerosol particles are accompanied by changes in the par-
ticles’ morphology (size and shape) [17]. These processes also change the chemical
composition of aerosol particles according to the availability of, for example, key gas
phase oxidants and ambient conditions [16]. Likewise, particles of primary original
(e.g. desert dust, volcanic ash, soot, pollen) can have widely varying morphological
features [19–21]. Mechanisms are important in understanding lifetimes and potential
impacts [22].
Let us beginwith an idealized spherical representation of aerosol particles. Their size

and composition will vary, but we wish to simulate how their concentration changes
over time.Whilst controlled experimentsmay be able to isolate single levitated particles
[23], under atmospheric conditions we expect a range of particle sizes and number
densities. Let us take an isolated particle with diameter 𝑑𝑝 and density 𝜌 with units
in m and kg ⋅m−3, respectively. A single particle has a mass𝑀 in kg calculated using
Equation (1.1):

𝑀 = 4
3𝜋 (

𝑑𝑝
2)

3

𝜌 (1.1)

If we observe𝑁𝐿 particles per cubic centimeter, we can use Equation (1.2) to calculate
the total concentration of particles with size 𝑑𝑝, 𝑀𝑡𝑜𝑡, using the common air quality
metric of µg.m−3.

𝑀𝑡𝑜𝑡 = 𝑁𝐿𝑀1015 (1.2)

where the factor 1015 is a product of converting cm−3 to m−3 (106) and kg to µg (109).
This formula has no information on the particle composition or morphology. Indeed,
our idealized spherical representation may be wrong under certain conditions and/or

6 1 Introduction and the Purpose of this Book

for certain aerosol types. Nonetheless, we can use our particle representation, which
has a volume 𝑉 (m) given by Equation (1.3), as a common particle reference.

𝑉 = 4
3𝜋 (

𝑑𝑝
2)

3

(1.3)

If we now specify that the concentration (number density) of particles with this spe-
cific volume, at a specific time 𝑡, can be represented by a variable 𝑛𝑣,𝑡, we can start to
formulate an expression that captures the evolution of particles with variable volumes
into an algebraic form.
For example, in Figure 1.3 on the left-hand sidewehave a population of particleswith

a specific volume at a given point in time. The total concentration of these particles is
𝑛𝑣,𝑡. On the right-hand side, this population has evolved after a time increment ∆𝑡 and
we have particles at smaller and larger volumes, represented by a discrete change ∆𝑣.
Specifically, 𝑛𝑣,𝑡+∆𝑡, 𝑛𝑣−∆𝑣,𝑡+∆𝑡 and 𝑛𝑣+∆𝑣,𝑡+∆𝑡 represent the concentration of particles
that have the original volume, the concentration of particles with a smaller volume and
the concentration of particles with a larger volume at a new time 𝑡 + ∆𝑡, respectively.
In reality these particles will have been created through primary and/or secondary
mechanisms.
Equation (1.4) is the continuous general dynamic equation [24]. This ordinary differ-

ential equation (ODE) describes the rate of change of 𝑛𝑣,𝑡 resulting from key processes
which are identified as nucleation, coagulation and condensation. We also include a
generic term that represents emission and removal mechanisms.

𝑑𝑛𝑣,𝑡
𝑑𝑡

= (
𝑑𝑛𝑣,𝑡
𝑑𝑡

)
𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛

+ (
𝑑𝑛𝑣,𝑡
𝑑𝑡

)
𝑐𝑜𝑎𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+ (
𝑑𝑛𝑣,𝑡
𝑑𝑡

)
𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

+

(
𝑑𝑛𝑣,𝑡
𝑑𝑡

)
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

− (
𝑑𝑛𝑣,𝑡
𝑑𝑡

)
𝑟𝑒𝑚𝑜𝑣𝑎𝑙

(1.4)

Equation (1.4) is the first algebraic formulation of aerosol evolution in this book.
Each contribution to this equation has its own theoretical basis and thus algebraic

ηυ, t ηυ–Δυ, t+Δt ηυ+Δυ, t+Δtηυ, t+Δt

Figure 1.3 An initial population of particles with volume 𝑉 on the left-hand side of this
figure evolve to a population with multiple volumes after a time increment ∆𝑡.

1.1 Aerosol Science and Chapter Synopses 7

formulation. These are presented and discussed in specific chapters, and also high-
lighted in figure 1.2 and discussed shortly. We also need to translate our algebraic
formulations into code. You will find a range of approaches are presented to perform
this translation that provide you with a grounding in common approaches used across
aerosol science. Figure 1.5 provides a schematic that maps processes on our book struc-
ture by highlighting the relevant chapters that focus on each in turn. Whilst we isolate
processes including nucleation and coagulation in distinct chapters, we also cover
properties and bridging technologies that are not explicitly highlighted in Equation
(1.4) but are nonetheless important to providing a solution to it. These include devel-
oping models that capture condensed phase thermodynamics and simulate diffusion
within a particle, simulating a reactive gas phase and presenting the structure required
to build a simplemodel of aerosol to cloud droplet activation.A synopsis of each chapter
is provided below. At the beginning of each chapter youwill find an overview of the lan-
guage chosen and use of any functions provided within that environment. Youwill also
find that, in some chapters, we combine a breakdown of translating theory to code with
instructions on how to run existing community models which have been written in a
variety of programming languages.

● Chapter 1: Following on from an introduction to aerosol science, here we discuss
general concepts around representing aerosol particles as a numerical model. This
encourages you to considerwhat information an aerosolmodelmayneed to carry and
how we then map that into a numerical model through the programming language
constructs. For example, at the single particle level wemaywish to construct amodel
that simulates the partitioning of mass between a gaseous phase and homogeneous
droplet. If we have 𝑛 compounds in the gas phase and one particle, then it is reason-
able to design a model built around a one dimensional array of size 𝑛+ 1. Of course,
once we consider populations of particles with varying sizes and, perhaps, interparti-
clemorphology, then our choice becomesmore complex. In this chapter,we therefore
present some general considerations around these issues which help contextualize
the design choices you will come across in the proceeding chapters. We follow this
by introducing our first theory to code demonstrations where we implement two dif-
ferent approaches to represent a population of particles in Python. Known as the
modal and sectional methods, this provides a basis for subsequent chapters.

● Chapter 2: In this chapter, we present and implement theories that allow us to sim-
ulate movement of mass between a gas and condensed phase. We first introduce
equations that provide the basis for predicting the composition of both the gas and
condensed phase at equilibrium. This is split between the processes of adsorption
and absorption and considers both the particulate and gaseous phase to be nonreac-
tive. Up to this point we assume our particulate phase to have no size, considering
a total mass that compounds in the gas phase can adsorb or absorb to. Following on
from thiswe thenmove to simulating dynamic absorptive partitioning by introducing
and solving the droplet growth equation. Whilst both our gas and particulate phase
remains nonreactive, we use Python to simulate the growth of both mono- and poly-
disperse populations as a function of time. The size and composition of the simulated
aerosol particles influence the partitioning process through a change in equilibrium
pressure above the condensed phase, but the condensed phase components do not
interact with each other. We use both the modal and sectional distributions covered

8 1 Introduction and the Purpose of this Book

in Chapter 1, where we compare Python and Julia models for the sectional approach.
In each case, when designing our model structure, we also need to be aware of how
we utilize any specific solver routines. In this case, we use existing ordinary differ-
ential equation (ODE) solvers within popular Python and Julia packages. Attention
is then given to predicting aerosol water uptake through equilibrium frameworks, at
the single particle level, below and above 100% relative humidity.

● Chapter 3: In this chapter, we introduce theoretical frameworks that underpin ther-
modynamics and nonideal mixing. Whilst in Chapter 2 we assumed our aerosol
particles were constructed of a homogeneous ideal mixture, here we account for
nonideal mixing. We specifically move to treating nonideal interactions that dictate
the predicted equilibrium state and, in some cases, lead to phase separation in the
particulate phase. You will see the use of Python again in constructing simulations
of simple mixtures and the required structure of our code. You will also find infor-
mation of how to use an existing community model to simulate phase separation in
complexmixtures,written inFortran.Once again, translating the relevant theory into
code here requires some consideration of an appropriatemodel structure. In Chapter
2 we discuss separation of aerosol particle size as we design the arrays that will track
information on aerosol composition through the simulation; likewise here we need
to consider how we track the composition of our particle.

● Chapter 4: In all previous chapters, we have used a nonreactive “static” gas phase. As
aerosol particles reside in a gaseous medium, they are subject to processes that are
driven by the availability of compounds in said medium. Likewise, the availability of
gaseous compounds is driven by the complex chemistry that unfolds as compounds
react with each and a range of oxidants. In this chapter, we begin with an example
of how to simulate, and thus track, the variable concentration of compounds in a gas
phase. We discuss the concept of a chemical mechanism in the context of a file that
holds information about the interaction of compounds in the gas phase. We then use
tools in Python to extract information in these files and create a code structure that
allows us to simulate the concentration of each compound as a function of time.Once
again we consider an appropriate structure that is driven by the information we wish
to track and our chosen ODE solvers. With an evolving gas phase, we can also con-
sider the properties of individual compounds that dictate gas-to-particle partitioning.
Predicting those properties requires us to map an algebraic form of a predictive tech-
nique to a chemical structure. You will therefore find the use of Python and existing
informatics packages to extract and automate the prediction of properties for many
thousands of compounds. With all of the previous work on required code structures
and solvers for simulating condensational growth and a reactive gas phase, we also
provide a demonstration of how to use existing community-driven models that have
been designed to automate the process from reading a chemical mechanism file and
then creating a model that will simulate the evolution of a coupled particulate and
gas phase, written in both Python and Julia.

● Chapter 5: If the population of our particles have different velocities, there is a chance
they will collide. Two particles colliding to produce a larger particle reduce the total
number concentration over time. This process is called coagulation and is influenced
by a number of factors including ambient conditions, the concentrations of aerosol
particles and their phase state. In this chapter, we develop stochastic and deter-
ministic representations of the coagulation process in Python. In all other chapters,

1.1 Aerosol Science and Chapter Synopses 9

we have built deterministic models. As part of this chapter’s development of the
stochastic and deterministic representations, we discuss the impact of design choices
on computational efficiency, including a comparison between a modal and sectional
approach. Following on from this we start to consider more complex coagulation
scenarios including, for example, the treatment of nonspherical particles.

● Chapter 6: Whilst Chapter 2 focuses on gas-to-particle partitioning to an existing
condensed phase, in this chapter we present underlying theories that are used to
predict new particle formation. This is referred to as aerosol nucleation. As Chapter
5 treats the interaction between aerosol particles, here we move our focus to the
molecular level. We contextualize this work in terms of aerosol size ranges we have
met in all other chapters and now consider clusters of molecules as discrete units.
The boundary between a molecule and an aerosol particle becomes blurred, but the
challenge to design an appropriate numerical model remains. We build a Matlab
solution to a discrete form of the “birth-death” equation for molecular clusters. You
will find a discussion on how models we develop have a place and dependency in
a wider ecosystem of numerical models. In this instance, that specifically includes
those conducting molecular dynamics and quantum chemistry simulations. Moving
beyond the Matlab based examples we build here, you will also find an introduction
and tutorial on using the Atmospheric Cluster Dynamics Code (ACDC) which has
components written in the languages Perl, Matlab and Fortran.

● Chapter 7: Chapters 1–6 can be looked at in isolation and the code examples allow
you the reader to further develop them or integrate them into other software. Of
course, we know from the general dynamic equation that we wish to connect these
process descriptions such that we can simulate the life-cycle of an aerosol particle, or
population of particles. In this chapter we therefore introduce the concept of a box-
model and present a numerical and code design strategy to integrating nucleation,
coagulation and condensational growth. Focusing on a sectional approach, you will
find that the mechanism for tracking particle size presented in Chapter 2 has lim-
itations when we wish to include nucleation and coagulation. We present methods
for restructuring our numerical arrays in Python. We finish this chapter by assum-
ing our aerosol distribution is within a rising parcel of air which leads to increasing
relative humidity above saturation and leads to formation of cloud droplets. In this
manner you will learn how to create a cloud parcel model and lay the foundation
for another large area of research in capturing and predicting cloud micro-physics
from a population of aerosol particles. In the end of the chapter, we will present a
box aerosol-cloud model SALSA which comprises atmospherically relevant micro-
physical processes which interact with aerosol particles, cloud droplets, precipitation
droplets and ice nuclei.

Translating theory into code requires us to consider how we can represent informa-
tion on the properties of the aerosol system we are interested in. This is influenced
by choice of programming language, which in turn may be driven by the availability
of numerical methods or your reliance on existing legacy code that may have been
developed in your community. This also fundamentally requires consideration of how
we represent aerosol particles in numerical models. Whilst each chapter provides you
with a grounding in common approaches to solving the relevant process, with this in
mind, in Section 1.2 we provide you with a brief overview of computer programming

10 1 Introduction and the Purpose of this Book

languages used in this book, should this be needed. Following this, in Section 1.3 we
then present a general consideration of how we represent aerosol particles and their
physical and chemical characteristicswithin numerical constructs in our software. This
is designed to provide extra context to the content you will find in each chapter.

1.2 Computers and Programming Languages

A computational model is built around a set of rules; a single of set of algorithms. The
interface between the aerosol scientist, who has drawn up these rules, and the com-
puter is provided by a programming language. There aremany programming languages
available, eachwith its own set of advantages and disadvantages depending onwhat the
problem is youwish to solve. There are general “rules of thumb” that can be followed in
order to select themost appropriate language, and themore time you spend coding and
exploring the multitude of applications available, the clearer this choice will become.
One should avoid the pitfalls of snobbery that may surround software development,
especially if you are starting your journey on becoming an aerosol model developer.
If you select relatively simple examples to start practicing translating theory into code
then you are free to pick a range of languages. True that some are faster, and others have
a much broader ecosystem (e.g. for visualization, connecting numerical simulations to
machine learning libraries etc). However, it is important to enjoy and explore the world
of programming as best you can. When you start to require that element of speed, or
specific dependencies, then you can revisit which language you wish to develop in. In
this book you will indeed come across a range of languages. Python is used through-
out the book, but we also present examples in Fortran, Julia and Matlab. These are
influenced in part by the existing language in which aerosol community models are
currently based, but it also provides us with an opportunity for you to explore these
varying languages.
In order to appreciate the differences in computer languages, we need to understand

a little about the hardware we wish to run our aerosol models on.
Let us start from the top. Imaginewe have received a blue print of a high performance

computing (HPC) center with plans for a cluster, nodes and individual processors. As
illustrated in Figure 1.4, a cluster will have several nodes (represented by each yellow
box); a node can be thought of as a motherboard with one of more sockets; a socket
contains a CPU processor (represented by each blue box); and a CPU processor may
have one or more cores as represented by each black box in the diagram. Much closer
to home, you may have a laptop or desktop computer at your disposal that likewise
contains a motherboard with (probably) one socket; the socket contains a CPU pro-
cessor; and the CPU processormay have one or more cores. Your desktop will likely
have fewer cores than the CPU processor in the HPC center. The CPU and other com-
ponents will have been manufactured by a set of popular vendors that include Intel,
AMD, ARM and IBM. As Section 8.3.2 discusses, in a cluster the nodes are connected
by some form of interconnect as illustrated in orange in the figure.
We also need to consider how a high-level programming language that humans can

read and understand ends up getting run on a computer.
Traditional computers (as opposed to the likes of quantum computing discussed in

Section 8.3.3) have a very limited set of instructions they recognize. This is known

1.2 Computers and Programming Languages 11

Figure 1.4 Illustration of hardware components of an HPC cluster.

formally as the Instruction Set Architecture (ISA) and it is necessary to translate the
high-level programming language in to machine code that adheres to a given CPU
processor (since we may presume all cores on a given CPU processor have the same
ISA).
There are two approaches to translating from the chosen programming language to

machine code.Compiled languages do this translation in a separate step prior to run-
ning any of the code. Having compiled the source codes to an executable (shorthand
for “executable file”) for a given CPU processor, the executable can be run again and
again on that CPUprocessor architecture, with further compilation only requiredwhen
you make changes to the source codes. This is in contrast to interpreted languages
which translate each line of code as it is required during the actual running of the source
code. Many popular languages are “interpreted,” which can be thought of as a basic
“compile each line of code as we want to run it.” From a functional viewpoint there is
nothing wrong with this. Many interpreted languages are highly popular, due to their
ease of learning, including Python.
Table 1.1 illustrates and compares these two approaches.
The main compiled languages are C, C++, Fortran and popular interpreted lan-

guages that include Python and Julia. You may be wondering why there is a choice
and perhaps which you should use. In terms of which can be used to implement the
algorithms discussed in this book, it doesn’t matter—you can code each algorithm in
any or all of these languages. But the ease of doing so, and the resulting performance,
may vary. There are some pros and cons relating to compiled versus interpreted lan-
guages, as listed in Table 1.1. Programming languages themselves are based on different
approaches, andmost evolve over time. For example, Javawas designedwith the “object
oriented” (OO) style in mind, where the focus of programming is the consideration of
the hierarchical classes of objects and the various “methods” operating upon them.

12 1 Introduction and the Purpose of this Book

Table 1.1 Comparison of compiled and interpreted languages.

Comparison of approaches

Interpreted languages Compiled languages

– Requires a compiler

Translated line by line at run time All of code is compiled in separate stage
before running

A line may be translated many times –

No opportunity to see bigger picture Compiler can analyze full code to make
deep optimizations

Generally felt to be easier to learn Generally felt to give better performance

Can use same source on different platforms Need to compile for each ISA

Other languages such as C++, Julia, and Python (and to some extent modern Fortran)
also now support OO programming.
Most programming languages scientists encounter are imperative languages,

where the control is implemented by a series of statements that manipulate the data
of the simulation. Fortran, C, C++, Julia, Python, andMATLAB are all imperative pro-
gramming languages. The alternative is where it is the flow of data that is described
by the programmer, leaving the implementation of how this is achieved to a compiler.
These are known as functional languages and includeHaskell, Lisp, Erlang, and Clo-
jure. Data flow is key to programming concurrently and there is growing interest in
use of functional programming for FPGAs (see Section 8.3.3 in Chapter 8) and highly
concurrent systems.
Let us take a quick look at the languages used in this book in terms of their prove-

nance and use. We reiterate that the best way to learn and become more familiar with
each is to solve a particular problem, which you can do across the chapters in this book.

● Python [Official documentation: https://www.python.org/]: First released in 1991,
Python is a universally popular language finding use across not just scientific
domains, but from database design to web development. At of the time of writing,
Python is released as version 3.8 with support for packages built in version 2 discon-
tinued. Python is an interpreted language and is often regarded as the best choice
to start programming. This is in part related to the readability of the code, but also
the huge ecosystem of tools and facilities that you can now integrate with your own
personal developments. For example, the ability to integrate with chemical informat-
ics tools [25], machine learning [26], or powerful visualizations [27] is an attractive
prospect for the multidisciplinary scientist with a number of examples used across
aerosol science. Whilst speed has been a concern when developing relatively large
numerical models using Python alone, Python can also act as the “glue” to con-
nect libraries built in other languages whilst the Numba “High Performance Python
Compiler” [28] translates Python functions to optimized machine code at runtime
with minimal effort. Even if a researcher does not work directly with any form of
numerical models, Python modules such as Pandas offer tremendous flexibility in

https://www.python.org/

1.2 Computers and Programming Languages 13

ingesting andmanipulating data. Similarly, Python provides an interface to a range of
popular machine-learning modules such as Scikit-learn [26] and Keras [29]. Perhaps
themost common route to installing Python on a personalmachine is to use the Ana-
conda distribution (https://www.anaconda.com/products/individual), which comes
with a flexible package manager called Conda. The Conda package manager can be
very helpful for those who wish to build an environment with a number of modules
that need to be installed separately or are not included in the default Anaconda dis-
tribution. This is because Conda manages the required dependencies and will install
additional modules where required. Alongside Conda there is also the pip pack-
age installer which can be useful where there is no Conda channel for a particular
module. There are multiple ways you can interact with and use Python for your own
projects, but they all require us to write some code! For a graphical user interface
(GUI) experience, the Spyder InteractiveDevelopment Environment (IDE) combines
a text editor with interactive console and variable explorer (https://www.spyder-
ide.org/). Jupyter notebooks are hugely popular environment for teaching Python.
A Jupyter Notebook is an open-source web application that allows you to create and
share documents that contain live code, equations, visualizations and narrative text
(https://jupyter.org/) and is not limited to Python. Throughout this book we will
provide you with Python examples written as individual text files that have a .py
extension. Imagine we have created a file called test.py. Once you have a distribution
of Python installed, we would open up a terminal window, or Anaconda prompt, and
ask the Python Interpreter to run our file as follows:

python test.py

● Fortran [Official documentation: https://fortran-lang.org/]: The Fortran language
has a rich history of, to date, more than six decades as a high-level language, with
special emphasis on being a structured, compiled language offering good optimiza-
tion potential for performance-critical numerical programs and libraries (e.g. 26).
In particular, the FORTRAN 77 language (name at those times written in capital
letters) and the substantially revised and improved Fortran 90 standard (released
in the year 1991; perhaps the origin of “modern” Fortran) have found wide-spread
applications in many fields of science and engineering and have been a popular
choice for decades in those disciplines. The Fortran language also keeps evolving,
with a new standard typically being released every five to ten years. The more recent
versions of Fortran, described by the Fortran 2003, 2008, and 2018 standards, have
added improved support of dynamic data types, object-oriented programming, new
intrinsic array functions, native parallel programming, standardized interoperabil-
ity with the C language, and clarified/revised language definitions (see https://wg5-
fortran.org for official language standard publications and descriptions of added fea-
tures). The standardized interoperabilitywith the C language also supports improved
interoperability of Fortran modules with Python (e.g., via the “f2py” method within
Python’s NumPy library).
One valuable feature of the Fortran language development and revision process is

that it remains backward-compatible with older standards and programs (so long as
they were standard-conforming at their time). In the geoscience disciplines, Fortran
programs have been at the core of numerous applications; many of the computa-
tionally expensive, highly parallelized programs for operational weather forecasting,

https://www.anaconda.com/products/individual
https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://jupyter.org/
https://fortran-lang.org/
https://wg5-fortran.org
https://wg5-fortran.org

14 1 Introduction and the Purpose of this Book

atmospheric chemistry and transport modeling, and Earth system or climate simu-
lations have been written in Fortran.
As Fortran is a compiled language we need a compiler. The choice of compilermay

depend on the operating system and your personal preference. For example, Fortran
code presented in this book has been developed on both the Microsoft Windows and
the Linux platforms. Under Windows we have chosen to use the Intel® Fortran com-
piler, known as “ifort”, via integration intoMicrosoft Visual Studio Community 2019
(which provides an edit-compile-run IDE (see below)). For students, the Intel® For-
tran compiler is available for free as part of the Intel® oneAPI HPC Toolkit. We also
compile and execute example programs using the free GNU “gfortran” compiler on
a Linux environment.1 In this case we create a text file, say test.f90. If we were
to use the gfortran compiler, then within a terminal or command prompt we would
create an executable file example.out by entering the following command:

gfortran -o example.out test.f90

Upon successful compilation, we can run this executable within the Linux terminal
by entering the command ./example.out. In this very simple example we have
omitted a number of additional compiler options that can tell the compiler what level
of optimization is required, which we cover in more detail in Section 8.2.1.

● Julia [Official documentation: https://julialang.org/]: At the time of writing, Julia is
a relatively new programming language positioned at version 1.6. There is growing
interest in Julia as it was created with the understanding that Scientific computing
has traditionally required the highest performance, yet domain experts have largely
moved to slower dynamic languages for daily work (https://julia-doc.readthedocs.
io/en/latest/manual/introduction/). Indeed, once you start creating code in Julia,
you may find a number of similarities to the Python syntax though the speed of
the code, thus time-to-solution, can approach that of Fortran [31]. Julia achieves
this using just-in-time (JIT) compilation, where the code we write is compiled to
machine code during execution of a program rather than before execution. There
are a number of very useful features provided in Julia, including the ability to imple-
ment automatic differentiation of the code you write. Likewise, whilst the ecosystem
of tools in Julia may not match that of Python, for numerical computing there are
over one hundred differential equations solvers available. Like Python, Julia also
has a package manager to help integrate a range of modules into your workflow.
You can install Julia following the instructions on the official Julia web page. Once
installed, you can open a Julia console and type] to enter Package management
state, also known as Pkg. Please refer to the documentation for installing pack-
ages (https://docs.julialang.org/en/v1/stdlib/Pkg/). Again, we can create a text file
that contains Julia code which we then wish to run. Imagine we create a file called
test.jl. Once Julia is installed on your machine, open up a terminal [Max/Linux]
or command prompt and we can run our files as follows:

julia test.jl

1 Note that on some Linux distributions, “f95” is a synonym for “gfortran”.

https://julialang.org/
https://julia-doc.readthedocs.io/en/latest/manual/introduction/
https://julia-doc.readthedocs.io/en/latest/manual/introduction/
https://docs.julialang.org/en/v1/stdlib/Pkg/

1.3 Representing Aerosol Particles as Model Frameworks 15

● Matlab [official web site: https://uk.mathworks.com/products/matlab.html]: Matlab
is a proprietary software product that provides a userwith an interactive development
environment, through aGUI. Developed byMathworks,Matlab has been used across
academia and engineering widely for a number of decades and is particularly useful
when prototyping new ideas. When working within the Matlab GUI you will have
access to a range of tools packaged in to a series of toolboxes, depending onwhich
license you have access to. For example, according to the official documentation,
the Partial Differential Equation Toolbox𝑇𝑀 provides functions for solving structural
mechanics, heat transfer, and general partial differential equations (PDEs) using finite
element analysis.We can write Matlab code in a text file that has the .m extension.
In the most recent versions, the user can execute Matlab code from a number of lan-
guages, including C/C++, Fortran, Java, and Python. Likewise, Matlab code can call
functions developed in other languages. Whilst you can run Matlab code from the
command line, it is more common to run code from within the Matlab GUI using
the menu options provided (clicking on the run icon provided).

Each language has its own unique syntax. As youmove between different languages,
you will find some are similar in style and this can make it easier to translate the same
theory into multiple languages or convert an existing code base into another language.
Products such as Matlab come with their own integrated development environment
(IDE), providing a user with a code editor that is able to highlight the variable syn-
tax you use to construct a code file. Alternatively, you may be using the Spyder IDE
to develop Python or Microsoft Visual Studio to develop Fortran code that likewise
provide syntax highlighting. However, there are a number of alternative text editors
that can be used in isolation. Syntax highlighting refers to the keywords of the given
programming language being highlighted in bold, or as another color, often with auto-
repeat and hints on usage. Using an IDE as you code up the many code snippets
provided in this book, you will notice that some of the text commands and words used
are colored in a particularway. This allows us tomore easily identify different structural
components to our code. In terms of available text editors, Atom (https://atom.io/) is a
cross-platform, free to use text editor that also integrates with Git and GitHub directly
(see Section 8.4.3). For Windows users, Notepad++ likewise provides a flexible syn-
tax highlighting environment (https://notepad-plus-plus.org/downloads/). Try a few
different text editors; often the choice can be somewhat personal depending on the
machine and how your project evolves.

1.3 Representing Aerosol Particles as Model Frameworks

In the previous section, we provide a brief overview on the physical and chemical char-
acteristics of atmospheric aerosol particles and the subsequent processes covered in
this book. As you read each chapter, you will find a specific method for translating the
theory that underline these processes into code.
There are multiple approaches to represent an aerosol particle, and population of

particles, within a numerical model. The information that we represent and there-
fore track throughout a simulation brings together layers of chemical complexity and
metrics that represent the physical state of the condensed phase. Likewise, we have to

https://uk.mathworks.com/products/matlab.html
https://atom.io/
https://notepad-plus-plus.org/downloads/

