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Preface

In physics, classical analysis plays a central role. For instance in Newtonian
mechanics, thermodynamics, and electricity, many phenomena are well explained
by deterministic models involving either ordinary differential equations or partial
differential equations.

In the deterministic world, theoretically, the future evolution of a system depends
on initial conditions and on some parameters driving its own dynamics; never-
theless, in practice, their values are often measured with uncertainty. Moreover,
the theory of chaos explains that small variations in the initial data can generate
big fluctuations later on. In addition, deterministic models used for representing
complex phenomena currently require a huge number of equations which are
either difficult or impossible to solve within a reasonable time. In fact complexity
and uncertainty can be integrated directly via a probabilistic model. Mention can
be made of statistical mechanics, networks (Internet, gene interaction), financial
markets, and percolation. In probability theory, a random quantity which fluctuates
as a function depending on time is modeled by a stochastic process. On a given
probability space (�,F , P ), a process X = (Xt(ω), t ∈ [0, T ], ω ∈ �) is
a “measurable” collection of random variables which are defined on the same
underlying space and take their values in some space E. A process depends on
time t and on the random realization ω. Fixing ω, t �→ Xt(ω) is a real function,
often called path or trajectory of the process. In the sequel, the process X will be
denoted either (Xt) or (X(t)), omitting the variable ω. For the sake of simplicity, in
this introduction, we essentially only deal with E = R.

In deterministic analysis, differentiation and integration play an important role.
Consider two functions f, x : R → R which are assumed to be differentiable.
Thus, the derivative of t �→ f

(
x(t)
)

at time t is f ′(x(t)
)
x ′(t). This property is

equivalent to

f
(
x(t)
) = f

(
x(0)
)+
∫ t

0
f ′(x(s)

)
x ′(s)ds =

∫ t

0
f ′(x(s)

)
dx(s), t ∈ [0, T ], (1)

where the latter integral is intended in the sense of Lebesgue-Stieltjes.

vii
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Now, let
(
(X(t), t ∈ [0, T ]) be a real valued stochastic process. Fixing ω,

the path t �→ X(t, ω) is generally continuous but is neither differentiable nor
with bounded variation as it happens in particular when X is a Brownian motion.
Therefore, even if f is C1, (1) cannot be applied since t �→ f

(
X(t)

)
is not

differentiable. An important field in probability theory is the so called stochastic
calculus which combines probability and calculus, and allows in particular

1. giving a sense to integrals (in time) of the type
∫ t

0
f ′(X(s)

)
dX(s),

2. developing a useful and efficient (stochastic) calculus, i.e., a formula for
differentiating f

(
X(t)

)
as (1),

for a large class of non-differentiable processes X and functions f .
In fact, for a given integrator process

(
Xt , t ∈ [0, T ]), more generally, one goal

of stochastic integration is to define the stochastic integral
∫ T

0
Y (s)dX(s) for a

large class of integrands
(
Yt , t ∈ [0, T ]) also defined on the same probability

space. Obviously, if for almost all ω, the path t �→ Xt(ω) were differentiable

and
∫ T

0
|Yt (ω)Ẋt (ω)|dt < ∞, the above-mentioned stochastic integral could be

defined as the Lebesgue integral in time for almost all ω. As mentioned earlier,
most of the significant processes intervening in classical stochastic models are not

differentiable, so that the previous scheme does not permit defining
∫ T

0
Y (s)dX(s).

Classical stochastic integration is a nice combination of Lebesgue integration and
martingale theory. The most famous (stochastic) integral is the Itô integral which is
defined for instance when the integrator is the Brownian motion X = W . However,
modern (Itô’s) stochastic integration can be developed in a more general setting,
which refers to the case when X is a semimartingale with respect to an underlying
filtration (Ft )t≥0, i.e., the sum of a (local) (Ft )-martingaleM and an (Ft )-“adapted”
(i.e., non-anticipative) bounded variation process V . Here, we essentially deal with
continuous semimartingales, i.e., when M and V are continuous processes. If Y
and X are both semimartingales, another celebrated integral is the so called Fisk-
Stratonovich integral, denoted by

∫ t
0 Y ◦ dX which coincides with the sum of

Itô’s integral
∫ t

0 YdX and half the (oblique) bracket 〈Y,X〉 between the martingale
components of Y and X. When X = Y , one also denotes 〈X〉 := 〈Y,X〉. Itô’s
(and Fisk-Stratonovich’s) integral only allows non-anticipating integrands Y with
respect to the semimartingale integrator X. A process (Yt ) is said to be adapted if,
for any t , the random variable Yt is Ft -measurable. In many situations (Yt ) must
be progressively measurable, which is a more stringent notion, see Definition 2.9.
Time evolution plays a crucial role in dynamical physical systems and most of the
interesting (random) quantities Y are adapted to the information carried by X. At
time t , this information is concentrated in the σ -field Ft , which is generated by the
collection of random variables (Xu, 0 ≤ u ≤ t). In stochastic models for finance, at
each time t , the investor knows the assets (stocks, bonds, interest rates) price (Xt )
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in a given market. Thus, the portfolio composition Y of the investor at time t , must
be non-anticipating for the increasing family of σ -fields

(Ft

)
. If X is a Brownian

motion,
(Ft

)
is called a Brownian filtration.

Given a progressively measurable integrand process (Yt ), and a semimartingale

X = M + V , the Itô integral
∫ t

0
YsdXs is defined as the sum of

∫ t

0
YsdMs and

∫ t

0
YsdVs . The former one makes major use of the martingale property of M and

the second integral is defined for any ω as the classical Lebesgue integral under the

assumption
∫ T

0
|Ys |d‖V ‖s < ∞, where ‖V ‖ stands for the total variation process

of V . In order to give a sense to the stochastic integral with respect to the martingale
M , let us start with a bounded and piecewise constant process of the type Yt =
Y−110(t) +

N−1∑

i=0

Yi1]ti ,ti+1](t), t ∈ [0, T ], where Yi is Fti -measurable, Y−1 is F0-

measurable and 0 = t0 < · · · < ti < · · · < tN = T is a subdivision of [0, T ]. It
seems reasonable to set

∫ t

0
YsdMs := Y−1M0 + Y0(Mt1 −Mt0)+ · · · + Yi(Mt −Mti ), (2)

for any t in [ti , ti+1]. We denote by E the class of such elementary processes Y . It
can be proved, see Sect. 5.1, that the map I , which to any Y ∈ E associates the

stochastic integral
(∫ t

0 YsdMs, t ∈ [0, T ]
)

is linear, takes its values in the set of

continuous local martingales (see Definition 2.21), where that space of continuous
stochastic processes is equipped with the topology of the uniform convergence in
probability. Moreover, the map I can be prolonged by continuity to the space of

progressively measurable processes Y such that
∫ T

0
Y 2
s d < M >s< ∞ almost

surely. In the particular case of Brownian motion M = W , we have < W >t= t for
any t ≥ 0.

The class of progressively measurable processes (resp. semimartingales) is the

right setting for integrands (resp. integrators). Indeed the map Y ∈ E �→
∫ ·

0
YdX

is continuous if and only if X is a semimartingale, according to the celebrated
Bichteler–Dellacherie theorem, see Section III.7 in [273], or Section IV-2.16 in
[276] or Section VIII.4 in [78].

As already pointed out, classical objects of real analysis are ordinary differential
equations, which can be expressed in the differential form or equivalently in the
integral form. Their stochastic counterpart are the so called stochastic differential
equations (SDEs). They appear in an integral formulation, since there is no
natural path-wise differentiation for stochastic integrators like semimartingales, in
particular Brownian motion.
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The most celebrated SDEs are those driven by a classical Brownian motionW =
(Wt ), whose coefficients a, b : [0, T ] × R → R are Borel functions, and an initial
value ξ which is a random variable independent of (Wt ), i.e.,

Xt = ξ +
∫ t

0
a(s,Xs)dWs +

∫ t

0
b(s,Xs)ds, t ∈ [0, T ], (3)

where
∫ t

0
a(s,Xs)dWs is an Itô integral, which is a (local) martingale. In particular

a solution is a semimartingale whose value at 0 is ξ , its local martingale part is∫ t

0
a(s,Xs)dWs and its bounded variation component equals

∫ t

0
b(s,Xs)ds. For

them, it is often convenient to adopt the improper differential formulation

{
dXt = a(t,Xt)dWt + b(t,Xt)dt

X0 = ξ.
(4)

The solutions of SDEs of the type (4), are called diffusion processes or diffusions.
The family of diffusions processes is an important subclass of the one of semimartin-
gales. In physics, the motion of a microscopic particle in a medium with velocity
b(t, x) at time t and position x, subjected to noise perturbation, with intensity a, is
often described by a diffusion. In Chaps. 12 and 13 we develop the classical theory
of SDEs and mainly study existence and uniqueness. The SDE (4) admits multi-
dimensional and infinite dimensional formulations, see [73].

Note that if the diffusion coefficient a vanishes then (4) is an ordinary differential
equation, for which the differential calculus is the main device. In order to study
stochastic differential equations, one needs the aforementioned Itô’s stochastic
calculus, supporting Itô stochastic integration. The central feature of that powerful
calculus is the so called Itô’s formula, which is in fact a change of variable formula.
That instrument constitutes the stochastic extension of the fundamental theorem of
integral calculus or chain rule property stated in (1). Let us assume that f : R → R

is of class C2 and X is a semimartingale. Then (1) can be generalized into

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)dXs + 1

2

∫ t

0
f ′′(Xs)d < X >s, 0 ≤ t ≤ T . (5)

IfX is a differentiable process, then < X >= 0 since its martingale part is constant.
In the Stratonovich formulation (5) can be also written as

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)dXs + 1

2
〈f ′(X),X〉t , 0 ≤ t ≤ T . (6)
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When f : R+ × R → R is of class C1,2, then (5) extends to

f (t,Xt ) = f (0,X0)+
∫ t

0
∂sf (s,Xs)ds +

∫ t

0
∂xf (s,Xs)dXs

+ 1

2

∫ t

0
∂2
xxf (s,Xs)d < X >s, (7)

where 0 ≤ t ≤ T . In Sect. 14.2 we will extend (6) to the case where f ∈ C1,
thus retrieving the fundamental theorem of integral calculus, see also considerations
below.

Although Itô’s stochastic calculus is a powerful apparatus, it is based on
two important prerequisites, mentioned earlier: the fact that the integrand is
progressively measurable and the semimartingale property. Those are significant
restrictions. We give below several motivations for introducing stochastic integrals
in the case when the integrand (Yt ) is either non-adapted (anticipating) or the
integrator (Xt ) is a not a semimartingale.

1. The problem of anticipation. In some circumstances one needs to introduce
stochastic integrals, where the integrator S is an (Ft )-semimartingale and the
integrand of the type Yt := φ(A, t) where (φ(x, ·)) is (Ft )-adapted, for any
x ∈ R and A is a random variable which is not F0-measurable. In this case (Yt )
is generally non-adapted. This situation arises for instance when (φ(x, ·)) is the
solution of (3) for ξ ≡ x and A is an initial condition which is not independent
of W and (Ft ) is the Brownian filtration generated by W . Let us give another
example raising from finance. Let (St )0≤t≤T be an asset price, supposed to be
a semimartingale. Let consider an insider who has an information on the price
at the maturity T . He will possibly invest on a portfolio whose composition
takes into account ST . Therefore, the cumulated wealth will possibly integrate

expressions of the form
∫ t

0
ψ(ST , t)dSt , where φ(x, t) is, for any x ∈ R, non-

anticipating. Indeed many authors have modeled the behavior of an inside trader,
starting from the early works of Grorud and Pontier, see [154].

The question of defining integrals with integrands of the type Yt := φ(A, t)

has already been considered. Let (Gt ) be the "smallest" filtration which contains
the initial filtration (Ft ) and such that the random variable A become G0-
measurable. The theory of enlargement of filtration gives conditions on A so
that all the (Ft )-semimartingales are also (Gt )-semimartingales. In that case, the

integral
∫ t

0
φ(A, s)dXs is defined in the usual way by Itô stochastic calculus.

The (initial) enlargement of filtrations cannot however always be used for
defining such integrals. Even when X is a Brownian motion there are filtrations
under which X is no longer a semimartingale, see e.g. Exercise 11.1.

One central integral in calculus via regularizations is the forward integral,
which will be introduced below, and for which substitution formulae are
available. One of them states that, under certain conditions, the forward integral
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∫ t

0
φ(A, s)d−Xs equals the Itô integral

∫ t

0
φ(x, s)dXs |x=A, in which the r.v.

A substitutes the parameter x. Through those substitution formulae, it is also
possible to solve stochastic differential equation with an anticipating initial
condition, see [248, 286] and also Sect. 11.3.

Anticipation can also occur considering certain stochastic equations as in (4),
but where the positions at time 0 and 1 are given. Equations of the first and
second order type were investigated by [251, 250, 249, 85]. Again, in this case,
there is no reason why the possible solutions have to be adapted with respect to
a Brownian filtration.

Another source of anticipation comes from double integrals. F. Flandoli
[116] under the inspiration of A. Chorin (see [56]), proposed several static
probabilistic models for vorticity filaments (turbulence, fluidodynamics) based
on a standard Brownian motion W . The idea was to find a replacement tool
to overcome mathematical problems in Navier-Stokes modeling. The energy
associated with these filaments involves apparently innocent expressions of

the type
∫

[0,T ]2
g(Wt − Ws)dWsdWt for a real function g with a singularity

at zero. However previous integral cannot be handled only with basic Itô’s
calculus techniques. Reasonably, using symmetrization arguments, previous

integral should be equal to 2
∫

[0,T ]

(∫ t

0
g(Wt −Ws)dWs

)
dWt , so to an iterated

integral. The inner integral naturally involves Wt as an anticipating random
variable: it can be defined via the enlargement of filtrations, or via time reversal
tricks as in [116]. If we replace W with a general semimartingale, these tricks
cannot be used any more, even when g is smooth. We remark that a precise
sense for previous double integrals, whenW is replaced by a fractional Brownian
motion with index H > 1

4 and g is singular, was performed in [122]; see also
[320] for a related contribution. In [122], the authors used the theory of stochastic
currents, see also [121]. The time evolution of a vorticity filament was modeled
in [32].

2. The irregularity. A particle moving in a random irregular medium can be repre-
sented (see [168, 217]) as the “solution”X of a stochastic differential equation of
type (4) where the drift b(t, x) = β ′(x) is the derivative of a two-sided Brownian
motion β independent from (Wt ), i.e., a Gaussian white noise. Here, the difficulty

comes from giving a sense to the formal integral
∫ t

0
b(Xs, s)ds =

∫ t

0
β ′(Xs)ds,

rigorously characterized for instance in [119, 120, 283, 302], even though the

paths t �→
∫ t

0
β ′(Xs)ds have no bounded variation. Indeed Xt is the sum of a

local martingale and the former integral, and generally it is not a semimartingale.
In [119, 120, 283], the authors used the stochastic calculus via regularization and
in [302] the theory of Dirichlet forms was exploited.

3. Gaussian noises. The class of Gaussian processes is extremely rich in non-
semimartingales, even though they constitute a pillar of the theory of stochastic
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processes. A famous example is the fractional Brownian motion (fbm) (BH
t ),

which was introduced by Mandelbrot and Van Ness [215], after a seminal idea
of Kolmogorov [186]. H is a parameter called the Hurst exponent and belongs
to ]0, 1]. This terminology is related to the contributions of H.E. Hurst and
coauthors, see e.g. [169, 170]. A fractional Brownian motion with the Hurst
exponent H is a semimartingale if and only if H = 1/2. In that case it coincides
with the classical Brownian motion. WhenH > 1/2, fractional Brownian motion
can be used to model long memory phenomena. It has been frequently used in
mathematical finance, the life sciences, hydrology and image recognition, see
[255, 157, 39, 54, 331]. Plenty of Gaussian processes have been proposed to
generalize fractional Brownian motion, among them we can mention bifractional
Brownian motion [166, 284] and multifractal processes, see [10, 11].

The theory of stochastic integration with respect to fractional Brownian
motion is relatively recent, see for instance, see [338, 75, 74, 92]. The first
paper made use of fractional calculus techniques, the others Malliavin-Skorohod
techniques. The literature of the last twenty years includes a huge number of
contributions to stochastic calculus with respect to fbm using Skorohod integrals.
Typical examples are [6, 5, 7, 228, 190, 189], the latter making use of the
stochastic via regularizations. Fractional integral techniques belong to pathwise
integration tools, i.e., for every random realization ω, one defines a deterministic
integral, alternatively to Young type integrals, see considerations below.

Generalized stochastic integration is a way of defining stochastic integrals of the

type
∫ t

0
YsdXs for integrators (Xt) and associated integrands (Yt ).

There are essentially three approaches to define generalized stochastic integrals:
pathwise integrals (with its extension constituted by rough paths theory) and
Malliavin-Skorohod calculus.

Pathwise integrals One first defines a deterministic “integral” 
 on C1 × C2,

where Ci , i = 1, 2, are two classes of functions defined on [0, T ] and C2

includingC1([0, T ]).
 is a suitable extension of (f, g) �→
∫ T

0
f (s)dg(s) when

g is of class C1. Secondly, the generalized stochastic integral of (Yt ) with respect
to (Zt ) is defined as 
(Y,Z), for any processes (Yt ) and (Zt ) such that almost
surely,

(
(Yt )t∈[0,T ], (Zt )t∈[0,T ]

)
belongs to C1 × C2.

One of the most famous pathwise integrals is Young’s. L.C. Young in 1936
[335] where C1 (resp. C2) is the class p-variation (resp. q-variation) functions
and 1

p
+ 1

q
> 1. It should be recalled that the notion of p-variation was defined

by [330], the 1-variation of a function coincides with its total variation and any
Hölder continuous function with parameter α ∈]0, 1] admits a p-variation for
any p > 1/α. The corresponding map 
 is then suitable to define generalized
stochastic integrals involving the fractional Brownian motion Z = BH as
an integrator and a β-Hölder continuous process (Yt ), with β > 1 − H as
an as integrand. Indeed the paths of BH are α-Hölder continuous with 0 <

α < H . The integration approach based on Hölder continuous functions was
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extended in [278] to Besov spaces using duality between those functional spaces.
In a series of papers [338, 340, 339], Zähle introduced generalized integrals
via fractional calculus. Other refined (deterministic) integrals of the Riemann
type are Kurzweil-Henstock and McShane integrals. The first was introduced
independently by Henstock and Kurzweil, see [196, 160, 197, 159]. For the
second one we refer for instance to [221]. Some applications to stochastic
calculus were considered in [220, 219]. An important step was taken by Föllmer
in [125], who, after fixing a family of subdivisions of the interval [0, T ], defined
a forward type integral

∫ T
0 YdX as the limit of

∑N−1
i=0 Yti (Xti+1 −Xti ) when the

mesh of the subdivision converges to zero, 0 = t0 < . . . < tN = T being a
typical element of the subdivision. It is not, however, our intention to provide
a complete discussion on pathwise integrals. A monograph providing a good
survey of the history of the subject is [91].

Rough path analysis In [209, 212] T. Lyons and coauthors studied differential
equations driven by an integrand process having a p-variation for p ≥ 2,
introducing the so called rough path theory which extends in several aspects
the techniques of Young’s integral, see [335, 336, 337]., The seminal studies of
T. Lyons were continued by many authors. Among the contributions, we can cite
[204, 155, 133, 167], where in particular were produced deterministic integrals
and a related calculus. The theory of differential equations as well as the integrals
maintain the calculus (which is completely deterministic) separated from the
applications to stochastic analysis.

The basic idea of the rough path theory is that the knowledge of the single path
is not sufficient and one needs more information. Indeed, the implementation of
the theory does not only depend on an n-dimensional path x = (x1, · · · , xn),
but also relies on related multiple integrals. For instance, if x is a p-variation
function with 2 ≤ p < 3, the rough path theory applies once the double integrals∫
xidxj , for any 1 ≤ i, j ≤ n are concretely specified, or equivalently all

the Lévy areas L(xi, xj ), see Sect. 6.7. A significant implementation of this
approach to stochastic analysis was performed by [67], where x = BH is
the fractional Brownian motion with the Hurst index H ; the authors defined
arbitrarily

∫
xidxj as Skorohod-Stratonovich integrals. Differential equations

driven by x admitting Lévy areas are well-posed, if, for instance, the coefficients
are smooth and bounded together with their derivatives. Moreover, the solutions
depend continuously (with respect to the p-variation distance) on x and on the
iterated integrals.

Malliavin-Skorohod calculus Malliavin calculus is an infinite dimensional cal-
culus whose first applications concern the functionals of an underlying Brownian
motion. The associated path space is the Banach space �0 := C

([0, T ]) of
continuous functions defined over [0, T ] and is equipped with the Wiener mea-
sure P which is the law of the Brownian motion, considered as random element
taking values in �0. One important subspace of the Wiener spaceC

([0, T ]) is the
Cameron-Martin space W 1,2([0, T ]) whose elements are absolutely continuous
functions whose derivative belongs to L2

([0, T ]). The first denomination of
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this calculus over �0 given by P. Malliavin himself was stochastic calculus of
variations. We mention four complete books on that topic: [246, 214, 328, 324].
Malliavin calculus has two main classes of applications: the density estimate of a
generic random variable and the definition of a stochastic integral with respect to
anticipative integrands. In this monograph, we are particularly interested in the
second application: Chap. 10 is devoted to a short introduction to the Malliavin
calculus techniques applied to stochastic integration. In fact the Malliavin
calculus approach to stochastic integration is is often associated to a theory of
distributions on Wiener spaces which makes use the so called Sobolev–Watanabe
space, see in particular [328]. We mention two alternative methods to this infinite
dimensional calculus. One is the so called white noise calculus, see [162]; started
by Hida. The second one was realized by Krée and his group, see e.g. [188].
The main tool of Malliavin calculus is the derivative or the gradient. . The
Malliavin derivative

(
DtF, 0 ≤ t ≤ T

)
of a random variable F is a square

integrable process, i.e., an element of L2
(
� × [0, T ]). The dual map of the

Malliavin gradient is the divergence operator, also called Skorohod integral.

It permits defining a generalized stochastic integral
∫ T

0
YδW for a large class

of processes (Yt ). When (Yt ) is a progressively measurable process, then
the associated Skorohod integral coincides with the usual Itô integral. Many
non-adapted processes are Skorohod integrable, in particular those processes
which admit a "good" Malliavin derivative. Malliavin calculus associated with
Brownian motion extends to the case of general Gaussian processes replacing the
classical Wiener space with the one of abstract Wiener spaces, see [328]. That
approach is nevertheless too abstract and not very readable for stochastic calculus
purposes. Concrete applications to the calculus related to fractional Brownian
motion appeared in [75] and later in [6, 5, 68, 36]. More generally the calculus
was extended to general Gaussian processes X represented via an underlying
Brownian motion W and several kernel G, see e.g. [7, 247, 206, 228]. Later, an
intrinsic Skorohod calculus related to Gaussian processes with given covariance
function R was developed in [190, 189]: [190] discussed (resp. [189]) the case
when the covariance function R is more regular (resp. more singular) than the
covariance of Brownian motion.

Malliavin calculus related to Lévy processes (as well as some generalizations
to Lévy measures) has been developed by many authors, see in particular the
monograph [83] and references therein.

In the literature appear other definitions of the stochastic integrals, by means
of functional analysis type approximations. A classical one is the so called
Ogawa integral, see [254], which was shown, under certain conditions, to equal
a Stratonovich-symmetric integral, see [253].

Palaiseau, France Francesco Russo
Vandœuvre-lés-Nancy, France Pierre Vallois
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We now introduce the heart of this monograph: the stochastic calculus via regular-
izations, which is an alternative and unifying method for bringing up stochastic
integrals with respect to general integrators and integrands. The foundations of
stochastic calculus via regularizations for continuous integrators were settled in
[285, 286, 289, 292, 290, 118, 117]: a not so recent survey paper appeared in [293].
In [341], the author considered a useful extension of the forward integral based
on a supplementary regularization. In the case where the integrator has jumps, the
related theory was first made known in [287] but later, important contributions were
made by the Norwegian school, see Chapter 15 of [83] and references therein. More
recently a systematic calculus for calculus via regularization with cadlag integrators
has been developed in [13]. In the last three decades, calculus via regularization
was applied in several circumstances, see, e.g., [205, 82, 35], and even for the
stochastic evolution equation, see, e.g., [320]. Regarding financial applications,
stochastic calculus via regularization has been successfully used in several cases,
which go beyond the enlargement of filtrations, see for instance [34, 207, 83, 71].
Now, in order to exclude arbitrages, in general the underlying stock price has
to be a semimartingale, see e.g. [76]. Nevertheless, financial models based on
non-semimartingales processes were considered and justified in the regularization
framework, see [69] and with other techniques, see e.g. [52, 22, 299, 306, 342]. This
approach is related to the first attempt to treat robustness in mathematical finance.
Other financial applications, this time related to the maximization of the utility of
an insider, were also explored in the regularization framework, see e.g. [207, 185].
As mentioned earlier, a significant application to the modeling of vorticity filaments
via calculus via regularizations was discussed in [122].

Let us briefly explain the principle of our approach to one-dimensional processes.
For the sake of simplicity, we restrict ourselves to a continuous integrator X and a

locally integrable integrand Y . In order to define the stochastic integral
∫ t

0
YsdXs

we proceed by first replacing the infinitesimal increment dXs = Xs+ds − Xs by
Xs+ε − Xs

ε
ds, and second by taking the limit for ε → 0. Consequently, the forward

xvii
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integral
∫ t

0
Yd−X is defined as the limit in probability as ε goes to 0 of

I−(ε, Y, dX)(t) :=
∫ t

0
Ys
Xs+ε −Xs

ε
ds, t ∈ [0, T ], (1)

when it exists. We define similarly the backward integral (resp. symmetric

integral)
∫ t

0
Yd+X (resp.

∫ t

0
Yd◦X) as the limit of I+(ε, Y, dX)(t) (resp.

I ◦(ε, Y, dX)(t)) where the elementary increment of X is
Xs −X(s−ε)+

ε
ds
(
resp.

Xs+ε − X(s−ε)+
2ε

ds
)

instead of
Xs+ε −Xs

ε
ds .

In the deterministic environment, for instance when either Y or X is a bounded
variation continuous function, then taking either the forward or the backward or the
symmetric definition does not change the limit. However, in the stochastic setting,
the three integrals can be very different. For instance, if Y and X are continuous
semimartingales then the forward integral coincides with the usual Itô integral and
the symmetric integral equals the Fisk-Stratonovich one.

In the perspective of a stochastic calculus associated with these generalized
integrals we introduce the covariation [X,Y ] of X and Y as the limit (again in
probability) of

C(ε,X, Y )(t) :=
∫ t

0

(Xs+ε −Xs)(Ys+ε − Ys)

ε
ds, (2)

as ε → 0.
In the particular case where X = Y then [X] := [X,X] is the quadratic variation

of X.
Stochastic calculus via regularizations requires a relatively simple formalism. On

the one hand it is close to pathwise calculus, on the other hand it takes into account
the randomness, being the limits of the ε-integrals in the sense of the convergence
in probability. Moreover, it allows connecting different types of pathwise and
non pathwise integrals such as Young’s, fractional, Skorohod, stemming from the
enlargement of filtration and so on.

Let us give briefly a few features of these integrals and covariations.

1. Several algebraic relations exist between these objects. For instance, the sym-
metric integral is the half-sum of the forward and the backward integrals if they
exist.

2. If Y is a progressively measurable process with left limits and X is a continuous

semimartingale, then the forward integral
∫ t

0
Yd−X equals the Itô integral

∫ t
0 YdX.
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3. If Y and X are two continuous semimartingales, then [Y,X] is equal to the usual
covariation of the martingale parts of Y and X, denoted by 〈Y,X〉. In particular,
if Y is a square integrable martingale, then Y 2

t − [Y, Y ]t is a martingale.
4. In the case where [X] exists, X is called finite quadratic variation process. A

process X for which [X] = 0 is called zero quadratic variation process.
5. Although [X,Y ] is a bounded variation process when X and Y are semimartin-

gales, in the general case this property may fail.
6. When X = W is a Brownian motion and the integrands are adapted, Skorohod

and forward integrals equal the Itô integral. However, when the integrand is non-
adapted, Skorohod and forward integrals differ by a “trace” term involving the
Malliavin derivative of the integrand, see Sect. 10.3 for details.

We come back to the Itô formula (5). Given a smooth function f : [0, T ] ×
R → R, with respect to the second variable, one feature of any generalized
stochastic calculus is to formulate an Itô type formula which expands f (t,Xt ),

generalizing (5). If X = M + V is a semimartingale, and f ∈ C1,2, an obvious
restatement of (5) is

f (t,Xt ) = M
f
t + A

f
t , t ∈ [0, T ], (3)

with

M
f
t := f (0,X0)+

∫ t

0
∂xf (s,Xs)dMs (4)

and

A
f
t =

∫ t

0
∂sf (s,Xs)ds +

∫ t

0
∂xf (s,Xs)dVs + 1

2

∫ t

0
∂2
xxf (s,Xs)d < X >s .

(5)

The decomposition (3) shows that f (t,Xt ) is a semimartingale, Mf being the
(local) martingale component.

The quadratic variation appears to be one of the fundamental tools of classical
stochastic calculus. In the calculus via regularizations, the quadratic variation and
more generally the covariation, constitutes a central object as well. When X is a
continuous local martingale, [X] could also be defined as the unique non-decreasing
and adapted process such that X2 − [X] is a local martingale. However, [X] has
an intrinsic existence and does not depend on the underlying filtration since, by
definition, it is the limit of C(ε,X,X), as ε → 0, see (2). The family of finite
quadratic variation processes is stable via C1-transformation, in the sense that when
f ∈ C1, and X is a finite quadratic variation process then the same property
holds for f (X) is a finite quadratic variation process, see e.g., Remark 6.1. A
semimartingale X is always a finite quadratic variation process. Nevertheless f (X)
is not necessarily a semimartingale. Indeed, if W is a Brownian motion, Y = f (W)
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is not always a semimartingale, see Remark 14.4. We provide in Chap. 8 a list
of processes admitting a quadratic variation and which are not semimartingales.
Among them, we mention first stochastic Skorohod integrals of the type Xt =∫ t

0
asδWs, t ∈ [0, T ]. On the other hand various Gaussian processes are of finite

quadratic variation and they will be investigated in Sect. 8.3. One can also generate
finite quadratic variation processes which are not semimartingales by substitution
formulae. Indeed, let us consider a random field

(
X(t, y), t ∈ [0, T ], y ∈ R

)

such that for every y, (X(·, y)) is adapted with respect to a given filtration (Ft )

and is a finite quadratic variation process, for instance a semimartingale. Let G
be any random variable, note that X(·,G) is generally not adapted. Under certain
additional technical assumptions, it will be shown in Sect. 11.3 that X(·,G) is
also a finite quadratic variation process and the substitution formula holds, i.e.,
[X(·,G)](t) = [X(·, y)]|y=G(t). As anticipated earlier, forward integrals also fulfill
substitution formulae, as it will be shown in Sect. 11.3. This setting will also be
applied to study a stochastic differential equation driven by an (Ft )-semimartingale
and for which the initial condition X0 = G which is possibly not F0-measurable,
see Sect. 12.5.

For any finite quadratic variation process (Xt ), stochastic calculus via regular-
izations based on forward integrals includes the Itô formula

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)d

−Xs + 1

2

∫ t

0
f ′′(Xs)d[X,X]s, (6)

where f : R → R is of class C2. Itô formulae involving either backward or
symmetric integrals also exist, see Sect. 6.2. For instance, we have

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)d

◦Xs. (7)

Related Itô formulae, but based on Skorohod integral processes, can be found in
the literature, see e.g. [248, 21]. Previous framework can be extended in the three
following examples:

1. In stochastic calculus, as well as in the theory of Markov processes, the local
time of a process X plays a consequential role. If X is a semimartingale, its
local time can be defined through the density occupation formula. In fact, for

t ∈ [0, T ], it can be seen that the application g �→
∫ t

0
g(Xs)d〈X〉s admits a.s.

a density so there is a random field (t, a) �→ Lt (a) (called local time of X)
such that

∫ t
0 g(Xs)d〈X〉s = ∫

R
g(a)Lt (a)da, for every bounded Borel function

g : R → R. When f is the difference of two convex functions (or equivalently
the second derivative of f : R → R is a Radon measure), an application of
the local time consists in the so called Itô-Tanaka formula, which consists in
reexpressing (5), where the term

∫ t
0 f

′′(Xs)d < X >s (resp.
∫ t

0 f
′(Xs)dXs) is
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replaced with

1

2

∫

R

Lt (a)f
′′(da), (8)

(resp.

1

2

∫

R

f ′−(Xs)dXs), (9)

where f− is the left-derivative of f and f "(da) is the second derivative (as a
Radon measure) of f , in the sense of distributions.

When X is a semimartingale and f is only of class C1, N. Bouleau and M.
Yor in [42] obtained the change of variable formula

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)dXs − 1

2

∫

R

Lt (da)f
′(a), (10)

and introduced more generally integrals of the type
∫

R

g(a)Lt (da) for a contin-

uous function g. When f is a difference of two convex functions, we retrieve
the classical Itô-Tanaka formula via an integration by parts of the local time
integral in (10). In Sect. 14.3, we will show that the latter integral in (10) can
be expressed as an integral via regularizations. In fact, in some cases the local
time integral in (10) becomes a classical Itô integral: in particular, when X is a
standard Brownian motion, its local time Lt(a) is a semimartingale in a. Several
generalizations of the Bouleau-Yor formula were performed when f depends
both on space and time, see for instance in [127, 139, 17] or [97].

Let X be a semimartingale with canonical decompositionX = M+V . Let us
assume moreover that X is a reversible semimartingale, i.e.,

(
XT−t , t ∈ [0, T ])

is a semimartingale for any T , see Sect. 14.2. Then for f : [0, T ] × R → R of
class C1, it was proved in [290] that the decomposition (3) is still valid, where
(M

f
t ) is again (4), i.e.,

M
f
t = f (0,X0)+

∫ t

0
∂xf (s,Xs)dMs, (11)

and

A
f
t =

∫ t

0
∂sf (s,Xs)dVs + 1

2
[∂xf (·,X),X]t , (12)

see Theorem 14.1. If f is time-homogeneous, another way to express (3)
with (11), (12) is the compact formula (7). Applications and extensions to the
case when X is either a Brownian motion or a non-degenerate diffusion (which
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are in particular time-reversible semimartingale), are given for instance [16]. In
[120] the authors investigated the case of diffusions with a possibly irregular drift
coefficient and where the function f is time-homogeneous and belongs W 1,2

loc .
Extensions to the case where the integrator X has jumps were first obtained
by [108], using discretization techniques and recently in [13] using stochastic
calculus via regularizations. Other authors have obtained similar expressions
to (11) and (12) expressing the covariation term in (12), via a local space-
time representation, directly generalizing the Bouleau-Yor formula (10), see e.g.
[139, 96] and [98].

The case where the integrator X is multidimensional is indeed more delicate.
To our knowledge [290] was the first work concerning the Itô formulae of C1

functions of semimartingales. When f is a function in W 1,2
loc (R

n) and X = W+x

where W is an n-dimensional Brownian motion, a formula of the type (13) holds
only when x does not belong to a polar set of the Brownian motion, see [128]. If
f ∈ W

1,p
loc (R

n) with p > 2, generalizing [230], the authors in [231] established
that (3) holds for any x in R

n. Other significant contributions come from [267]
and [268], in which the remainder process Af is expressed in terms of local time
on curves and surfaces.

2. Föllmer-Dirichlet processes, or simply Dirichlet processes constitute a natural
class which generalize semimartingales. They were introduced in [126] in
a discretization framework. A Dirichlet process (Xt ) is the sum of a local
martingale (Mt ) plus a zero quadratic variation process (At ), whereM and A are
adapted with respect to a given filtration (Ft ). The decomposition X = M + A

is often called Fukushima decomposition in the spirit of [135] and is unique
once we take A0 = 0. It is clear that a semimartingale is a Dirichlet process
since a bounded variation process has zero quadratic variation. Moreover, it
is not difficult to show that a Dirichlet process is a finite quadratic variation
process. Consequently, the formula (6) holds if f ∈ C2. On the other hand,
if X is a Dirichlet process and f is assumed to be only of class C1, one may
ask if formula (7) holds true. It is not easy to answer this question in full
generality, although we have already mentioned that it holds if for instanceX is a
reversible semimartingale. Exploring another formulation, it can be proved, see
Proposition 14.2, that Dirichlet processes are stable under C1-transformations,
namely if (Xt) is a Dirichlet process then f (Xt) remains a Dirichlet process for
any function f of class C1. Moreover

f (Xt) = M
f
t + A

f
t , (13)

where Mf is defined by (4), i.e., Mf
t = f (X0) +

∫ t

0
f ′(Xs)dMs , M is the

martingale part of X and the quadratic variation of Af vanishes. Obviously, (13)
is the Fukushima decomposition of f (Xt ). We remark that Dirichlet processes
appear naturally since the image of a semimartingale (for instance a Brownian
motion) by a function of class C1 is a Dirichlet process. The literature contains
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many significant examples of Dirichlet processes, see e.g. solutions of stochastic
differential equation with generalized drift (see [119]) or the total amount of
time that a Brownian motion B spends, before some time t , below the level x,
composed with B, see [275].

Weak Dirichlet processes generalize Dirichlet processes and were introduced
in [107, 149] in the continuous case. A weak Dirichlet process X is the sum
of a local martingale M and a martingale orthogonal process A, in the sense
that A verifies the property [N,A] = 0 for any continuous local martingale N .
The decomposition X = M + A is unique. Of course, a Dirichlet process is
a weak Dirichlet process because the covariation between any local martingale
and a zero quadratic variation process A vanishes. Later, in [61], the authors
extended this notion to the case of jump processes and [13] formulated a
corresponding calculus. We empĥasize that the notion of Dirichlet process does
not look suitable for the case of cadlag jump process. Indeed if [A] = 0 then
A is forced to be continuous; in fact [A]t ≥ ∑

s≤t (�As)
2, see for instance

(1.16) in [289]. Moreover, when X is a weak Dirichlet process with finite
quadratic variation, (3) and (4) hold with f of class C0,1; in that case Af is a
martingale orthogonal process, see Proposition 15.3. In some sense (3) and (4)
are a proxy of generalized Itô formula. For instance, those were used in [148] for
establishing a verification theorem in stochastic control. Other similar Fukushima
decompositions can be found in [307, 322], where one made use of the theory of
time-dependent Dirichlet forms. Chapters 14 and 15 are particularly devoted to
these important processes.

3. Stochastic calculus via regularization has also been applied with integrators
which have no quadratic variation, see [107, 151, 152], and with the slightly
different language based on discretization approximations, by [237, 47]. Let us
give two significant examples in this direction. The first one concerns processes
X which have a finite strong cubic variation, see Sect. 16.3 for details. It can be
proved that, whenever f : R → R is of class C3, the associated Itô formula
takes the particular form

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)d

◦Xs − 1

12

∫ t

0
f (3)(Xs)d[X,X,X]s (14)

and [X,X,X] denotes the cubic variation of X.
The second example deals with processes having a fourth variation. In that

case, we have the Itô formula

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)d

◦Xs − 1

12

∫ t

0
f (3)(Xs)d

◦(3)Xs, (15)
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where f is of class C4 and the integral
∫ t

0
f (3)(Xs)d

◦(3)Xs is defined as

the limit in probability of
∫ t

0

f (Xs)+ f (Xs+ε)
2

(Xs+ε −Xs)
3

ε
ds as ε → 0.

Further developments are provided in Chap. 16. Stochastic differential equations
driven by finite cubic variation processes and martingales were investigated in
[70]. Those different extensions of Itô’s formula illustrate how the calculus via
regularization can mix pathwise and probabilistic arguments. These techniques
constitute an alternative route to the original pure deterministic rough paths
theory.

At the moment of publication of this book, the research activity in calculus via
regularizations is still very active, and much attention is conferred to integration
and calculus in Banach spaces, see [80, 144, 145, 79, 109, 62, 63, 66, 64]. Operator
valued forward integrals were successfully implemented by [272]. Similarly, the
fractional calculus type integration of M. Zähle was extended to infinite dimension,
see [165].

This book is destined to graduate students in probability and analysis together
with mathematicians who are not necessarily specialists in these fields. It develops
the theory of stochastic calculus via regularizations as a natural extension of
the classical stochastic calculus. Let us briefly present the organization of the
content. The first chapter recalls the basic tools in probability. The book is not
completely self-contained because for some specific well-known topics (such
as the construction of Brownian motion and Doob-Meyer decomposition of a
submartingale) we only state the results without any proof: in this case, precise
references are mentioned. Generalities related to processes, the definition, and the
main properties of semimartingales as well as the definition of Brownian motion are
provided in Chap. 2. The reader can find in Chap. 3 definitions and properties of
fractional Brownian motion and its extensions. The construction of Itô’s stochastic
integrals with respect to semimartingales is developed in Chap. 5. In Chap. 6,
we recall the usual rules of classical stochastic calculus for semimartingales and
more generally those concerning processes having a quadratic variation. A wide
variety of such processes is studied in Chap. 8. A specific section, i.e., Chap. 7,
is devoted to the change of probability measure on a given probability space. The
theory of Itô’s stochastic differential equations and its extension to the case where
the coefficients are non-Lipschtiz can be found in Chaps. 12 and 13, respectively.
As for standard stochastic analysis, we recall the key results concerning Malliavin
calculus in Chap. 10. Properties are given that are related to iterated integrals and
Hermite polynomials in the companion Chap. 9.

The main tools of stochastic calculus via regularization such as forward,
backward, symmetric integrals, covariation, and related properties are presented in
Chap. 4. In Sects. 4.4, 4.5, and 4.6, we introduce Young’s and fractional integrals
and we link them to the integrals via regularization. The stochastic integration based
on the theory of enlargement of filtrations and the Malliavin calculus are developed
in Chap. 11. We also compare these integrals with the forward/backward/symmetric



About the Book xxv

integrals and in particular integrals obtained by substitution theorems. Chapter 14
is entirely devoted to Dirichlet processes. Chapter 15 focuses on weak Dirichlet
processes.

Chapter 16 implements stochastic calculus via regularization in the case of
processes only being of finite n-variation for some n > 2. A more sophisticated
analysis based on compensation and weighted ε-integrals is developed to take into
account very irregular integrators. We conclude this book with Chap. 17, which
compares stochastic calculus via regularizations and rough paths and in particular
weak Dirichlet processes with stochastically controlled processes, i.e., the stochastic
version of weakly controlled path (in the sense of Gubinelli), see [155].
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Chapter 1
Review on Basic Probability Theory

1.1 Probability Spaces

We begin by recalling basic notions of measurability. Complements related to
abstract measure theory can be found in [280]. As far as probability theory is
concerned, the reader can consult, for instance, [57, 111, 112, 208, 234]. The reader
who prefers a direct introduction to probability theory can consult [277].

(1) A collection F of subsets of a non-empty set � is a σ -field (or a σ -algebra) if
F has the following three properties.

(a) � ∈ F.
(b) For any A ∈ F then the complement set Ac ∈ F.
(c) For any sequence (An)n≥1 of elements in F, then

⋃

n≥1

An ∈ F.

Let F be a σ -field. Then ∅ ∈ F and for any sequence (An)n≥1 of elements in F
one has

⋂

n≥1

An ∈ F.

The pair
(
�,F

)
is called measurable space. Let S be a collection of subsets of

�. Set σ(S) the σ -field generated by S, i.e., σ(S) is the smallest σ -algebra which
contains S. In particular when � = R

d and S is the set of open sets in R
d , the

σ -field B
(
R
d
) := σ(S) is the Borel σ -field.

(2) A function X : (�,F) → R
d , or simply X : � → R

d , is a random variable
(for short r.v.) if X is measurable : X−1(�) ∈ F for all � ∈ B

(
R
d
)
, where

X−1(�) := {ω, X(ω) ∈ �}. It is sometimes useful to consider r.v. taking values in
a general measurable space (E,E), called in the literature also random elements. In
this case E (resp. E) replaces Rd (resp. B(Rd)). If E is a topological space then E
will be, by default, its Borel σ -algebra.
When d = 1, it is said that X is a real random variable. If A ∈ F then 1A is the
indicator function of A.
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