
Procedural Content
Generation via
Machine Learning

Synthesis Lectures on
Games and Computational Intelligence

An Overview

Matthew Guzdial · Sam Snodgrass ·
Adam J. Summerville

Synthesis Lectures on Games and
Computational Intelligence

Series Editor

Daniel Ashlock, Guelph, ON, Canada

This series is an innovative resource consisting short books pertaining to digital games,
including game playing and game solving algorithms; game design techniques; artificial
and computational intelligence techniques for game design, play, and analysis; classical
game theory in a digital environment, and automatic content generation for games.

Matthew Guzdial · Sam Snodgrass ·
Adam J. Summerville

Procedural Content
Generation via Machine
Learning
An Overview

Matthew Guzdial
University of Alberta
Edmonton, AB, Canada

Adam J. Summerville
The Molasses Flood
Claremont, CA, USA

Sam Snodgrass
Modl.ai
Copenhagen, Denmark

ISSN 2573-6485 ISSN 2573-6493 (electronic)
Synthesis Lectures on Games and Computational Intelligence
ISBN 978-3-031-16718-8 ISBN 978-3-031-16719-5 (eBook)
https://doi.org/10.1007/978-3-031-16719-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of thematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-16719-5

Preface

In October 2016 at the very specifically named Embassy Suites by Hilton San Fran-
cisco Airport—Waterfront in Burlingame, California the three authors of this book stood
around a cocktail table. We were all Ph.D. students at the time, and we had all come to
realize we were working on roughly the same thing. Some of us called it learning-based
approaches to PCG, some called it machine learned PCG, and some called it automated
game design knowledge acquisition (a name nearly as wordy as the hotel’s). However, we
all understood that we’d hit on something new and exciting.

All of us have graduated since that conversation in that hotel. But, we all still find this
area exciting and are actively working to push it forward. We wrote this book to share
that excitement with you.

This book was a collective effort, not just from the three equally contributing authors.
This book could not exist without the ongoing and vibrant PCG and PCGML community,
both in and outside of academia. Thank you all for your passion, your scholarship, and
your enthusiasm.

Edmonton, Canada
Copenhagen, Denmark
Claremont, USA
July 2022

Matthew Guzdial
Sam Snodgrass

Adam J. Summerville

v

Acknowledgments

Matthew would like to thank his fellow co-authors for agreeing to this immense under-
taking, especially during the nightmare of the COVID pandemic. He’d also like to thank
his husband, Jack, and the rest of their family for their endless enthusiasm and support.
In particular, he’d like to thank his father, Mark, and his mother, Barbara, both rock star
academics in Computer Science Education. You are a continual inspiration to him, and
Matthew’s glad to join you as published textbook authors. He would like to extend thanks
to his students, colleagues, collaborators, and mentors. His life wouldn’t be what it is
without you all.

Sam would like to thank his wife, Jocelyn, for being incredibly supportive. From
accommodating his strange hours when he was writing after work, to doing an enor-
mous amount of labor to keep our day-to-day lives in order, and just generally making
him happy in his life; Sam’s contributions to this book would not have been possible
without her. Thank you. He would also like to thank his family for their support and
excitement around this project. And he would like to thank his colleagues, collaborators,
and mentors who helped him get where he is. Of course he would also like to thank his
cat, Sterling, for keeping him company during some weekend writing sessions. Lastly, he
would like to thank his co-authors who, despite the time pressures and hellscapes, have
been an absolute joy to write with.

Adam would like to thank his family for being so understanding and supportive dur-
ing the journey to write this book. The throes of COVID have made finding the time,
energy, and mental capacity to write this book extremely hard, and he knows this has not
been easy for his children, Clark, Campbell, Maeve, and has been even harder for his
wife, Mallorie, whose amazing work kept the family alive and afloat during the difficult
authoring period. Mallorie, this book would not exist without you (or at least, Sam and
Matthew would have had to write two more chapters each). He would also like to thank
the mental health professionals who have helped him, specifically Laurie Ebbe Wheeler
(he would also like to thank Vyvanse, without which editing would have been much
harder). He would also like to thank his colleagues and mentors, including but not lim-
ited to, Michael Mateas, Noah Wardrip-Fruin, Ben Samuel, Joe Osborn, and James Ryan.

vii

viii Acknowledgments

Finally, he would like to thank Matthew for subtweeting academic publishers and Sam
for being a jovial, softening presence for his sometimes prickly co-authors.

We would all like to extend our heartfelt thanks to all reviewers and early readers of this
book. We’d like to thank Dr. Jialin Liu and the other initial reviewer who chose to remain
anonymous. In addition, we’d like to thank the 2022 members of Guzdial’s GRAIL Lab
for their detailed feedback and “book playtesting,” particularly Adrian Gonzalez, Kristen
Yu, Johor Jara Gonzalez, Anahita Doosti, Mrunal Sunil Jadhav, Akash Saravanan, Dagmar
Lofts, Vardan Saini, Emily Halina, Kynan Sorochan, Jawdat Toume, Natalie Bombardieri,
and Revanth Atmakuri. We’d especially like to acknowledge the use of game assets by
Kenney.1 Without his freely available game assets the figures in this book would look
much worse.

The authors would like to dedicate this book to the memory of Dan Ashlock. Dan was
a hugely influential figure in the academic games field. Dan believed in this book and
went to bat for us with the publisher to get the book up and running. It is safe to say that
this book would not have happened without his support, and we owe him a great thanks.
Our field is diminished by his passing. We would also like to thank Joseph Brown for the
introduction to Dan, and for serving as another instrumental force in making this book
happen.

July 2022 Matthew Guzdial
Sam Snodgrass

Adam J. Summerville

1 https://www.kenney.nl/assets

https://www.kenney.nl/assets

Contents

1 Introduction . 1
1.1 Procedural Content Generation . 2
1.2 Machine Learning . 3
1.3 History of PCGML . 4
1.4 Who is this Book For? . 5
1.5 Who is this Book Not For? . 5
1.6 Book Outline . 6

2 Classical PCG . 7
2.1 What is Content? . 7
2.2 Constructive Approaches . 8

2.2.1 Noise . 9
2.2.2 Rules . 11
2.2.3 Grammars . 12

2.3 Constraint-Based Approaches . 13
2.4 Search-Based Approaches . 16

2.4.1 Evolutionary PCG . 18
2.4.2 Quality-Diversity PCG . 20

2.5 Takeaways . 21

3 An Introduction of ML Through PCG . 23
3.1 Data and Hypothesis Space . 24
3.2 Loss Criterion . 27
3.3 Underfitting and Overfitting/Variance and Bias . 31
3.4 Takeaways . 33

4 PCGML Process Overview . 35
4.1 Produce or Acquire Training Data . 36

4.1.1 Existing Training Data . 37
4.1.2 Producing Training Data . 39

4.2 Train the Model . 41
4.2.1 Output Size . 41

ix

x Contents

4.2.2 Representation Complexity . 42
4.2.3 Train, Validation, and Test Splits . 43

4.3 Generate Content . 45
4.3.1 Exploration vs. Exploitation in Generation 45
4.3.2 Postprocessing . 46

4.4 Evaluate the Output . 47
4.5 Takeaways . 49

5 Constraint-Based PCGML Approaches . 51
5.1 Learning Platformer Level Constraints . 51
5.2 Learning Quest Constraints . 56
5.3 WaveFunctionCollapse . 60

5.3.1 Extract . 60
5.3.2 Observe . 63
5.3.3 Propagate . 64
5.3.4 Extending WaveFunctionCollapse . 65

5.4 Takeaways . 65

6 Probabilistic PCGML Approaches . 67
6.1 What are Probabilities? . 67

6.1.1 Learning Platformer Level Probabilities 69
6.2 What are Conditional Probabilities? . 72

6.2.1 Learning Platformer Level Conditional Probabilities 74
6.3 Markov Models . 78

6.3.1 Markov Chains . 78
6.3.2 Multi-dimensional Markov Chains . 79
6.3.3 Markov Random Fields . 81
6.3.4 Other Markov Models . 85

6.4 Bayesian Networks . 85
6.5 Latent Variables . 87

6.5.1 Clustering . 88
6.6 Takeaways . 90

7 Neural Networks—Introduction . 91
7.1 Stochastic Gradient Descent . 95
7.2 Activation Functions . 98
7.3 Artificial Neural Networks . 101
7.4 Case Study: NN 2D Markov Chain . 105
7.5 Case Study: NN 1D Regression Markov Chain . 107
7.6 Case Study: NN 2D AutoEncoder . 109
7.7 Takeaways . 112

Contents xi

8 Sequence-Based DNN PCGML . 113
8.1 Recurrent Neural Networks . 115
8.2 Gated Recurrent Unit and Long Short-Term Memory RNNs 117

8.2.1 Long Short-Term Memory RNNs . 118
8.3 Sequence-Based Case Study—Card Generation . 120
8.4 Sequence-to-Sequence Recurrent Neural Networks 122
8.5 Transformer Models . 127

8.5.1 Case Study—Sequence to Sequence Transformer
for Card Generation . 130

8.6 Practical Considerations . 132
8.7 Takeaways . 133

9 Grid-Based DNN PCGML . 135
9.1 Convolutions . 135
9.2 Padding and Stride Behavior . 142
9.3 Generative Adversarial Networks . 148
9.4 Practical Considerations . 153
9.5 Case Study—CNN Variational Autoencoder for Level Generation 154
9.6 Case Study—GANs for Sprite Generation . 156
9.7 Takeaways . 158

10 Reinforcement Learning PCG . 159
10.1 One-Armed Bandits . 160
10.2 Pixel Art Example . 162
10.3 Markov Decision Process (MDP) . 164
10.4 MDP Example . 166
10.5 Tabular Q-Learning . 169

10.5.1 Rollout Example . 170
10.5.2 Q-Update . 171
10.5.3 Q-Update Example . 172
10.5.4 Rollout Example 2 . 173
10.5.5 Tabular Q-learning Wrap-up . 174

10.6 Deep Q-Learning . 174
10.7 Application Examples . 176
10.8 Takeaways . 178

11 Mixed-Initiative PCGML . 181
11.1 Existing PCG Tools in the Wild . 182

11.1.1 Classical PCG Tools . 182
11.1.2 Microsoft FlightSim . 183
11.1.3 Puzzle-Maker . 184

11.2 Structuring the Interaction . 185
11.2.1 Integrating with the PCGML Pipeline . 186

xii Contents

11.2.2 Understanding the Model . 188
11.2.3 Understanding the User . 192

11.3 Design Axes . 194
11.3.1 AI vs. User Autonomy . 194
11.3.2 Static vs. Dynamic Model Systems . 196

11.4 Takeaways . 198

12 Open Problems . 201
12.1 Identifying Open Problems . 202
12.2 Problem Formulation . 203

12.2.1 Underexplored Content Types . 203
12.2.2 Novel Content Generation . 205
12.2.3 Controllability . 207

12.3 Input . 208
12.3.1 Data Sources . 208
12.3.2 Representations . 209
12.3.3 Data Augmentation . 210

12.4 Models and Training . 211
12.5 Output . 211

12.5.1 Applications . 211
12.5.2 Evaluation . 213

12.6 Discussion . 213

13 Resources and Conclusions . 215
13.1 PCGML Resources . 215

13.1.1 Other Textbooks . 216
13.1.2 Code Repositories . 217
13.1.3 Libraries . 218
13.1.4 Datasets . 219
13.1.5 Competitions and Jams . 220
13.1.6 Venues . 220
13.1.7 Social Media . 223

13.2 Conclusions . 224

References . 225

About the Authors

Matthew Guzdial is an Assistant Professor in the Computing Science Department of the
University of Alberta and a Canada CIFAR AI Chair at the Alberta Machine Intelligence
Institute (Amii). His research focuses on the intersection of machine learning, creativity,
and human-centered computing. He is a recipient of an Early Career Researcher Award
from NSERC, a Unity Graduate Fellowship, and two best conference paper awards from
the International Conference on Computational Creativity. His work has been featured in
the BBC, WIRED, Popular Science, and Time.

Sam Snodgrass is an AI Researcher at Modl.ai, a game AI company focused on bring-
ing state-of-the-art game AI research from academia to the games industry. His research
focuses on making PCGML more accessible to non-ML experts. This work includes mak-
ing PCGML systems more adaptable and self-reliant, reducing the authorial burden of
creating training data through domain blending, and building tools that allow for easier
interactions with the underlying PCGML systems and their outputs. Through his work
at Modl.ai he has deployed several mixed-initiative PCGML tools into game studios to
assist with level design and creation.

Adam J. Summerville is the lead AI Engineer for Procedural Content Generation at The
Molasses Flood, a CD Projekt studio. Prior to this, he was an Assistant Professor at Cal-
ifornia State Polytechnic University, Pomona. His research focuses on the intersection of
artificial intelligence in games with a high-level goal of enabling experiences that would
not be possible without artificial intelligence. This research ranges from procedural gener-
ation of levels, social simulation for games, and the use of natural language processing for
gameplay. His work has been shown at the SF MoMA, SlamDance, and won the audience
choice award at IndieCade.

xiii

1Introduction

This book focuses on Procedural Content Generation viaMachine Learning (PCGML),
the generation of media or content with machine learning techniques [195]. While machine
learning (ML) has been used to generate awide variety of content including visual art, music,
and stories, PCGML (and this book) focus largely on video games. Therefore, we focus on
the types of content specific to video games, such as levels, mechanics, game character art,
sound effects, game narrative, and so forth. Video games are a difficult medium for ML,
due to their complexity and lack of training data as we’ll discuss further below. But this
difficulty is part of what makes the problems in this field so compelling.

PCGML takesmany different forms depending on the kind of content wewish to generate
and the ML technique we apply. But for the purposes of an introduction you can imagine
taking some amount of game content (levels, mechanics, etc.), training anMLmodel on this
data, and then using the trained ML model to generate more content similar to the training
data. This basic, intuitive process approximates many of the techniques discussed in this
book. However, it also demonstrates some core problemswith PCGML.Howdowe generate
content that is not just a small variation on what we already have? How can we ensure the
output has the desired characteristics of the input? What do we do if we don’t have any data,
or only a small amount? And so on.

In this chapter, we’ll introduce the very basic concepts of PCGML in terms of its two
component parts: Procedural Content Generation (PCG) andMachine Learning (ML), along
with a discussion of the relationship between the two. We’ll then discuss a brief history of
PCGML as a means of situating this book in this constantly evolving area, and identify our
intended audience for this book. We’ll end by briefly outlining the rest of this book, and
some various ways to read it. Readers with some expertise in PCGML or a related area may
wish to start with the final section of this chapter.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Guzdial et al., Procedural Content Generation via Machine Learning,
Synthesis Lectures on Games and Computational Intelligence,
https://doi.org/10.1007/978-3-031-16719-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16719-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-16719-5_1

2 1 Introduction

1.1 Procedural Content Generation

Procedural Content Generation (PCG) refers to the algorithmic generation of game con-
tent. By game content, we mean the various component parts of a game, including scripts
or game code, levels or maps, character sprites or 3D models, animations, music, sound
effects, and so on. By algorithmic generation we indicate some process or set of rules rather
than typical human creation. Most often “algorithmic” indicates the use of computer code,
and that’s the way we’ll discuss it in this book, but it could involve any set process or rules,
such as generation via cards or dice [55]. PCG can look like the landscapes of Minecraft,
the conversations and dungeons of Hades, or almost everything present in No Man’s Sky.

PCG in the video game industry is most commonly used during development time, when
it is used at all. That means that most PCG is invisible to the players of games. For example,
most modern, open-world games make use of some amount of PCG to create their worlds.
For example, the developers of the often-re-released Skyrim generated the game world’s
landscape with PCG. From there, human developers went back through the landscape,
tweaked it, and added extra content like decorations, 3D models, enemies, quests, and so
on. PCG is sometimes visible to players, particularly when it shows up inside games “at
runtime,” as in the examples of Minecraft, Hades, and No Man’s Sky, though this is less
common.

The exampleswehave given thus far are examples of classical PCG.Classical PCG,which
we will discuss further in Chap.2, relies on classical Artificial Intelligence (AI) methods
like grammars and search [160]. Classical PCG has seen some adoption by the video game
industry, and even in other, related industries. For example, Speedtree, a library that allows
designers to quickly generate many unique 3D treemodels with PCG, has been used inmany
AAA games, and even in Hollywood films like the Avengers series. However, most game
content is made without PCG. In fact, PCG sometimes sinks projects, such as in the case
of Mass Effect: Andromeda, a follow-up to the Mass Effect franchise which lost nearly two
years of development time to an attempt to create a procedural galaxy in which the game
would take place. The issue here is that working with PCG is tricky, it takes specialized
design and algorithmic knowledge, along with buy-in from the entire development team.
Therefore, it can often take more time and resources than just developing the game using
more standard industry practices.

This design and algorithmic knowledge is the core requirement in creating a PCG gen-
erator. Specifically, PCG requires that the user hand-author knowledge to construct their
generator so that it can output the kinds of content the user wants, and not the kinds they
don’t. In a grammar, a developer might need to author chunks of content and rules for how
they fit together. You can think of this like making individual Lego bricks, which can then
be used to create many different structures. In a search-based approach, a developer instead
needs to author a representation of the search space (a space where every point is a piece of
content), neighbor functions defining how to move through that space, and a fitness func-
tion to indicate what high quality content looks like in that space. More on both of these

1.2 Machine Learning 3

types of approaches in Chap.2. Tweaking this knowledge is key to shaping the output of the
algorithm, and is an art in and of itself. As Kate Compton famously put it, it’s difficult to
solve the “10,000 bowls of oatmeal problem” [26]. It’s easy to generate a lot of something,
but it’s tricky to make that something interesting.

Intuitively, we might consider learning this knowledge instead of having to hand-author
it. After all, there’s a large number of existing, high quality games. If we could learn to
design based on the content from these existing games, we might be able to empower more
people to benefit from PCG. This would allow more people to make games, and even for
the creation of new types of games and experiences that would be impossible or impractical
with modern game development practices. For example, consider howmodern “openworld”
games are still limited to a single region, how games could adapt to their players, or even
how players could create their own content for the game as they play. The list goes on, and
we’ll discuss the future potential for PCGML further in Chap.12.

1.2 Machine Learning

Machine Learning (ML) refers to algorithms that “learn” the values of variables from data
or experience. While it’s an AI approach that can lead to amazing things, there has been
a great deal of misinformation spread about machine learning. Essentially, it is just a way
of adapting a function based on data. As a simple example, let’s say we have the function
w ∗ x + b = y. This function takes in an x as an input argument, which should be a number,
and outputs another number y. There are two variables in this function:w and b. Depending
on the values of w and b we’ll get different outputs for different x inputs. If you haven’t
recognized it already, this is just the function to describe a line. If we have enough examples
of x inputs and their associated y outputs, we can approximate what the best values of w
and b would be to match these. We’re approximating a function (w ∗ x + b = y) to match
some training data (our pairs of x’s and y’s). You can see a visualization of this, with slightly
different variable names, in Fig. 3.4.While there’s lots of different kinds ofmachine learning,
and at times the functions can get pretty complicated (to the point where we forget they’re
just functions and we start calling them models), these same basic principles stand. We’ll
focus on machine learning from Chap.3 onward.

Modern ML approaches tend to struggle on a number of types of problems: (1) problems
with low amounts of training data, (2) problems where the data has high variance (a lot
of differences between pieces of data), and (3) problems without clear metrics for success.
PCGML includes all three of these types of problems. There is typically a very small amount
of training data available for a particular kind of game content, in comparison to datasets of
non-game content. ImageNet, a common image classification dataset for machine learning,
contains roughly 1.3 million images. In comparison, there are estimated to only be about
1.2 million published video games available for purchase [185]. Compared to images, video
games are much more complicated and differ much more from one another. Because of

4 1 Introduction

that, we’d actually expect to need significantly more data to model games compared to
images. Further, across these 1.2 million published video games there’s no consensus about
what makes a good game. This is a positive thing, as different games are better suited to
different people. However, this does mean there are no clear metrics for things like how fun
a particular type of game content might be. This means that, in most cases, we can’t just
optimize for game quality.

The problems that PCGML confronts uswith aren’t just limited to games. In fact, anytime
we want to model the output of individual humans these problems arise, since individuals
can only produce so much data, humans differ from one another, and there’s limited metrics
for replicating human evaluation. Thus, solving these problems for PCGML can allow us to
push the boundaries of what is possible with ML broadly.

1.3 History of PCGML

Procedural Content Generation via Machine Learning (PCGML) is the algorithmic
generation of game content usingmachine learningmethods. Itwas proposed to try to address
problems in PCG and ML, and has enjoyed a great deal of popularity since. However, it’s
still a very young field, and we’ll try to reflect that in this section and throughout this book.

In 2013, Sam Snodgrass and Santiago Ontañón published “Generating Maps using
Markov Chains” the first paper later recognized as an example of PCGML [176]. In it, they
discussed a project training a Markov Chain (a type of probability-based ML model we’ll
discuss more in Chap.6) on Super Mario Bros. levels in order to generate newMario levels.
In this paper, the authors simply referred to their approach as a “learning-based approach to
PCG.” Other level generators had used machine learning as part of the generation process,
such as the level generator of Robin Baumgarten from the 2010 Mario AI Championship
Level Generation track, but this generator still relied on hand-authored chunks of levels, and
sequenced these hand-authored chunks based on an ML analysis of player behavior [157].
Similarly, the Ludi system took in existing game content (in this case whole board games) as
input in order to generate new board games, but no learning occurred [20]. Instead, the sys-
tem recombined the existing games without altering anything about the generation approach
based on the input. That’s why we point to Sam and Santi’s 2013 paper as the beginning of
PCGML.

From 2014 to 2016, a large number of early PCGML systems debuted. A number of
additional Markov Chains methods were published [33, 180]. Researchers began to focus
on the problem of acquiring sufficient training data [59, 200], and the first neural network
PCG experiments were published [77, 198]. At this point, the authors of this book and a large
cadre of other early PCGML researchers began work on a survey paper of this growing area.
Together, we would dub it Procedural Content Generation via Machine Learning [195].

Since the survey paper, PCGML has continued to grow as a research area.WaveFunction-
Collapse, a simple and low-data PCGML approach, began to gain popularity as an approach

1.5 Who is this Book Not For? 5

among indie game developers before being picked up by academic researchers [88]. There
were the first attempts at generating entirely novel games with PCGML [63, 150], and at
trying to create PCGML tools for designers [35, 57, 154]. But overall, the fundamental
problems of PCGML remain unsolved, including the problems discussed above and many
more remaining. We will discuss some of these open problems in Chap. 12.

1.4 Who is this Book For?

Our hope is that this book is accessible to PCG practitioners, ML practitioners, and anyone
interested in these topics. The book can be used as the basis for a class, with every chapter
serving as the basis of 1-2 lectures, as an introduction to these topics, or simply as a reference
or guide. Our hope is that this book can demystify ML for those on the game design and
PCG side of things, and make the benefits of applying ML to PCG clear for those on the ML
side of things. For a class, we have written this book to be programming language agnostic,
but it will require at least some understanding of coding. We recommend using this book
for students at least at the undergraudate level, as many of the concepts in the book rely on
fairly complex mathematics, though we’ll do our best to express these clearly. Our hope is
that the individual chapters can serve as a reference and guide for individuals looking to
implement particular PCGML approaches, or for those interested in conducting PCGML
research.

1.5 Who is this Book Not For?

While it may seem natural to some readers, we won’t be covering reinforcement learning for
automated game playing (the technology behind AlphaGo, OpenAI Five, AlphaStar, etc.) in
this book. We will cover how reinforcement learning can be applied to PCG in Chap.10, but
not how to train agents to play or interact with existing content. There are many excellent
resources on this subject, but this is not one of them. We focus on game design problems,
not game playing problems.

We also do not intend this book to be an all encompassing look at Procedural Content
Generation orMachine Learning as individual fields. We instead focus on the intersection of
these two fields. While we’ll introduce concepts from both as they are relevant to PCGML,
if you find you want to dig deeper we recommend seeking out introductory texts on PCG
[160] and/or ML [125].

6 1 Introduction

1.6 Book Outline

In this section we’ll briefly discuss the chapters of the book and some suggested reading
orders depending on your level of familiarity. If you are already familiar with PCG, you
can safely skip Chap.2. Similarly, if you are already familiar with ML, you can safely skip
Chap.3. We recommend reading Chap.4 regardless of your familiarity with these topics, as
we overview the PCGML project process we’ll use in this book. From there, readers can skip
around as they like depending on their level of familiarity with the chapter topics. However,
newcomers would likely benefit from reading the chapters in order. We recommend ending
withChaps. 12 and 13, regardless of your reading order. The chapterswill cover the following
topics:

• Chapter 2 presents an overview of “classic” approaches to PCG, which do not make use
of machine learning.

• Chapter 3 covers the basic concepts necessary to understand themachine learning aspects
of this book.

• Chapter 4 overviews our process for PCGML projects, along with covering practical
and ethical considerations.

• Chapter 5 focuses on our first PCGML area: ML constraint-based approaches. This
chapter covers the most commonly applied PCGML approaches in industry at the time
of writing.

• Chapter 6 covers our second PCGML area: probabilistic models. These are some of the
simpler PCGML approaches, particularly for those with a background in probability.

• Chapter 7 begins our coverage of deep neural networks (DNNs) for PCGML, starting
with the basics. We recommend reading this chapter before Chaps. 8 and/or 9.

• Chapter 8 covers DNN models for processing sequences like text that can be applied to
PCGML.

• Chapter 9 covers DNN models for processing image-like data structures that can be
applied to PCGML.

• Chapter 10 focuses on our last major PCGML area: PCG via Reinforcement Learning
or PCGRL. This differs significantly from the rest of this book due to not relying on
existing training data.

• Chapter 11 introduces mixed-initiative PCGML, incorporating PCGML into tools for
designers. This is an open problem but with existing applications, which we cover in this
chapter.

• Chapter 12 overviews other open problems in PCGML (at the time of writing). These
topics could serve as the basis for a research project or thesis.

• Chapter 13 ends with our conclusions, some discussion, and a variety of resources for
PCGML practitioners.

2Classical PCG

The other chapters in this book cover a wide range of approaches to procedural content
generation that leverage different machine learning paradigms. Before jumping into the
machine learning-based approaches, we will use this chapter to give a brief introduction
to classical (i.e., non-machine learning-based) PCG approaches to provide context for the
remainder of the book. In particular, wewill introduce and discuss constructive, constraint-
based, and search-based PCG as PCG paradigms that do not rely on machine learning.
Constructive PCG relies on hand-authored rules and functions for assembling new pieces of
content. Constraint-based PCG approaches define what a “valid” piece of content is using
constraints, and use those constraints to find new content. Finally, search-based PCG defines
the space of content, and uses optimization procedures to find high quality content within
that space.

Each of the groups outlined above use unique methods for generating content. For each
of these groups we will highlight the input needed from the user or developer, how that
approach works at a high level, and examples of how related approaches have been or can
be used. Lastly, we will discuss possible connections and extensions to PCGML. However,
beforewe begin discussing these paradigms, wewill give a brief overview of types of content
we might want to generate.

2.1 What is Content?

When hearing about procedural content generation, you may think “What do they mean by
content?” or “What can we generate?” The idealistic answer is that pretty much any part of a
game (be it structural or mechanical) can be considered content or something that we could
try to generate. Everything from game levels to textures to stories to gameplay mechanics
to full games have been procedurally generated. A full categorization of content types is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Guzdial et al., Procedural Content Generation via Machine Learning,
Synthesis Lectures on Games and Computational Intelligence,
https://doi.org/10.1007/978-3-031-16719-5_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16719-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-16719-5_2

8 2 Classical PCG

outside of the scope of this book, but there are existing discussions around types of content.
Hendrikx et al. [72] categorize game content hierarchically, starting at the bottomwith game
bits (i.e., the atomic game elements), then up to game spaces (i.e., the environment or world
where the player and agents interact with the game), all the way up to game designs and
through to derived content (i.e., content or information derived from the game, such as
leaderboards). The detailed description provided by Hendrikx et al. makes this paper a good
resource if you want a deeper discussion of content types. In the original PCGML survey
paper [195] we (along with the other authors) instead focused on the representation of the
content. We grouped content (regardless of its function) according to its structure: sequence,
grid, or graph. This categorization could be useful when considering how to represent your
chosen content type, and what implications that might have on the appropriate approach.
Liu et al. [116] use a flat structure of content types: game levels, text, character models,
textures, andmusic and sound. They give an overview of how different machine learning and
especially deep learning methods have been applied across these categories of content; as
such, it is a good resource if trying to decide on an approach or model architecture to use for
a certain type of content. Notice, however, that the same content can be represented in many
different ways, each of which lends itself to certain ML techniques. Similarly, disparate
types of content might be represented in the same way, leading to similar ML applications.
For instance, a level might be represented as an image (like textures), it might be represented
as a sequence (like text), or it might be represented as a collection of content oriented in
space (like a character model). As such, in this book we will tend towards representational
categories (e.g., sequences, grids, graphs).

Categorizing content types can be a useful tool or lens through which to view PCG.
But more importantly, while reading this book try to keep an imaginative mind. When we
introduce a new approach we will give examples of how it has been used, and perhaps how it
could be used in the future, in order to provide context and hopefully deeper understanding of
the technique. But as you read try to also think of new ways the approach could be leveraged
(e.g., new content types, new representations, new applications). PCGML is a young field,
and there is a lot of unexplored space; so keeping an inquisitive eye open as you become
acquainted with the field could lead to the next big innovation!

2.2 Constructive Approaches

Constructive procedural content generation describes the family of approaches that quickly
generate a piece of content using rules and randomness, often in a one-shot fashion [158,
209]. Constructive approaches rely on the encoded design and domain knowledge from the
creator of the approach. The approach then directly uses this encoded knowledge to create
new content. Since these approaches directly rely on the encoded domain knowledge of the
user, they allow the creator a lot of control over the generative process. Additionally, these
approaches tend to be somewhat simple (in the algorithmic and conceptual space), making

2.2 Constructive Approaches 9

themmore accessible and as such the most common family of approaches used in games. An
example of a conceptually simple approach, is one where the designer creates two segments
for a level, and a rule that says “flip a coin to decide which section should be placed next.”
The encoded knowledge in this situation is the hand-authored level segments as well as the
rule for how to place them. Now, this toy example serves two purposes: to give some insight
into how a simple constructive PCG system might work, and to highlight what is needed
from a human designer of such a system. An important concept to remember here is that
constructive PCG systems are often one-shot generators (i.e., will create a piece of content
without relying on feedback or being expected to further improve on that generated piece).
This has the implication that either (1) the encoded knowledge, rules, etc. need to ensure
that “bad” content cannot be created, (2) the generator needs to be used in scenarios where
low quality content is permissible, or (3) there is a human at the end of the system choosing
the “good” outputs.

The toy example above is not representative of all constructive PCG and the encoded
knowledge used in constructive PCG can take many forms. In the following subsections we
will discuss constructive approaches that leverage an increasing amount of hand-authored
encoded knowledge starting with noise (structured randomness), moving to rules (directly
encoded knowledge), and closing with grammars (more formally structured rule encod-
ings).

2.2.1 Noise

Noise refers to a family of structured random functions. In graphics and PCG noise functions
can be described as functions that give random real values1 in an interval (commonly, 0
and 1) over some domain (i.e., 1-dimensional, 2-dimensional, etc.). White noise is one of
the most commonly known types of noise functions, and can be thought of as sequences
of independent random variables over an interval (e.g., a grid with each value randomly
chosen between 0 and 1) with constant density across all frequencies. In addition to white
noise, there are other types of noise with various properties. For example, while white noise
is uniformly distributed over frequency ranges (i.e., will have quickly changing values and
slowly changing valueswith equal likelihood), pink noise has a denser distribution around the
lower frequency ranges (i.e., slowly changing values are more likely than quickly changing
values). Alternatively, Blue noise has a denser distribution around higher frequency ranges
(i.e., quickly changing values are more likely than slowly changing values). If thinking of
images, pink noise will tend to have smoother transitions between colors, such as going
from a dark to light grey spread over many pixels; blue noise will tend to have transitions
from light and dark more quickly in only 1 or a few pixels; and white noise will have both

1 Here we mean real in the mathematical sense (i.e., a value in R). That is, essentially a continuous
number that can be written with infinite decimal point precision.

10 2 Classical PCG

of these patterns occurring. A detailed survey by Lagae et al. [101] covers different types of
noise as used in image processing and graphics.

In the context of constructive PCG, the knowledge being encoded by the designer when
using a noise-based approach, is which noise function has the properties most useful for
the domain and what the sampled noise represents in that domain. Blue noise, because of
how it is sampled and distributed, can be useful for pseudo-randomly distributing objects
somewhat evenly throughout a space or level [2], whereas pink noise might be better suited
to generating landscapes with more slowly changing height values. Below we give a brief
introduction to a few noise-based approaches to texture and terrain modeling, but the reader
is referred to the book by Ebert et al. [41] for a more detailed look at these topics.

Texture and Terrain Synthesis
Noise functions are commonly used in the creation of procedural textures and terrain (or
heightmaps). Specifically, generating natural textures such as wood, marble, and clouds
often rely on the randomness and detail provided by noise functions [101]. Examples of this
can be found as far back as the 1980s in the graphics community where applying noise to
textures led to more realistic looking natural textures [136]. Since then, there has been much
more work in procedural textures and image synthesis using noise functions [6, 80, 102], as
well as in terrain generation [5, 168].

A common extension to noise-based approaches leverages a hierarchical (or multi-
resolution) strategy. In these multi-resolution approaches, noise is sampled at various reso-
lutions and combined together to form the final result. For example, we can use a white noise
function to sample values between 0 and 1 on a 16 × 16 grid (Fig. 2.1 first). Next, we use the
same noise function to sample values between 0 and 0.5 on a larger 32 × 32 grid (Fig. 2.1
second), 0 and 0.25 on a larger 64 × 64 grid (Fig. 2.1 third), and finally 0 and 0.125 on the
largest 128 × 128 grid (Fig. 2.1 fourth). In each of these steps, we double the height and
width of the grid and halve the range of the noise values; this forces the approach to create
different scales of features (i.e., bigger features in the initial grid, and smaller details in the

Fig.2.1 This figure shows sampled noise at different resolutions andmagnitude ranges. The left-most
grid was sampled at a 16 × 16 resolution with a range of 0 to 1, with the values between filled in
with bicubic interpolation. The second grid was sampled at a resolution of 32 × 32 with a range of
0 to 0.5, and interpolated in the same way. The third grid was sampled at a 64 × 64 resolution with
a range of 0 to 0.25, and the fourth grid was sampled at a resolution of 128 × 128 with a range of 0
to 0.125. The final grid is the result of averaging the grids together, which could then be used for a
terrain heightmap or a texture

2.2 Constructive Approaches 11

larger grids). We then scale up the lower resolution grids (i.e., the 16 × 16, the 32 × 32, and
64 × 64 grids) to the full size (i.e., the 128 × 128) by interpolating the values between the
sampled points. Lastly, we combine the values at each position together, which gives us a
texture or terrain with features at different levels of granularity (Fig. 2.1 last). In our case,
we averaged the values together, but adding and normalizing is also common. This final
grid can be used as a heightmap for terrain where brighter pixels are higher altitudes and
the darker pixels are lower altitudes. We could even translate the darkest pixels to water or
being below sea level.

2.2.2 Rules

Rule-based PCG techniques are a subset of constructive approaches that create content by
leveraging a set of manually-defined rules, and often rely on either designer-created chunks
of content or designer-created templates. Rule-based PCG systems are among the most
commonly used PCG approaches in commercial games due to the high amount of control
and designer input they are able leverage.

For example, we can imagine a scenario where a designer has created a set of different
rooms that a player might interact with and investigate. Some of these rooms might require
the player’s character to fight enemies, some might have treasure chests, some might allow
the player’s character to purchase items, and some might have special events that get trig-
gered when the player enters. The designer doesn’t want the players to experience the same
sequence of rooms every time, and so instead of placing the rooms in a set layout, they devise
some rules for how the rooms can be laid out (e.g., only place 1 treasure room in the map,
don’t place more than 5 combat rooms near each other, don’t place extra strong enemies
too early in the map, only allow certain types of events under different scenarios, etc.) This
rule-based constructive PCG approach relies on the designer encoding their knowledge and
desires for the game into smaller content blocks (rooms) as well as into the rules for how to
place the content blocks. This is a fairly common approach in rule-based PCG approaches,
and in fact, the deckbuilding game Slay the Spire, and the dungeon crawling game Hades
follow approaches similar to this for generating their maps.

As another example, in No Man’s Sky each of the planets in the universe are procedurally
generated along with their associated biomes and lifeforms.No Man’s Sky uses a “blueprint”
system, where hundreds of basic templates for animals, plants, etc. are first defined by artists
and designers. Then during the generation of a planet, the biomes and environment are first
created using a set of rules. The planet and its biomes are then populated with instantiations
of the base templates for animals and plants. The instantiations are also made using a set
of rules to ensure consistency across creatures/biomes/plants/color palettes/etc. In this case
the designers and artists encode their knowledge into various templates, content blocks, and
systems of rules, but encoding rules and creating templates can be very difficult to get right.
This can be seen with the improvement of No Man’s Sky post-release, partially due to the
designers tuning the rules and templates.

