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Optimization carries great significance in both human affairs and the laws of nature.
It refers to a positive and intrinsically human concept of minimization or maxi-
mization to achieve the best or most favorable outcome from a given situation.
Besides, as the resources are becoming scarce there is a need to develop methods
and techniques which will make the systems extract maximum from minimum use
of these resources, i.e. maximum utilization of available resources with minimum
investment or cost of any kind. The resources could be any, such as land, mate-
rials, machines, personnel, skills, time, etc. The disciplines such as mechanical,
civil, electrical, chemical, computer engineering as well as the interdisciplinary
streams such as automobile, structural, biomedical, industrial, environmental engi-
neering, etc. involve in applying scientific approaches and techniques in designing
and developing efficient systems to get the optimum and desired output. The multi-
faceted processes involved are designing, manufacturing, operations, inspection and
testing, forecasting, scheduling, costing, networking, reliability enhancement, etc.
There are several deterministic and approximation-based optimization methods that
have been developed by the researchers, such as branch-and-bound techniques,
simplex methods, approximation and Artificial Intelligence-based methods such
as evolutionary methods, Swarm-based methods, physics-based methods, socio-
inspired methods, etc. The associated examples are Genetic Algorithms, Differen-
tial Evolution, Ant Colony Optimization, Particle Swarm Optimization, Artificial
Bee Colony, Grey Wolf Optimizer, Political Optimizer, Cohort Intelligence, League
Championship Algorithm, etc. These techniques have certain advantages and limi-
tations and their performance significantly varies when dealing with a certain class
of problems including continuous, discrete, and combinatorial domains, hard and
soft constrained problems, problems with static and dynamic in nature, optimal
control, and different types of linear and nonlinear problems, etc. There are several
problem-specific heuristic methods are also existing in the literature.

This series aims to provide a platform for a broad discussion on the devel-
opment of novel optimization methods, modifications over the existing methods
including hybridization of the existing methods as well as applying existing opti-
mization methods for solving a variety of problems from engineering streams.
This series publishes authored and edited books, monographs, and textbooks. The
series will serve as an authoritative source for a broad audience of individuals
involved in research and product development and will be of value to researchers and
advanced undergraduate and graduate students in engineering optimization methods
and associated applications.
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Preface

According to the biocultural evolutionary theory, genes and culture are two inter-
acting forms of inheritance and overall human evolution can be viewed as the product
of the changes in biological and cultural traits. Both genetic and cultural evolu-
tionary processes include a form of information transmission. In genetic evolution,
the genetic information embedded within the genes is being vertically transmitted
from parents to offspring. In cultural evolution, the cultural variants such as beliefs,
habits, skills, traditions, and preferences, pass from one generation to the next and
they can be changed or even replaced by new ones over time due to changes in the
cultural environment. In comparison to genetic evolution, the information transmis-
sion in cultural evolution is a much more complicated process. The information flow
in cultural evolution includes both vertical and horizontal transmissions in which the
cultural information is not only vertically inherited from parents to offspring, but
also offspring have the opportunity to socially learn and acquire information from
other members of the society.

Cultural algorithms (CAs) are meta-heuristic numerical optimisation algorithms
inspired by the abovementioned biocultural evolutionary theory. CAs have some
characteristic features that make them unique in comparison to other evolutionary
algorithms (EAs). They model the biocultural evolutionary theory to perform the
search process for global optima, in which both types of vertical and horizontal
learning behaviours of individuals are modelled. Since their emergence, CAs have
been extended and successfully employed to solve a wide variety of problems in
different branches of science and technology.

The main aim of this book is to explore the recent advances in the algorithmic
framework of CAs and their applications to the different problems in the literature.
While the main approach of the book is to briefly discuss and explain the application
studies and algorithmic details of CAs, the detailed mathematical formulations and
algorithmic pseudo-codes are also discussed in each chapter to provide a clear expla-
nations for the different concepts. The book is mainly aimed at postgraduate students
and researchers in computer science and engineering subjects with research interests
in optimisation and meta-heuristic algorithms. Throughout the book, it is assumed
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that the readers are familiar with the basic concepts of optimisation theory and meta-
heuristic algorithms. However, the author tried to provide relevant references in each
chapter to assist the readers in understanding the contents of the book.

The book comprises nine different chapters divided into three parts. Part I contains
the basic concepts of standard CAs and their theoretical background. The first
part explains how the basic concepts in biocultural evolutionary theory have been
employed to develop standardCAs. Part II discusses the applications ofCAs to awide
range of real-world problems and presents their detailed mathematical formulations,
including decision variables, objective functions, and constraints. Part III investigates
the different variants of CAs developed in literature and their algorithmic details. The
third part includes a comprehensive survey and detailed pseudo-codes of different
extended, hybrid, and multi-population versions of CAs. The last chapter of the
book presents the application study of CAs to the real-world structural optimisation
problems.

Although a significant effort has beenmade tominimise the errors and typos in the
book, the author warmly welcomes receiving feedback, suggestions, and comments
from readers on the contents of the book.

The author would like to thank the series editors, Prof. Amir H. Gandomi and
Dr. Anand J. Kulkarni, as well as the publishing editor, Ms. Kamiya Khatter, and her
colleagues in Springer Nature for their efforts and supports during the production
process of this book.

Aberdeen, Scotland, UK
April 2022

Shahin Jalili
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Part I 
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Chapter 1 
Introduction to Stochastic Optimisation 

For since the fabric of the universe is most perfect and the work 
of a most wise Creator, nothing at all takes place in the universe 
in which some rule of maximum or minimum does not appear. 
—Leonhard Euler 

Abstract Modern stochastic heuristic and meta-heuristic optimisation methods are 
efficient tools to deal with the “black-box” problems in which the objective and 
constraint functions cannot be expressed as explicit functions of decision variables. 
This chapter presents a brief introduction to available conventional and stochastic 
optimisation approaches in the literature and discusses their applicability in dealing 
with real-world problems in science and technology. The chapter also provides a 
taxonomy of meta-heuristics based on their sources of inspiration. 

Keywords Optimisation · Heuristic ·Meta-heuristic · Hyper-heuristic ·
Evolutionary algorithms 

1.1 Introduction 

The optimisation is everywhere. The universe minimises the efforts during its evolu-
tion. The principle of minimum energy states that the internal energy of a closed 
physical system, with constant external parameters and entropy, always tends to 
approach a minimum value to satisfy equilibrium conditions. Fermat’s principle in 
optical physics, which is also referred to as the principle of least time, states that 
a ray always chooses the path with minimum travel time between two points. The 
human evolutionary process can be viewed as an optimisation process in which 
human biology tries to enhance human adaptability to harsh environmental condi-
tions over different generations. Ants deposit pheromone as they travel and indirectly 
communicate with each other to find the shortest path between their nest and food 
resources. 

In our daily life, we find ourselves in a position in which we have to make deci-
sions to achieve certain goals. We consciously or unconsciously try to make the 
best possible judgement in all circumstances and optimise our decisions to achieve
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the most favourable outcomes. This tendency for optimisation takes different forms 
of behaviours in literature, art, business, etc. For example, poets make an effort to 
adopt the best combination of words with different rhythms and styles to deliver their 
thoughts, ideas, emotions, and messages to the readers. In the music improvisation 
process, the musicians try different combinations of music pitches to achieve the 
best possible harmony. In stock markets, the shareholders compete to take efficient 
investment strategies in their trades, minimise their losses, and maximise their profits. 
The manufacturing companies always plan to minimise their production costs and 
maximise their profit margin and market share. Numerous additional examples can 
be found in which the human plays the role of the optimiser. Despite our innate 
tendency for optimising our decisions, our capabilities in taking the right decisions 
with the most promising outcomes are limited. In some cases, the available time 
for making the judgements is quite short, and we are not able to react on time in 
response to dynamic environmental conditions. On the other hand, there is a huge 
number of complex situations in which human is unable to make the best possible 
judgements, no matter how long it would take. Nowadays, the complexity of prob-
lems in science and technology further highlights the fact that we desperately need 
powerful decision-making technologies to achieve different goals with minimum 
effort and energy. 

With recent rapid technological development, numerous complex optimisation 
problems have emerged in different branches of science and technology. Early real-
world optimisation problems were relatively easy to solve and handle. Hence, the 
classical techniques in applied mathematics were almost capable of dealing with 
these problems in a relatively efficient way. However, the complexity of human 
artefacts has been rapidly and consistently increased over time. Today’s optimisation 
problems in different branches of science and technology are categorised as highly 
nonlinear problems with discrete and continuous variables under numerous equality 
and inequality constraints. 

The main goal of this chapter is to present a brief introduction to available opti-
misation approaches in the literature. In Sect. 1.2, the conventional optimisation 
techniques are briefly reviewed, and their limitations in dealing with complex prob-
lems are discussed. Section 1.3 provides a brief review of stochastic heuristic and 
meta-heuristic algorithms as well as their taxonomy. This section categorises the 
meta-heuristics based on their sources of inspiration. As the main focus of this book 
is on CAs, the chapter also discusses the position of CAs in the taxonomy of meta-
heuristic algorithms. In this chapter, it is assumed that the readers are familiar with 
the basic optimisation terminology. However, the readers are referred to the relevant 
references for more details. 

1.2 Conventional Optimisation Methods 

Conventional mathematical approaches are efficient tools to solve different types 
of optimisation problems. Linear programming deals with the problems in which
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the objective and constraints are linear functions of decision variables. Dantzig’s 
simplex algorithm is one of the popular linear programming approaches (Dantzig 
2016). The linear integer programming techniques have been developed for problems 
in which some or all of the decisions variables can only take integer values. There 
are a wide variety of problems in which mixed types of variables, including discrete 
and continuous, should be optimised, such as scheduling and production planning 
problems. 

The dynamic programming method developed by Bellman in the 1950s is another 
popular optimisation approach in literature (Bellman 1966). The main idea of the 
approach is to break down the original difficult problem into several sub-problems 
which are easy to handle and deal with. The dynamic programming recursively calcu-
lates the optimal solutions for these sub-problems and then uses acquired information 
to obtain the global optimal solution for the original problem. 

Many problems in science and technology are highly nonlinear. Nonlinear 
programming is a branch of mathematical science that focuses on optimisation prob-
lems with nonlinear objective and constraint functions. Although these techniques 
are capable of solving a set of practical problems, most real-world optimisation 
problems are much more difficult to be formulated and addressed by the nonlinear 
programming approaches (Foulds 2012). There are a series of outstanding mono-
graphs in the literature on the conventional optimisation methods, such as those by 
Luenberger and Ye (2021), Denardo (2012), and Foulds (2012). 

The conventional optimisation approaches use gradient information of objective 
and constraint functions to search and locate the optimum solution for the problem at 
hand. Despite their remarkable performance in simple problems, their applicability to 
complicated problems is challenging from different perspectives. The conventional 
approaches perform the search process for optimal solutions based on the informa-
tion acquired from derivations of objective and constraint functions. However, the 
calculation of gradient information is not always an easy task. Most of the modern 
optimisation problems belong to the category of “black-box” problems. In these prob-
lems, the objective and constraint functions cannot be expressed as explicit functions 
of decision variables, which make it difficult or sometimes even impossible to calcu-
late their sensitivities for a given variable. The type of decision variables is also 
another source of difficulties in conventional techniques. Calculation of gradient 
information for discrete variables may be possible; however, it could be difficult or 
time-consuming in some cases. Another challenge in the application of conventional 
techniques is that they have been developed for the problems with single optimum 
solutions. While most of the modern optimisation problems are highly non-convex 
and nonlinear with multiple local optimum points. In such problems, the performance 
of classical techniques is highly sensitive to the initial solution, and they can easily 
get stuck into local optimums without efficient exploration of search space. 

The abovementioned challenges intensified the efforts to develop alternative tools 
to deal with complex nonlinear problems. In the past decades, stochastic heuristic and 
meta-heuristic algorithms have emerged which are capable of providing optimal or 
near-optimal solutions for real-world problems within a reasonable time. Compared 
to the conventional approaches, heuristics and meta-heuristics are simple and easy



6 1 Introduction to Stochastic Optimisation

to implement, and more importantly, they are independent of gradient information. 
These characteristic features make them attractive tools for “black-box” problems. 
By taking the advantage of their stochastic nature, “hopefully”, they can escape from 
the local optimum points in the search space and enhance their chance of converging 
to the global optimum solutions. The main goal of the next section is to provide a 
brief literature survey on the historical development of heuristic and meta-heuristic 
algorithms as well as their taxonomy. 

1.3 Modern Stochastic Methods 

One of the characteristic features of conventional optimisation approaches is their 
deterministic nature. This means that the same outputs are obtained for a given 
initial solution or starting point over different independent runs. Due to the limited 
capabilities of conventional approaches and the difficulties in their applications to 
real-world problems, stochastic heuristic and meta-heuristic optimisation methods 
have been developed to solve difficult problems in science and technology. They 
are suitable tools to find near-optimal, or hopefully optimal, solutions for complex 
problems within a reasonable time. These techniques do not necessarily guarantee 
the achievement of global optimum for different problems. Rather, they are expected 
to provide near-optimal solutions for a certain range of problems, for which there 
is no available algorithm to find the optimal solution in polynomial time. The liter-
ature survey reveals the absence of general agreement on the exact definitions for 
heuristic and meta-heuristic algorithms. However, this chapter distinguishes between 
heuristics and meta-heuristics. This section provides a brief review of heuristics and 
meta-heuristics. 

1.3.1 Heuristics 

The heuristic1 is a Greek word that means “find” or “discover”. The main aim of 
heuristic optimisation methods is to discover optimum or near-optimum solutions 
for complex problems with relatively less computation effort. They are capable of 
finding near-optimum solutions for NP-hard problems in which the conventional 
approaches fail to provide meaningful results. Nowadays, they are the only available 
options to deal with a range of complex real-world problems. The heuristics work in 
a stochastic trial-and-error manner. They include a set of rules that are employed in a 
stochastic manner to discover useful clues about the optimum solution in the search 
space. The heuristics have a simple framework that makes them easy to understand 
and implement. In comparison to conventional approaches, they do not need gradient 
information of objective and constraint functions, and they are less sensitive to the

1 εØρίσκω. 
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initial solutions. By taking advantage of their stochastic behaviour, they can provide 
an efficient exploration of search space in highly nonlinear problems. 

To decide whether a heuristic-based approach should be used for a given problem, 
a set of trade-off criteria is usually considered, including optimality, completeness, 
accuracy and precision, and execution time (Pearl 1984). The optimality criterion 
raises the question that whether the global optimum solution is needed for the problem 
at hand. In some problems, the global optimum exists, and it is necessary to discover 
it. While in others, finding an exact global optimum solution is not vital and only 
an approximation of the optimum solution is needed. Due to the stochastic nature 
of heuristic methods, they do not always guarantee the achievement of the global 
optimum solution. The completeness criterion discusses whether multiple global 
optimums exist in the problem. Although heuristics could potentially converge to 
different final solutions in different runs, they are usually designed in a way to 
provide a single output solution that can limit their applications to the problems with 
multiple global optimums. Accuracy and precision is another important criterion 
that highlights the question that whether the heuristics will be able to provide the 
final solution with an acceptable level of accuracy. This is particularly important in 
engineering optimisation problems. In most cases, a certain level of error can be 
tolerated. However, the errors in some cases could be irrationally large. The last 
criterion, i.e., execution time, considers whether the selected heuristic exhibits a 
faster convergence rate in comparison to the conventional methods. Some of the 
heuristics may not provide a clear advantage over conventional approaches in terms 
of convergence speed and required computational effort. Hence, the selection of the 
most promising heuristic for the problem at hand is vital. 

As Rothlauf (2011) argues, heuristics can be categorised into construction and 
improvement heuristics. The construction heuristics start with an uncomplete solu-
tion and gradually construct the full solution for the problem over multiple steps. 
In these approaches, the search process is terminated as soon as a complete solu-
tion is constructed for the problem. On the other hand, the improvement heuristics 
start with a complete solution and gradually modify the value of each variable to 
achieve better results based on a given performance measure. As was mentioned 
earlier, heuristics are problem-specific tools. A wide variety of heuristics can be 
found in the literature that has been developed for different types of problems. One 
of the popular problems in computing science is the Travelling Salesman Problem 
(TSP) for which numerous heuristic techniques have been developed. The nearest 
neighbour, nearest insertion, cheapest insertion, and furthest insertion are exam-
ples of construction heuristics designed for TSP (Rosenkrantz et al. 1977; Rothlauf 
2011). The two-opt, k-opt, and Lin–Kernighan heuristics belong to the category of 
improvement heuristics developed for the TSP problem (Rothlauf 2011).
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1.3.2 Meta-Heuristics 

Meta-heuristics are a new generation of stochastic optimisation techniques. A meta-
heuristic can be described as an upper-level strategy that simultaneously takes 
the advantage of different heuristics to efficiently explore the search space and 
find optimum solutions. Several definitions for meta-heuristics are available in 
the literature. For example, Voß et al. (2012) state the following definition for 
meta-heuristics: 

“A metaheuristic is an iterative master process that guides and modifies the operations of 
subordinate heuristics to efficiently produce high quality solutions. It may manipulate a 
complete (or incomplete) single solution or a collection of solutions at each iteration. The 
subordinate heuristics may be high (or low) level procedures, or a simple local search, or 
just a construction method.” 

There are basic differences between heuristics and meta-heuristics. Contrary 
to heuristic approaches, which have been developed for certain problems, meta-
heuristics are not problem-specific tools, and they can be applied to a large set of 
problems in science and technology. Meta-heuristics try to keep the balance between 
the exploitation (or intensification) and exploration (or diversification) mechanisms. 
The former refers to the capability of a search method in further improving the quality 
of the best solution, while the latter is related to the ability of the algorithm to search 
different regions of search space and escape from local optimum points. 

1.3.3 No Free Lunch Theorems 

As was discussed in previous sections, heuristics and meta-heuristics do not neces-
sarily guarantee the consistent achievement of the global optimum solution for all 
kinds of problems. The reality is that their performance is very sensitive to the 
nature of the problem. They may provide highly satisfiable results for a given class 
of problems, while they may fail to exhibit an efficient performance in others. In 
the 1990s, Wolpert and Macready (1997) provided a set of theorems, called no free 
lunch theorems, to explain that there is no unique heuristic or meta-heuristic approach 
capable of exhibiting equally better performance than all others for all problem types. 
According to these theorems, although a specific heuristic or meta-heuristic algo-
rithm can perform better than others for a given problem, there are other classes of 
problems in which the same algorithm might show weaker performance than other 
algorithms. Generally speaking, these theorems state that the average performance of 
all heuristic and meta-heuristic algorithms for different static and dynamic optimisa-
tion problems is almost the same. Hence, the main aim of algorithm designers should 
be the design of a heuristic or meta-heuristic approach that is capable of solving most 
types of problems in an efficient way, rather than all types of problems. This was the 
motivation for the researchers to develop a significant number of meta-heuristics to 
solve different types of problems in recent decades.
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• Genetic Algorithms (GAs) 

• Differential Evolution (DE)

• Biogeography-Based Optimisation (BBO)

• Cultural Algorithms (CAs) 

Evolutionary Algorithms (EAs)

• Ant Colony Optimisation (ACO)

• Particle Swarm Optimisation (PSO)

• Artificial Bee Colony (ABC) 

Swarm Intelligence (SI)

• Imperialist Competitive Algorithm (ICA)

• Teaching-Learning-Based-Optimisation (TLBO)

• League Championship Algorithm (LCA) 

Socio-inspired

• Simulated Annealing (SA)

• Gravitational Search Algorithm (GSA)

• Optics Inspired Optimisation (OIO)

• Charged System Search (CSS)

• Colliding Bodies Optimisation (CBO) 

Physics-inspired 

Fig. 1.1 Taxonomy of meta-heuristics based on their sources of inspiration 

The emergence of meta-heuristic algorithms goes back to the 1960s, when Holland 
(1975) and his fellow researchers at the University of Michigan developed Genetic 
Algorithms (GAs) (Goldberg 1986) based on the principle of natural selection in 
Darwin’s evolutionary theory of biological species. Following the successful appli-
cation of GAs, a significant number of new meta-heuristics inspired by different 
phenomena in nature have been developed, such as Simulated Annealing (SA), Tabu 
Search (TS), Ant Colony Optimisation (ACO), Differential Evolution (DE), Particle 
Swarm Optimisation (PSO), Harmony Search (HS), Biogeography-based Optimisa-
tion (BBO), and Teaching–Learning-Based Optimisation (TLBO). Meta-heuristics 
can be categorised based on their sources of inspiration. In the subsequent sections, 
a taxonomy of meta-heuristics are presented based on their sources of inspiration as 
shown in Fig. 1.1. 

1.3.4 Evolutionary Algorithms (EAs) 

EAs have been developed mainly based on Darwin’s evolutionary theory of biological 
species. GAs developed by Holland (1975) is the pioneering and most prominent EA. 
The GAs adapt the biological evolutionary concepts, such as mutation, cross-over, 
and selection, to stochastically perform the search process for optimal solutions. In
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GAs, the solution for the problem is encoded as a chromosome consisting of a set of 
genes that are evolved over different generations. According to the principle of natural 
selection in the theory of evolution, the genes of individuals with better adaptation 
ability are more likely to be transmitted to the next generations. Mutation refers to 
the errors and damages that can happen in genes during the transmission process, 
which can potentially lead to random changes in genes and genetic diversity in the 
population (Newson et al. 2007). GAs model these processes to gradually evolve a 
population of solutions. These algorithms have found a vast amount of applications 
in real-world problems (Katoch et al. 2021). 

The DE algorithm proposed by Storn and Price (1997a) is another EA. Storn 
and Price developed DE when they were trying to modify the Genetic Annealing 
algorithm (Price et al. 2006a). The modifications of the Genetic Annealing algorithm 
resulted in a new mutation equation on which DE has been developed. The DE uses 
three main operators, including mutation, cross-over, and selection, in which the 
evolutionary process is modelled based on the weighted differences between the 
individual vectors in the search space. 

BBO introduced by Simon (2008) is another EA that was developed based on the 
probabilistic mathematical models in biogeography science (Wilson and MacArthur 
1967). The algorithm assumes the solution candidates as a set of habitats in which 
the species perform the emigration and immigration processes. In BBO terminology, 
the position of each habitat is represented by Suitability Index Variables (SIVs), 
and the corresponding fitness is indicated by Habitat Suitability Index (HSI). BBO 
simulates the emigration and immigration processes based on the migration and 
mutation operators. The migration and mutation operators use a set of emigration and 
immigration rates which are obtained based on migration models from biogeography 
science. A recent literature survey performed by Ma et al. (2017) reveals that BBO 
has attracted relatively remarkable attention from different research communities 
over the past decade. 

CAs developed by Reynolds and his colleagues can be categorised as an EA, 
which have been developed based on the biocultural evolution theory (Reynolds 
and Rolnick 1995a, b; Ostrowski and Reynolds 1999). According to this theory, 
genes and culture can be viewed as two interacting forms of inheritance that form 
the overall evolution of the human species. This means that human behaviour is a 
product of two different and interacting evolutionary processes, genetic and cultural 
evolutions. CAs have some features that make them unique in comparison to other 
EAs. The conventional EAs work on the population level in which vertical genetic 
inheritance mechanism is modelled. Contrary to conventional EAs, CAs employ a 
dual inheritance system that is consisted of two parallel spaces, population and belief 
spaces. The population space models the genetic evolution and represents the micro-
evolutionary level. While the belief space simulates the cultural evolution process of 
individuals in the population space and can be viewed as a macro-evolutionary level. 
The belief space includes a network of cultural knowledge that can be used by individ-
uals during the decision-making process to find better results for the problem. During
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the solution-finding process, the population and belief spaces exchange information 
based on communication protocols. Chapter 2 will present the theoretical background 
on cultural evolution, and Chap. 3 will explain the full details of CAs. 

1.3.5 Swarm Intelligence (SI) 

SI refers to the family of mate-heuristic algorithms inspired by the collective 
behaviour of a group or swarm of species in biological systems, such as ants and birds. 
The basic characteristic features of these cooperation models observed in biolog-
ical systems are their decentralised and self-organised nature. In these systems, a 
set of agents interact with each other and their environment. Their behaviours are 
not controlled by any centralised forces, and they are free to locally and globally 
interact within the swarm in a relatively random manner. Despite the simple indi-
vidual behaviour of agents, their communication and collective interactions lead to 
the emergence of a global complex behaviour that is much more complicated. SI 
meta-heuristic techniques stimulate this intelligent behaviour to model the search 
process for the global optima in optimisation problems. 

ACO developed by Dorigo et al. (2006) is a SI technique inspired by the foraging 
behaviour of ants in finding the shortest path between their nest and food sources. 
The ants indirectly communicate with each other through a chemical process, called 
pheromone deposition. They can deposit pheromone on the ground to inform other 
ants about potential danger or trail the paths between their nest and food sources. 
In ACO, the solution candidates are modelled as ants which deposit pheromone on 
parts of the search that could potentially result in better fitness values. 

PSO originally introduced by Kennedy and Eberhart (1995) is another popular 
SI algorithm. The algorithm imitates the collective behaviour of a bird flock or fish 
school in finding food sources. In PSO, each solution candidate is represented as 
a particle in the search space that moves with a variable velocity. PSO considers 
the personal experience gained by every single particle as well as global experience 
acquired by the whole swarm to update the positions and velocities of particles in 
each iteration. The algorithm has been a quite popular approach for solving a wide 
variety of problems and, occasionally, its different variants have been developed by 
researchers (Parsopoulos and Vrahatis 2010; Mirjalili et al. 2020). 

1.3.6 Socio-inspired Algorithms 

The socio-inspired meta-heuristic algorithms adopt the social learning behaviours 
observed in real human societies to perform the search process for global optima. 
Imperialist Competitive Algorithm (ICA), TLBO, and League Championship Algo-
rithm (LCA) are examples of this category of algorithms. ICA introduced by
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Atashpaz-Gargari et al. (2007) imitates the imperialist competition process in polit-
ical science, TLBO developed by Rao et al. (2011) simulates the interactions between 
teacher and students in a class, and LCA presented by Kashan (2009) models the 
competition of teams in a sports league to achieve most favourable outcomes. The 
socio-inspired algorithms have been employed to solve various problems in literature 
(Hosseini and al Khaled 2014; Rao  2016; Jalili et al. 2017; Husseinzadeh Kashan 
et al. 2018). 

1.3.7 Physics Inspired Algorithms 

Several meta-heuristics model a given physical phenomenon observed in nature. 
The algorithms in this category adopt the governing equations in physics to build 
the search operators. Examples include, but are not limited to, SA, Gravitational 
Search Algorithm (GSA), Optics Inspired Optimisation (OIO), Charged System 
Search (CSS), and Colliding Bodies Optimisation (CBO). 

SA (van Laarhoven and Aarts 1987) is a single point meta-heuristic algorithm 
inspired by the annealing process in metallurgy in which a material is being heated 
and gradually cooled down to improve its physical and chemical properties. GSA 
introduced by Rashedi et al. (2009) metaphorically models Newtonian gravity and 
the laws of motion into the searching process, in which a set of particles interact with 
each other based on their masses. In GSA, the particles with given masses calculated 
based on the fitness values represent a set of solutions for the problem. In a similar 
approach, Kaveh and Talatahari (2010) adopted the Coulomb law from electrostatics 
and the Newtonian laws of mechanics to develop a new meta-heuristic, called CSS. 
In CSS, a set of charged particles are solution candidates for the problem that impose 
electrical forces on each other according to Coulomb’s law. CBO is another physics-
inspired algorithm presented by Kaveh and Mahdavi (2014), in which the governing 
equations in the one-dimensional collision process of moving bodies are adopted to 
design a new meta-heuristic. 

OIO is a population-based algorithm that models the optical phenomena observed 
in spherical mirrors (Kashan 2015; Jalili and Husseinzadeh Kashan 2018, 2019). 
The algorithm uses the governing equations in optical physics which explain how 
the images are formed in concave and convex mirrors. OIO treats the surface of the 
objective function as a wavey reflecting surface consisting of concave and convex 
parts on which the artificial images are formed. The algorithm models each solution 
candidate as an artificial light point that forms an artificial image on the function 
surface which represents a new solution for the problem.
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Fig. 1.2 General framework of hyper-heuristics 

1.3.8 Hyper-Heuristics 

According to the no free lunch theorems explained in Sect. 1.3.3, there is no single 
meta-heuristic algorithm capable of exhibiting equally efficient performance for 
different problems with different features in the search space. During the past decade, 
this has been intensified the efforts to develop more general and efficient algorithms 
that can be applied to most types of problems with a relatively stable performance. 
The emergence of hyper-heuristics is an example of such efforts. The logic behind 
the hyper-heuristics is to perform the search process in the heuristic space, rather 
than in the solution space (Burke et al. 2010). In the hyper-heuristic framework, a 
set of Low-Level Heuristics (LLHs) perform the search process in the solution space 
which are controlled by a High-Level Hyper-heuristic (HLH) strategy as shown in 
Fig. 1.2. In the high-level strategy, the algorithm decides which heuristic in the lower 
level should be applied to perform the search process at a given time in the solu-
tion space. The high-level strategy provides the learning capability for the algorithm 
to apply the most efficient heuristic strategy depending on the feedback received 
from the application of different LLHs in the past. The learning process in hyper-
heuristics can be online or offline (Burke et al. 2013a). It is also possible to construct 
a hyper-heuristic without learning capability, in which the LLH is selected in a purely 
random manner. The learning process in hyper-heuristics can potentially make them 
capable of dealing with different types of problems. The LLH can be any constructive 
or improvement heuristics. In literature, various HLHs have been developed, such 
as choice function, greedy selection, Multi-Armed Bandit (MAB), Hidden Markov 
Model (HMM), and Monte Carlo Tree Search (MCTS) methods (Choong et al. 2018). 
Although most of the hyper-heuristics in literature employ heuristics in the lower 
level, population-based meta-heuristics can also be used in the lower level to perform 
the search within the solution space. 

1.4 Summary 

This chapter provided a brief review of deterministic and stochastic optimisation 
approaches. The chapter started with a short overview of conventional optimisation
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approaches available from applied mathematics. The conventional approaches use 
gradient information of objective and constraint functions to search and locate the 
optimum solutions. Although the conventional approaches are efficient and primary 
options to solve relatively simple problems, their application to highly nonlinear 
problems is challenging from different perspectives. 

Modern stochastic heuristic and meta-heuristics optimisation methods are effi-
cient tools to deal with the “black-box” problems in which the objective and constraint 
functions cannot be expressed as explicit functions of decision variables. These 
approaches do not necessarily guarantee the achievement of global optimum for 
different problems. Rather, they are expected to provide near-optimal solutions for a 
certain range of problems, for which there is no available algorithm to find the optimal 
solution in polynomial time. The chapter discussed the no free lunch theorems in 
stochastic optimisation which state that although a specific heuristic or meta-heuristic 
algorithm can perform better than others for a given problem, there are other classes 
of problems in which the same algorithm might show weaker performance than other 
algorithms. According to these theorems, the main aim of algorithm designers should 
be the design of a heuristic or meta-heuristic approach that is capable of solving most 
types of problems in an equally efficient manner, rather than all types of problems. 

During the past decades, a significant number of meta-heuristic algorithms have 
been developed to solve optimisation problems in different branches of science and 
technology. Based on their sources of inspiration, the chapter categorised meta-
heuristics into EAs, SI, socio-inspired, and physics-inspired algorithms. It was 
discussed that CAs belong to the category of EAs that model the biocultural evolution 
theory into the searching process for global optima. In the eyes of biocultural evolu-
tion theory, genes and culture are two interacting forms of inheritance that form the 
overall evolution of the human species. The CAs employ a dual inheritance system 
that makes them unique in comparison to other EAs. As the main focus of this book 
is on CAs, the theoretical background on biocultural evolutionary theory will be 
discussed in Chap. 2, and the full algorithmic details of CAs will be presented in 
Chap. 3. 
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