Mohsen Aboulnaga Samaa E. Helmy

Biomimetic Architecture and Its Role in Developing Sustainable, Regenerative, and Livable Cities

Global Perspectives and Approaches in the Age of COVID-19

Biomimetic Architecture and Its Role in Developing Sustainable, Regenerative, and Livable Cities

Biomimetic Architecture and Its Role in Developing Sustainable, Regenerative, and Livable Cities

Global Perspectives and Approaches in the Age of COVID-19

Mohsen Aboulnaga Department of Architecture Faculty of Engineering Cairo University Giza, Greater Cairo, Egypt Samaa E. Helmy Department of Architecture Faculty of Engineering Cairo University Giza, Greater Cairo, Egypt

ISBN 978-3-031-08291-7 ISBN 978-3-031-08292-4 (eBook) https://doi.org/10.1007/978-3-031-08292-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Amid climate change and global warming's severe manifestation and impacts, world leaders convened at the COP 26 UN Climate Change Conference, (COP26) in Glasgow, UK, from October 31 to November 13, 2021, to tackle and discuss the climate crisis. Before COP26, the leaders of G7 met in Rome, Italy, to deal with and discuss the skyrocketing of prices for energy globally. These meetings highlighted two key global prime challenges and crises: climate change and energy, which are closely interconnected. The COP26 aimed at attaining climate neutrality by 2050 and allocating funding packages for developing countries to enable them to meet climate mitigation and adaption. One of the main topics discussed during COP26 was the role of nature and its benefits as a means to confront climate change risks.

The Glasgow Climate Pact (GCP), which was derived from the COP26 meeting, stated that the serious concern of climate and weather extremes and their adverse impacts on people and nature will continue to increase with additional increments of rising temperature. In terms of adaptation, the outcomes of COP26 emphasized the importance of scaling up action and support, including a) finance, b) capacity building and c) technology transfer, to improve adaptive capacity, strengthen resilience, and lessen vulnerability to climate change in the context of the best available science, taking into consideration the priorities and needs of developing countries. Regarding mitigation, GCP reasserted the long-term global goal to hold the increase in global average temperature to well below 2 °C above pre-industrial levels, in addition to recognizing that limiting global warming to 1.5 °C entails rapid, deep, and sustained reduction in global greenhouse gas (GHG) emissions. The latter includes the mitigation of global carbon dioxide emissions by 45% by 2030 relative to the 2010 level and to net zero by 2050, as well as deep reduction in other greenhouse gases. Among COP26 – GCP decisions are also to emphasize the significance of protecting, conserving, and restoring nature and ecosystems, including protecting the biodiversity while ensuring social and environmental safeguards. In a nutshell, the Glasgow Climate Pact outlines eight main folds: science and urgency, adaptation, adaptation finance, mitigation, finance, technology transfer.

vi Preface

capacity-building for mitigation and adaptation; loss and damage; implementation; and collaboration.¹

In view of COP26 outcomes/pact and the prolonged coronavirus (COVID-19) pandemic, can biomimicry and biomimetic architecture inspired by nature be an ingredient of the trail towards achieving climate neutrality by 2050?

Tracey Ryan – Aurecon's New Zealand Managing Director and FIDIC Chair of Sustainable Development Committee – highlighted that "Net Zero 2025 is the right thing to do." She added that biomimicry and the need for a holistic approach to circularity, decarbonization, and resilience are becoming crucial.² The legendary and famous architect Frank Lloyd Wright said it is important to *study nature, adore nature, and stay close to nature, it will never fail you*. It is truly said since biomimicry – a new path to attaining sustainability. Thus, biomimicry is an apt approach to confront challenges facing humanity and cities with such huge resource consumption, air pollution, climate change risks, water scarcity, and above all the COVID-19 pandemic. Biomimicry in architecture can also be the right path to drive climate action and foster green and sustainable cities, and yet achieve sustainable development and the SDGs. In its recent report on mapping nature-based solutions and natural climate solutions, the World's Business Council for Sustainable Development (WBCSD) stated that accelerating business solutions for climate and nature is vital.³

There is mounting evidence that human overexploitation of nature is a key factor causing the outbreak and spread of new diseases such as COVID-19. Thus, protecting nature and integrating architecture into nature will preserve the global biodiversity and ecosystem. While climate generates the conditions for nature to flourish, nature controls climate via the carbon and water cycles.

Therefore, there is a great deal to learn, discover, and gain from nature, which is seemingly forgotten. Amid the global efforts to confront climate change, biomimicry stands as a motivating approach that has influential impacts on solving multifaceted human problems through imitating the elements, systems, and paradigms of nature. The term "biomimicry" is derived from the Greek word "bios." The latter term means life and "mimesis" implies imitate. Therefore, mimicking nature in architecture can be a substantial helix of inspiration to attain sustainability of the built environment. However, biomimicry is not a new idea, and it goes back to an American inventor and academic – Otto Schmitt, who first coined the world itself as early as 1982.

In fact, cities globally are encountering huge challenges. With the number of megacities to reach 43 by 2030, this puts colossal pressure on natural resources in

¹UNFCCC. (2021). *Decision -/CP.26 Glasgow Climate Pact* (pp. 1–8). Glasgow: United Nations Framework Convention on Climate change. Retrieved 9 December 2021, from https://unfccc.int/sites/default/files/resource/cop26_auv_2f_cover_decision.pdf

²Pearson, G. (2021). "Net zero 2025 is the right thing to do," says Aurecon's Tracy Ryan – Infrastructure Global. Infrastructure Global. Retrieved 9 December 2021, from https://infraglobal/net-zero-2025-is-the-thing-to-do-says-aurecons-tracy-ryan

³ Docs.wbcsd.org. (2021).Retrieved 10 December 2021, from https://docs.wbcsd.org/2021/12/WBCSD-Accelrating-Buisness-Solutions-for-Climate-and-Nature.pdf

terms of energy, water, and material consumption. Moreover, the rapid population increase worldwide adds other dimensions to these immense challenges. With the global climate crisis and severity of the COVID-19 pandemic, which hit the world in the year 2019 and is still at large today, are megacities resilient enough to withstand the devastating impact of the ongoing SARS-CoV-2 pandemic coupled with climate change? Statistics published globally indicated that cities' infrastructure and sectors are not resilient. For example, as of December 6, 2021, the total confirmed cases amount to 265.8 million, and the total deaths reached 5.2 million and more to be recorded in the next months. Thus, there is an urgent need to build and transform cities to be resilient by focusing more on nature and exploiting biomimicry in architecture and urban spaces in the context of livability and sustainability.

The relationship with nature transformed into a more adaptive form through organic architecture in an attempt to integrate the spaces into a coherent whole, and the adaptation between the site and the built environment. For creating green, sustainable, and resilient cities in the age of the COVID-19 pandemic and attaining climate neutrality, biomimicry in architecture is key in this equation. Thus, there is a need to accelerate climate action, including (a) enhancing air quality, (b) protecting biodiversity, (c) ensuring clean energy transition, (d) fostering circular economic system and e) engaging local stakeholders. All of the above can be achieved through the implementation of nature-based development, low-emission development, circular development, and resilient development as well as equitable and people-command development.

Noticing the City Climate Finance Gap Fund, which wires cities in emerging and developing countries, to grasp and apprehend their climate ambition, turning low-carbon, climate-resilient concepts into strategies, policies, and finalizing projects, biomimicry in architecture could be a core and revolving point in reaching such goals, especially amid the COVID-19 crisis.

With more than 1430 cities in 210 countries around the world (e.g., the USA, India, Brazil Russia, and the UK) distressed and impacted by the coronavirus (COVID-19) and over 95% of the total cases being in urban areas and megacities, finding a solution through biomimicry is urgent and essential. Most of the people at risk are those living in informal settlements and slums in teeming and imperfect housing, estimated at more than one billion dwellers. Thus, biomimicry lingers as relevant to the health of our planet and cities as it was before the COVID-19 pandemic where nature has produced the ultimate medicines and design solutions. A wide range of multinational corporations and institutions now adjust their strategies and embrace biomimicry in their mission to efficiency, effectiveness, and sustainability. Related to climate change, organizations created applications and solutions to fight CC impacts, such as carbon mix (a new type of concrete which is inspired by coral), vertically aligned wind turbines (arrangement in the formation as seen in schools of fish), BioWAVE (which converts the energy of ocean waves into usable energy by imitating the movement of kelp under water to generate energy), and AirCarbon (which furnishes a distinctive way out of the current problem of plastics viii Preface

by producing plastics that are derived from greenhouse gases akin to methane instead of petroleum – the traditional source of material).⁴

Nature is a well of knowledge during the COVID-19 crisis. According to the Organization of Economic Co-operation and Development (OECD), the total number of unemployed workers in the OECD regions fell to 38.3 million, still 2.8 million higher than the pre-pandemic level.⁵ Hence, taking inspiration from nature in promoting healthy and green buildings and cities by virtue of biomimicry and biomimetic architecture can foster the transition toward green and livable cities by creating new job opportunities. Therefore, crises can present opportunities for cities and their economic recovery and growth. For instance, evidence has indicated that the quality of air has improved in cities across the world since transportation, road congestion, and heavy traffic were lessened, more people were working from home, and economic activities were decreased. This had a direct impact on people's health but on the other hand, created a challenge to existing well-ventilated buildings or air-tight buildings and spaces. In this context, biomimicry in architecture can play a major role in creating livable spaces and healthy buildings. With the high cost of climate change impacts globally, specifically the devastating floods in Europe (Belgium, Germany, The Netherlands, and Spain) and other parts of the global, city leaders must utilize the current crisis to plan and manage how net zero carbon aspiration can be achieved and how cities can become more resilient and sustainable in environmental, economic, and social stipulations. After all, Professor Tim Dixon – Chair of Sustainable Future in the Built Environment, University of Reading, UK, and the Oxford COVID-19 Evidence Service Team, University of Oxford - in his essay "What impacts are emerging from COVID-19 for urban future?" indicated that 1496 cities in 30 countries had affirmed climate emergencies before COVID-19 affected people's lives. In the UK, for example, cities like Oxford and Reading have not only set out their vision for 2050 but also have climate change strategies in place or under revision. Ultimately, net zero carbon and managing "transition" remains a huge challenge for cities and regions alike, but coupling these goals to innovating thinking for the future is primarily essential if cities worldwide are to become resilient enough and meet COP26 outcomes and the Glasgow Climate Pact.

Post COP26, the prime global warming is to be curbed to 1.5 °C, and all cities need to be net zero by 2050. The very concern is how to reach climate neutrality and curb the severity of climate change, and attain Sustainable Development Goals (SDGs), which have been hindered globally by COVID-19 crises. As the supply chain and food crises led to the increase in inflation worldwide, the authors intended

⁴Fransen, B. (2020). *Learning from Mother Nature – Biomimicry – EcoMatcher*. EcoMatcher. Retrieved 9 December 2021, from https://www.ecomatcher.com/learning-from-mother-nature-biomimicry

⁵ Post-Covid-19 Recovery Plan Key to Bolstering Growth and Public Finance. oecd.org. (2021). Retrieved 10 December 2021, from https://www.oecd.org/post-covid-19-recovery-plan-key-to-bolstering-growth-and-public-finance

⁶Dixon, T, (2021). What impacts are emerging from Covid-19 for Urban Futures? – The Centre for Evidence-Based Medicine. The Centre for Evidence-Based Medicine. Retrieved 10 December 2021, from https://www.cebm.net/covid-19/what-impacts-are-emerging-from-covid-19-for-urban-futures

to write this book due to the importance of the topic globally in terms of nature, biodiversity, and ecosystem. Going back to nature is a key issue that was discussed by leading international institutions during COP26, for instance, the United Nations, The World Bank, ICLEI – Local Governments for Sustainability, and OCED as well as the Biomimicry Institute, International Institute for Sustainable Development (IISD), C40 Cities Climate Leadership Group, and many more.

In articulating this book, the authors contemplated this topic since it is in the forefront and tackled globally, especially with reference to urban climate and challenges facing megacities and regions post COP26. Thus, we developed this book to focus mainly on biomimicry and biomimetic architecture as a means to green megacities and to fully comprehend biomimicry's approach through learning its background and history as well as to provide the origins of biomimetic architecture and its meaning, and how to integrate such an approach as a way of thinking to achieve climate and carbon neutrality. We also highlight the biomimicry role in the early conceptual design, overlapping between architecture and nature by virtue of taking nature as an inspiring model, measure, and mentor for the biomimicry design spiral. In addition, the authors emphasize the importance of biomimetic architecture amid the COVID-19 pandemic and climate crisis.

It was essential to highlight why the book focuses on biomimicry and biomimetic architecture's definitions, and the significance of biomimicry in the age of COVID-19 in terms of attitudes, connectivity to nature, and pro-environmental behaviors during COVID-19, yet learning through neighborhood's access to green spaces amid COVID-19. It is imperative to state that nature, a great source of inspiration to biomimicry, is a daily lifestyle these days, and the need for new approaches to attain livability, sustainable development and, SDGs in cities including biomimicry and energy efficiency, and circular economy and built environment are vital. There is a key question that this book is trying to answer. Can biomimicry aid in developing urban spaces and creating healthier buildings indoors? The book also highlights the interwoven relationship between biomimicry and urban design as well as biomimicry and climate change adaptation, in addition to biomimicry and post-COVID regulations, and showcases innovation in biomimicry and biomimetic architecture.

One of the challenges deduced from the literature in this book is that the topic occupies a large scale; therefore, we dived in to intensely read the literature, and research deeply to address such topic briefly, coherently, and holistically. This was really a time-demanding chore, and the COVID-19 pandemic lockdown delayed the process of writing this book, but the authors managed to overcome such a challenge in a timely manner. Another challenge derived from the literature is that people living next to coastal areas reported more than half of the world population, thus putting a severe strain on natural ecosystems and resources in addition to climate change (extreme threats including strong storms, devastating floods, and heat waves). Also, biodiversity loss and climate change – strongly interlinked – are major challenges of a similar significance and urgency to achieve SDGs. Obviously, nature and biodiversity have many possible solutions and inspiration to future pandemics and existing viruses. The green and inclusive recovery to COVID-19 has been

x Preface

focusing largely on climate change (CC), but less attention on biodiversity. Therefore, in any post-COVID regulation, biodiversity loss, and climate action should be mutually addressed as part of wider efforts to attain a green, sustainable, and resilient recovery in addition to attain the Glasgow Climate Pact and Climate neutrality by 2050.

Another defy is that global urban areas are the most affected regions when it comes to the spread of COVID-19, as seen in many cities in the USA, Europe, Africa, and Asia. What are the set policies, strategies, and action plans needed to curb the pandemic that hindered the progress effort done before 2019 in terms of the Sustainable Development Goals (SDGs)? This has also instigated the authors to write this book. Additionally, the current policies and mechanisms need to address the strategic actions to meet low-carbon communities, and yet integrate net zero process with the SDGs, specifically Goal 4 – Quality Education; Goal 7 – Affordable and Clean Energy; Goal 9 – Industry, Innovation and Infrastructure; Goal 11 – Sustainable Cities and Communities; Goal 12 – Responsible Consumption and Production, as well as Goal 13 – Climate Action; Goal 14 – Life on Land; and Goal 17 – Partnerships for the Goals.

This book furnishes the information needed to learn and comprehend biomimicry thinking, types, levels, and approaches as well as the six sustainability elements to achieve biomimetic concept for creating biomimicry in architecture. The aim is to highlight the importance of nature as a source of inspiration in order to withstand the severe impacts of climate change as well as natural disasters in megacities, in addition to the impacts of the COVID-19 crisis in more than 1400 cities worldwide.

The book also portrays a comprehensive overview on innovative approaches and sustainable biomimetic architecture examples in Asia, Europe, Africa, and the USA to assist the reader in facilitating and comprehending the content. The book is structured into two main parts. The first part presents some of the key issues related to biomimicry and architecture. Part I portrays a full review of biomimicry and nature – milieu, history, and approaches as well as design methods and process. It highlights the evolution of mankind and its relationship with nature biomimicry, and early conceptual design, as well as overlap between architecture and nature by taking nature as a model, measure, and mentor. Part I also furnishes the readers with a full comprehension of biomimicry through different aspects and underlines the drivers of the entire unsustainable practice of modern civilization that lies in the dualistic detachment of nature and culture. Additionally, it presents a review on the influence of biomimicry on architectural design and the built environment through several points. It also highlights and discusses the cause of biomimicry thinking, biomimicry in architecture, approaches, and levels of biomimicry as well as the levels of biomimetics information and the application types of biomimicry in architecture, and yet focuses on inspiration levels in nature and showcases many iconic global exemplary buildings. Moreover, it portrays the biomimicry design lens and nature's design principles and how biomimicry attains sustainability. While the second part of this book encompasses four chapters dedicated to highlighting the key issues of biomimicry in relation to sustainability and global applications of biomimicry approaches and levels in architecture, it also presents an overview and discusses Preface xi

climate change efforts, and actions concerning mitigation and adaptation in three countries (Egypt, Italy, and Germany). Part II also depicts biomimicry in criticism including the argument and defense as well as the direction towards a sustainable future. Moreover, it presents an overview of the COVID-19 pandemic and addresses how biomimicry innovation and post-COVID regulations can curb the devastating impacts of such a crisis. At the end of this book, an important question is highlighted – "Can biomimicry innovation assist in limiting the spread of COVID-19?"

With contributions from the lead author, an international and national expert who has more than 35 years of experience in higher education, government, senior management, and consultancy in strategy and policy related to sustainable urban development, sustainable energy policies, and climate change mitigation and adaptation, this book portrays an important and indispensable knowledge resource on the topic of biomimetic architecture and its role in developing sustainable, regenerative, and livable cities.

The *authors* strongly believe that the book will be a valuable resource to governments, policy makers, and professionals, along with research centers, libraries, and academicians as well as researchers and students who are interested in this field, in addition to industry stakeholders involved in the development of cities and buildings, for attaining climate neutrality by 2050 and offsetting climate change and achieving climate neutrality by adopting biomimicry approaches in architecture and getting inspired from nature, especially amid the COVID-19 pandemic and global crises.

You are welcome to contact the lead author through the e-mail address – maboulnaga@eng.cu.edu.eg – to share your thoughts and comments upon reading this book or afterward. I assure you to get back to you in a speedy manner.

Giza, Greater Cairo, Egypt

Mohsen Aboulnaga

Acknowledgments

We would like to express our sincere thanks to everyone who has contributed tirelessly and significantly to the completion of this book. We also appreciate the thoughts, research work, and wealth of materials put in the development and articulation of this book volume.

We would like to express our sincere appreciation to Springer Nature's editorial board and production team for their valuable advice, incessant support, and patience during the development of this book. We would like to thank Mr. Michael McCabe, Senior Editor – Applied Sciences; Mr. Brian Halm, Project Coordinator – Book Production; and Zoe Kennedy, Editorial Assistant. Additionally, we appreciate the support and coordination of Mr. Shabib Sheikh, book manager, for his cooperation and endless assistance during the process and production of this book.

The authors would also like to convey their appreciation to Santiago Calatrava Global, specifically Architect Reem Nassour at Calatrava International LLC in Dubai for her effort in reviewing the related text and the images of the UAE Pavilion. In this regard, we earnestly thank Mr. Oliver Schuh and Ms. Barbara Burg, Palladium Photodesign, Köln, Germany, for their kindness in granting the permission of two images of the UAE Pavilion at EXPO 2020 Dubai. We also express our sincere thanks to The Japan Pavilion Press Team for reviewing the related text in Chap. 1. Special thanks to the designer – Simmetrico Network, Italy – and engineering company – SCE Project Milan – who were in charge of the structural, architectural, and MEP engineering work, as well as the project managers, especially Architect Maurizio Burragato and Mr. Roberta Sorrentino, Communication Department, SCE Project, for their full support and providing the photos and related permissions of the Azerbaijan Pavilion at EXPO 2020, which appear in Chap. 1. Additionally, we thank Mr. Musthafa Ebrahim Khumanpur, Managing Director – Photography, ESC Project, for the photos of the Azerbaijan Pavilion EXPO 2020 Dubai.

Thanks also go to Ms. Emily Binet Royall, MIT'16 City Planning, USA, for her kind support and granting the permission of an image depicted in Chap. 2.

Also, we truly extend our heartfelt appreciation to Zaha Hadid Architects in London, namely Ms. Malin and Mr. Henry Sequeira, press team, for granting the permission of London Aquatics Centre photos. We also express our sincere xiv Acknowledgments

appreciation to Architect Jasper Jägers and Mrs. Judith Jägers, AEMSEN Rotterdam, the Netherlands, for providing the images of two of their sustainable and iconic projects and granting the permission. Special thanks go to Dr. Stefano Boeri and Stefano Boeri Architetti, Milan, particularly Ms. Siriana Jinag Guoyin and Ms. Fiamma Colette Invernizzi, communication team, for reviewing the text and figures in addition to providing permission for five images illustrated in Chap. 3.

Additionally, we convey our thanks to Kengo Kuma and Associates, Tokyo, Japan, particularly Mariko Inaba, press team, for reviewing as well as providing the drawings and images of their mixed-use building in Odawara-shi, Japan, portrayed in Chap. 4. Thanks also due to Matthew Dean Parkes and Tam Nguyen, Atlas Industries, for granting the permission. We also express our true appreciation to Professor Juan Herreros, founder of Estudio Herreros in Madrid and author of the Hispasat Headquarters in Spain, its responsible of media Architect Miguel del la Ossa, and photographer José Hevia for providing and granting the permission for the six images of the building presented in Chap. 4. Special thanks to William McDonough + Partners, an architectural firm in Virginia, USA, for their support and providing the permission of two images appearing in Chap. 4 of this book.

Moreover, we also extend our sincere thanks to the World Meteorological Organization (WMO) in Geneva, Switzerland, for granting the permission for a photo in Chap. 5, especially Ms. Sylvie Castonguay, Chair of Publication, and Ms. Clare Nullis, Officer – Strategic Communication Office.

Furthermore, the authors extend their thanks to Ms. Yasmina Ragab, Ms. Sherifa El-Haggan, and Mr. Mohamed Shahwna for their effort and time to proofread the book chapters. We also thank Architect Salma Abdelkader for her support and effort in enhancing some images in book and developing some of the picture permission forms.

Finally, we sincerely appreciate the effort of Amina El-Haggan, Aya Ghobasy, Rana El-Bakry, and Sherry El-Ghoraiby for capturing the images of the UAE Pavilion, The Terra – The Sustainability Pavilion, and The Mobility and Continuity Pavilion as well as Slovenia Pavilion and Japan Pavilion at Expo 2020 Dubai, which are depicted in Chap. 1 of this book.

Authors would also like to thank Arch. Haidy Mousa for her effort and assistance in pursuing the electronic corrections to the book proofs.

Last but not least, thanks are extended to all those who made this book process a success.

Mohsen Aboulnaga Samaa E. Helmy

Contents

1.1		uction
1.2	Why I	Focus on Biomimicry in Architecture Amid the
	COVI	D-19 Pandemic and Crisis
1.3	Biomi	micry and Biomimetic Architecture Definitions
	1.3.1	Biomimicry Definition
	1.3.2	Types of Biomimicry
1.4	Biomi	micry's Significance in the Age of COVID-19
	1.4.1	Attitudes, Connectivity to Nature, and Proenvironmental
		Behaviors During COVID-19
	1.4.2	Biomimicry Learning Through Neighborhood Access
		to Green Spaces Amid COVID-19
1.5	Nature	e, a Great Source of Biomimicry Inspiration
1.6	Needs	for New Approaches to Attain Livability, Sustainable
	Develo	opment, and SDGs
	1.6.1	Biomimicry and Energy Efficiency
	1.6.2	Circular and Biomimicry Built Environment:
		CBBE and SDGs
1.7	Can B	iomimicry Aid in Developing Urban Spaces
	and H	ealthier Buildings' Indoors?
	1.7.1	Biomimicry and Urban Design
1.8	Biomi	micry and Climate Change Adaptation
1.9	Biomi	micry and Post-COVID Regulations
1.10	Innova	ation in Biomimicry and Biomimetic Architecture
1.11	The C	overage
	1.11.1	Part I
	1.11.2	Part II
1.12	A Fina	al Note
Refe	rences	

xvi Contents

2 Bi	omimicry and Nature: Milieu, History, Approaches,	
ar	nd Design Methods and Process	107
2.	1 Introduction	107
2.3	2 What Is Biomimicry?	107
2.3		109
2.4	4 History of Biomimicry in Architecture and Its Outlook	110
2.:		124
2.	6 Integrating Biomimicry Approach as a Way of Thinking	128
2.		129
2.		131
2.		132
	2.9.1 Nature as a Model	133
	2.9.2 Nature as a Measure.	133
	2.9.3 Nature as a Mentor	133
2.	10 Biomimicry Design Methods and Processes	133
	11 The HELIX Model of Biomimicry	137
	12 Biomimicry Relationship with Environment and Sustainability	138
	13 Biomimitic Design Strategies and Goals	138
	14 Importance of Biomimicry Architecture	
	in the Time of COVID-19	139
2.	15 Conclusion	141
	eferences.	142
	omimicry Influences Architecture and Design: Thinking, pproaches, Levels, Application Types, and Inspiration	145
3.		145
3.1 3.1		143
3 3	, <u> </u>	151
		151
3.4	FF	
	3.4.1 Design Looking to Biology (Problem-Based Approach)	153
2	3.4.2 Biology to Design (Design Solution-Based Approach)	154
3.:	· · · · · · · · · · · · · · · · · · ·	155 157
	3.5.1 Organism Level	
	3.5.2 Behavior Level	158
2	3.5.3 Ecosystem Level	158
3.0	11 71	166
	3.6.1 Inspiration Sources	166
3.	, ,	195
3.		199
3.	7 671	200
	10 The Future of Biomimicry	201
	11 Conclusion	202
Re	eferences	202

Contents xvii

4			ity and Global Applications of Biomimicry Approaches	
	and	Levels i	in Architecture	207
	4.1	Introdu	action	207
	4.2	Biomi	micry Application in Line with Sustainability	208
		4.2.1	Structural Efficiency	211
		4.2.2	Material Manufacturing, ICD/ITKE Research	
			Pavilion 2012	215
		4.2.3	Waste Management	221
		4.2.4	Water Management	223
		4.2.5	Thermal Control and Self-Regulating Homeostatic	
			Façade System	224
		4.2.6	Renewable Energies: Strawscraper Building	230
	4.3	Archite	ectural Design Examples: Biomimicry	233
		4.3.1	Waterloo International Terminal in London, UK	236
		4.3.2	The Eden Project in Cornwall, England	237
		4.3.3	Swiss Re: Gherkin Tower in London, England	243
		4.3.4	Selfridges Department Store Building	
			in Birmingham, UK	245
		4.3.5	The Munich Olympic Stadium, Germany	246
		4.3.6	Tardigrada Botanica in Poland	249
		4.3.7	Sagrada Familia Church in Barcelona, Spain	250
		4.3.8	The Las Palmas Water Theatre in Canary Islands, Spain	254
		4.3.9	Tenerife Auditorium in Santa Cruz de Tenerife, Spain	255
		4.3.10	The All Seasons Tent Tower in Yerevan, Armenia	255
		4.3.11	Esplanade Theaters in the City of Singapore, Singapore	257
		4.3.12	Beijing's Olympic Stadium and National Aquatic	
			Center in China	264
		4.3.13	Omotesando Building, Tokyo, Japan	267
		4.3.14	Residential Building in New Songdo City,	
			Incheon, South Korea	268
		4.3.15	The Lotus Temple in Delhi, India	270
		4.3.16	Lavasa Township, India	275
		4.3.17	Aldar Headquarters, Abu Dhabi, UAE	279
		4.3.18	The Sahara Forest Project in Aqaba, Jordan, and Qatar	280
		4.3.19	Doha Tower and Giant Cactus Building	281
		4.3.20	Council House 2 (HC2) in Melbourne, Australia	283
		4.3.21	Ultima Tower, San Francesco, CA, USA	283
		4.3.22	Fennell Residence, Portland, Oregon, USA	285
		4.3.23	Spiraling Chicago Tower, Chicago, USA	286
		4.3.24	Hydrological Center for the University	
			of Namibia, Windhoek, Namibia	287
			Eastgate Building in Harare, Zimbabwe	288
			General Examples	291
		4.3.27	Examples of Rainwater Collector and Low-Carbon	
			Buildings	294

xviii Contents

	4.4	The Role of Robotic Strategies in Biomimetic Architecture	307
	4.5	Summary of Previous Global Biomimetic Examples	308
	4.6	Sustainability Comparative Analysis and Evaluation	309
		4.6.1 Comparative Evaluation of Biomimicry Architecture	
		and Sustainability	309
		4.6.2 Why Do We Need Sustainable Architecture?	315
		4.6.3 The Analytical Study	316
	4.7	Conclusion	317
	Refe	rences	328
5	Pior	nimicry in Architecture for Climate Change Mitigation	
3		Adaptation: An Overview of Egypt, Italy, and Germany	
		ons towards Climate Change	333
	5.1	Introduction	333
	5.2	Climate Change in a Global Context	335
	5.3	Vital Signs	339
	5.4	Causes and Effects of Climate Change	340
	3.4	5.4.1 Causes of Climate Change	342
		5.4.2 Impacts of Climate Change	345
	5.5	The Role of Biomimicry in Climate Change Mitigation	343
	3.3	and Adaptation	351
		5.5.1 Climate Change Mitigation	352
		5.5.2 Climate Change Adaptation	352
	5.6	Climate Change in Egypt	354
	5.0	5.6.1 Emissions and Commitments.	359
		5.6.2 Egypt's Position Related to Climate Change	361
		5.6.3 Egyptian Needs for Adaptation	363
		5.6.4 Adaptation Activities	364
		5.6.5 Mitigation Activities	367
	5.7	Climate Change in Italy	372
	3.1	5.7.1 Climate Change Mitigation	373
		5.7.2 Climate Change Adaptation	374
		5.7.3 The Environmental Action Plan and Adaptation	314
		Strategies in Italy	376
		5.7.4 Implementation Means.	378
		5.7.5 Monitoring, Reporting and Evaluation	379
		5.7.6 Sectors and Actions	379
		5.7.7 Engaging Stakeholders.	381
		5.7.8 Assessments	382
	5.8	Climate Change in Germany	385
	2.0	5.8.1 Policy and Legal Framework	387
		5.8.2 Assessments	389
		5.8.3 Climate Action Plan (CAP) 2050.	390
	5.9	Biomimicry and Climate Change.	394
	5.7	5.9.1 How Biomimetic Design Responds to Climate Change?	399
		5.5.1 115 w Distributed Design Responds to Chinate Change:	211

Contents xix

		5.9.2 Biomimicry to Mitigate Greenhouse Gas Emissions	
		in the Built Environment	400
		5.9.3 CH2 Building: Best Biomimicry in Architecture	
		Case Study	404
		Benefits of a Biomimetic Approach to Architecture	404
		Conclusion	405
	Refe	rences	406
6	Bion	nimicry in Criticism: Argument, Defense, and the	
		ction Toward Sustainability	411
	6.1	Introduction	411
	6.2	Arguments on Biomimicry	412
	6.3	Naïve Biomimetic Architectural Design Examples	420
	6.4	In Defense of Biomimicry	431
	6.5	Biomimicry Is Not Constrained by Evolutionary Instrumentalism.	436
	6.6	Biomimicry Is an Aid and Does Not Restrict Human	
		Thinking to Build	437
	6.7	The Limitations in Biomimetic Architecture	437
	6.8	Strength Versus Weakness of Biomimicry Comparison	442
		6.8.1 Strong Concept of Biomimicry	443
		6.8.2 Weak Concept of Biomimicry	445
	6.9	Future Directions	447
	6.10	From Bio-inspired Innovations to Eco-mimetic Cities	448
	6.11	Conclusion	451
	Refe	rences	452
7	Rion	nimicry Innovation, Opportunities, and Post-COVID	
•		llations	455
	7.1	Introduction	455
	7.2	Can Biomimicry Innovation Assist in Limiting	433
	7.2	the Spread of COVID-19?	465
	7.3	Scoping Challenge That the World Face and the	103
	7.3	Context of COVID-19	467
	7.4	Innovation for COVID-19 and Beyond	468
	,	7.4.1 Materials' Inspiration from Nature	470
		7.4.2 COVID-19 Pandemic Changed the Face of Life	472
		7.4.3 COVID-19 Positive Insight	473
	7.5	Guidelines for Healthier Urban Spaces' and Buildings'	173
	7.5	Indoor in COVID-19	475
		7.5.1 Urban Spaces	475
		7.5.2 Healthy Cities.	477
		7.5.3 Green Cities	477
		7.5.4 Smart Cities	480
		7.5.5 All-In Cities (Inclusive)	483
		7.5.6 Sustainable Cities.	484
		7.5.7 Resilient Cities.	485

xx Contents

	7.5.8 Rising Cities	2
	7.5.9 Urban Context and Pandemic Role	4
	7.5.10 Indoor Buildings' Spaces	2
7.6	Post-COVID Pandemic	4
	7.6.1 New Construction Considerations	
7.7	Conclusion	
Refe	erences.	
Can	Nature and Biomimicry Be the Solution for	
Net-	-Zero Cities? Discussions and Recommendations	
for	the Future of Biomimetic Architecture	
8.1	Introduction	
8.2	Can Nature and Biomimicry Contribute to Achieving	
	Net-Zero Cities?	
8.3	Buildings Created Away from Nature and Not Biomimetics	
8.4	Biophilic Architecture	
	8.4.1 Seoul City Hall Building, South Korea	
	8.4.2 Resources Tower in Nanshan, Shenzhen:	
	Guangdong, China	
8.5	Narrative on Biomimicry, Biomimetic Architecture,	
	and Lessons Learned	
8.6	Concluding Remarks	
	8.6.1 Theoretical and Methodological Framework	
	8.6.2 Main Recommendations	
	Most Recent Innovative, Smart and Biomimetic Architecture	
8.7	Wost Recent innovative, Smart and Diominicite Architecture	
8.7	in 2022	

List of Figures

Fig. 1.1	Nature and biology inspire biomimetic architecture.	
	(Image credit: Mohsen Aboulnaga)	2
Fig. 1.2	Nature-inspiring biomimicry in architecture.	
	(Image credit and source: Lee Aboulnaga)	3
Fig. 1.3	Nature-inspiring biomimicry in architecture.	
	(a) Cactus plants with prickly spines growing in clusters.	
	(b) Cactus flowers ending the biological process.	
	(Images' credit and source: Mohsen Aboulnaga)	4
Fig. 1.4	Nature as a platform to learn from during	
	the COVID-19 pandemic. (Image credit: Mohsen Aboulnaga)	4
Fig. 1.5	Nature as knowledge and inspiration for biomimicry	
	and confronting COVID-19 crisis. (a) Italian Alpine grass	
	(Prato Alpino Italia). (Image credit and source:	
	Silvia Marcellino, https://commons.m.wikimedia.org/wiki/	
	Category:Plants#/media/File%3Aprato_alpino_italia.png).	
	(b) Hibiscus Tiliaceus plant from nature.	
	(Image credit & source: Wafid Kholishatul,	
	https://commons.m.wikimedia.org/wiki/Category:	
	Plants#/media/File%3ADaun_Waru_	
	(Hibiscus_tiliaceus_di_pagi_hari. jpg)	5
Fig. 1.6	GreenClimateCities – Climate Neutrality Framework.	
	(Image source: Developed by authors after ICLEI World	
	Congress 2021–2022: The Road to Malmö)	6
Fig. 1.7	Walkability in Vienna's urban spaces with nature (landscape)	
	as a solution in the age of COVID-19.	
	(Image credit: Mohsen Aboulnaga)	7
Fig. 1.8	Walkability in urban spaces (trees and water) in Prague	
	as a solution during COVID-19. (Image credit:	
	Mohsen Aboulnaga).	8

xxii List of Figures

Fig. 1.9	Activities of ICLEI Global Research Strategy – GRS.
	(Image source: Developed by authors after ICLEI,
	https://www.iclei.org/en/Global_Research_Strategy.html)9
Fig. 1.10	Facts about the Coronavirus (COVID-19) pandemic impacts
	on the urban world. (Image source: Developed by authors
	after FES Regional Climate and Energy Project MENA) 10
Fig. 1.11	Elements of nature strategies in design.
	(Source: Developed by authors after Biomimicry Institute) 11
Fig. 1.12	Biomimicry types' classification.
	(Source: Developed by authors after Janine Benyus)
Fig. 1.13	Bamboo trees inspiring biomimetic architecture.
	(Image source: Mohsen Aboulnaga)
Fig. 1.14	Nature and ecosystems inspire biomimicry.
	(Image source: Mohsen Aboulnaga)
Fig. 1.15	Changes in UK adults' attitudes and connectivity
	to nature and proenvironmental behaviors.
	(Source: Developed by authors after Tania Lemmey,
	University of Cumbria, 2020)
Fig. 1.16	Description of the neighborhood and local green spaces,
	UK. (Image source: Developed by authors after Tania
	Lemmey, University of Cumbria, 2020)
Fig. 1.17	Pattern of time people spent daily in Nature in the UK
	during and before 2020 lockdown. (Image source:
	Developed by authors after Tania Lemmey,
	University of Cumbria 2020)
Fig. 1.18	View of seaside urban area with less green spaces,
	Naples, Italy, before COVID-19. (Image credit:
	Mohsen Aboulnaga)
Fig. 1.19	Biomimicry example of the Shinkansen bullet train
	in Japan inspired by the Pelecaniformes water bird.
	(a) Sharp and long beak of Pelecaniformes water bird.
	(b) The Pelecaniformes bird flying in strong high-speed
	winds by virtue of its beak. (c) The Shinkansen bullet
	train in Tokyo, Japan. (Images' source:
	(a) https://commons.m.wikimedia.org/wiki/Commons:
	Featured_pictures/Animals/Birds/Pelecaniformes#/media/
	File:Eeastern_great_egret_(Close-up_of_the_head_area)_
	at_Tennöji_Park_in_Osaka,_November_2016_1410.jpg;
	(b) https://commons.m.wikimedia.org/wiki/Commons:
	Featured_pictures/Animals/Birds/Pelecaniformes#/media/
	File:Eeastern_great_egret_in_flight_at_Tennöji_Park_
	in_Osaka,_November_2016_1479.jpg;
	and (c) Mohsen Aboulnaga)
Fig. 1.20	Mimicking a reptile – Heydar Aliyev Cultural Center
	in Baku, Azerbaijan, where late Zaha Hadid mimicked
	reptiles and waves together. (Image source:
	https://ru.m.wikipedia.org/wiki/%D0%A4%B0%D0%B9%BB:
	Heydar_Aliyev_Center.JPG)

List of Figures xxiii

Fig. 1.21	A view of Heydar Aliyev Cultural Center in Baku,
	Azerbaijan, where the design mimics water vaves.
	(Image source: https://en.m.wikimedia.org/wiki/File:
	Heydar_Aliyev_Cultural_Center.jpg)
Fig. 1.22	Biomimicry's link to the SDGs. (Source: Developed
	by authors after M Lopez)
Fig. 1.23	Design buildings like structures of natural organisms.
	(Image credit and source: Mohsen Aboulnaga)
Fig. 1.24	View of the heart of Naples, Italy, before COVID-19.
J	(Image credit and source: Mohsen Aboulnaga)
Fig. 1.25	View of the heart of Prague, Czech Republic,
J	before COVID-19. (Image credit and source:
	Mohsen Aboulnaga)
Fig. 1.26	View of a river in Kingston South East of London,
6	UK, before COVID-19. (Image credit and source:
	Mohsen Aboulnaga)
Fig. 1.27	Arashiyama on the fringes of Kyoto, Japan, before
118. 112.	COVID-19 where mountains are covered with greenery
	and water is running beneath them. (Image credit
	and source: Mohsen Aboulnaga)
Fig. 1.28	View of trees on the mountains in Arashiyama forest,
116. 1.20	Kyoto, Japan, before COVID-19.
	(Image credit: Mohsen Aboulnaga)
Fig. 1.29	View of the bamboo trees in Arashiyama in Kyoto, Japan,
116. 1.27	before COVID-19. (Image credit and source:
	Mohsen Aboulnaga)
Fig. 1.30	Biomimicry approaches for evaluating urban setting
11g. 1.50	in cities. (Image source: Developed by authors
	after Blizzard and Klotz [27])
Fig. 1.31	The layers connecting architecture to nature.
116. 1.31	(Image source: Developed by authors after Janine Benyus)
Fig. 1.32	Biomimicry applications aim at mitigating environmental
116. 1.32	impacts and enhancing human well-being.
	(a) Biomimicry's applications to mitigate environmental
	impacts. (b) Biomimicry's applications to enhance
	well-being impacts. (Image source: developed
	by authors after Uchiyama et al. [24])
Fig. 1.33	Examples of biophilic design and biomimetic buildings.
11g. 1.55	(a) One Central Park, Broadway, Sydney. (
	b) UT Dallas students service building, Texas.
	(c) Santé building in nature, SE Univ., Nanjing.
	(d) Offices looking out over nature, Florence.
	(Images' source: (a) https://commons.m.wikimedia.org/wiki/
	File:(1)Central_Building_Broadway_Sydney-1.jpg
	(b) https://commons.m.wikimedia.org/wiki/File:UT_
	Dallas_Students_Service_Building.JPG. (Images' credit and source: (c) and (d) Mohsen Aboulnaga)
	and source: (c) and (d) Monsen Adountaga)

xxiv List of Figures

Fig. 1.34	Global and local examples of biophilic design
	and biomimetic buildings. (a) Houses look out
	over nature, Kingston, UK. (b) A recreational building
	in Baku, Azerbaijan. (c) An office building facing
	nature, Barcelona. (d) Baku Int'l airport faces nature,
	Azerbaijan. (e) EWHA University built in nature, Seoul,
	SK. (f) An INU building facing nature, Incheon, SK.
	(g) Biophilic design of Westin hotel, New Cairo.
	(h) Nature surrounding the hotel, Cairo, Egypt.
E:= 1.25	(Images' Credit: Mohsen Aboulnaga)
Fig. 1.35	Global examples of biophilic design
	for biomimetic buildings. (a) Biophilic design
	of Bosco Vertical, Milan. (b) Biophilic design
	of a shopping mall, Bangkok. (c) Restaurant looking
	out over nature, Bangkok. (d) Office buildings facing nature
	in Brussels. (e) Biophilic design of Russian embassy,
	Berlin. (f) Biophilic design of residential bldg., London.
	(Image source: (a) https://commons.m.wikimedia.org/wiki/
	File:Bosco_Verticale_(205282347).jpeg;
	(b–f) Mohsen Aboulnaga)
Fig. 1.36	Biophilic design, Khoo Teck Puat hospital in Singapore.
	(Image source: https://en.m.wikimedia.org/wiki/Khoo_
	Teck_Paut_Hospital#/media/File%3ALink_
	bridge_at_KTPH.jpg)
Fig. 1.37	Bosco Vertical towers as part of an urban space
Ü	in Milan, Italy. (Image source: https://de.m.wikipedia.org/
	wiki/Datei:Bosco_Verticale_Milano.jpg)
Fig. 1.38	Urban space biophilic design, Incheon National University
U	in Songdo – Incheon, South Korea. (Image credit and source:
	Mohsen Aboulnaga)
Fig. 1.39	Nature (trees & green) in the Champ de Mars park adjacent
8	to Eiffel Tower and overlooking the École Militarie in Paris,
	France. (Image credit and source: Mohsen Aboulnaga) 41
Fig. 1.40	Biophilic design inside NOI Center in Bolzano, Italy.
115. 1.40	(a) The interior of NOI building, a biophilic design
	and greenery. (b) The atrium of NOI building.
Eig. 1.41	(Image credit and source: Mohsen Aboulnaga)
Fig. 1.41	
	buildings, France. (Image credit and source:
	Mohsen Aboulnaga) It is imperative that architects
	and urban designers develop buildings
	and urban spaces to attain eco-friendly and sustainable
	measures, meaning to ensure resources management
	and energy efficiency, yet mitigating the overall impact
	of the built environment on human health and nature.
	In order to achieve this goal, several considerations
	should be tackled and examined. The main considerations
	are listed in Fig. 1.42

List of Figures xxv

Fig. 1.42	Consideration for eco-friendly buildings. (Image source:
	Developed by authors after IEREK, https://www.ierek.com/
	news/inde.php/2016/04/13/the-relationship-between-
	architecture- and-environment)
Fig. 1.43	The 14 patterns of biophilic design of spaces.
	(Image source: Developed by authors after TERRAPIN
	Bright Green, https://www.terrapinbrightgreen.
	com/reports/14-patterns)
Fig. 1.44	Post-COVID regulations for biodiversity
J	and well-being – OECD. (Image source: Developed
	by authors after OCED Policy Brief, https://www.oecd.org/
	coronavirus/policy-responses/biodiversity-
	and-the-economic-response-to-covid-19-ensuring-
	a-green-and- resilient-recovery-d98b5a09)
Fig. 1.45	Innovative and iconic biomimetic architecture mimicking
118, 11.0	nature in Europe and Asia. (a) Arab World Institute
	in Paris, France 1987. (b) Spanish Pavilion in Shanghai
	Expo, 2010, China 2010. (c) Emirates Pavilion in Shanghai
	Expo, 2010, China 2010. (d) UAE Pavilion Expo 2020
	Dubai, UAE 2021–2022. (e) Slovenia Pavilion
	Expo 2020 Dubai, UAE 2021–2022. (f) Sultanate Oman
	Pavilion, Expo 2020 Dubai, UAE 2021–2022.
	(g) Azerabijian Pavilion, Expo 2020 Dubai, UAE 2021–2022.
	(h) Terra -The Sustainability Pavilion, Expo 2020 Dubai,
	UAE 2021–2022. (i) The Mobility Pavilion, Expo 2020
	Dubai, UAE 2021–2022. (j) Japan Pavilion, Expo 2020
	Dubai, UAE 2021–2022. (J) Jupan Fuvinon, Expo 2020 Dubai, UAE 2021–2022. (Images source:
	(a) Mohsen Aboulnaga; (d) (h) (j) Mohsen Aboulnaga
	and Amina El-Haggan; and (e) (i) Mohsen Aboulnaga
	and Aya Ghobashy (b) https://en.m.wikipedia.org/wiki/
	File:Spain_ Pavilion_of_Expo_2010.jpg (c) https://
	commons.m.wikimedia.org/wiki/File:United_Arab_ Emirates_
	Pavilion,_daytime.jpg (f) Government of Sultanate Oman,
	https://www.arabnews.com/node/1975621/middle-east
	•
	(g) SCE Project Milan, https://www.sceproject.it/
Eig. 1.46	featured/azerbaijian-pavilion-dubai-expo-2020)
Fig. 1.46	
	the windows' iris controlling daylight, sunlight, and glare. (Image gradit and source: Mohsen Aboulness) 50
Ein 1 47	(Image credit and source: Mohsen Aboulnaga)
Fig. 1.47	The Institute of Arab World – Paris, main façade inspired
	from the human eye where 30,000 photoelectric-sensor
	apertures open up and close based on weather conditions.
E' 1 40	(Image credit and source: Mohsen Aboulnaga)
Fig. 1.48	View of the façade of the Institute of Arab World
	controlling daylight and glare. (a) Close-up view
	of the main façade illustrating some of photoelectric-sensor
	apertures adapting to control daylight, sunlight, and glare.
	(b) Side view of modular apertures. (c) The back façade

xxvi List of Figures

	in shadow. (Image credit and source:
	(a–c) Mohsen Aboulnaga)
Fig. 1.49	General view of the structure of the Spanish Pavilion
	in Shanghai Expo 2010, exhibiting biomimetic
	and high-tech architecture. (Image source:
	https://es.m.wikipedia.org/wiki/Pabellón_de_España_
	(Shanghài)#/media/archivo:Spain_Pavilion_
	of_Expo_2010_2.jpg)
Fig. 1.50	Close-up view of the structure and wicker membranes
6 , ,,,	of the fabric of the Spanish Pavilion in Shanghai Expo 2010.
	(Image source: https://en.m.wikipedia.org/wiki/
	File:Spain_Pavilion_of_Expo_2010.jpg)
Fig. 1.51	The Spanish Pavilion in Shanghai Expo 2010 at night.
81	(Image source: https://es.m.wikipedia.org/wiki/
	Pabellón_de_España_(Shanghài)#/media/archivo:
	Spain_Pavilion_of_Expo_2010_2.jpg)
Fig. 1.52	The Emirates Pavilion in Shanghai Expo, 2010.
81	(a) Mimicking sand dunes in pavilion form.
	(b) The roof's gold-colored stainless steel. (Images source:
	(a) https://commons.m.wikimedia.org/wiki/
	File:United_Arab_Emirates_Pavilion,_daytime.jpg
	(b) https://www.fosterandpartners.com/projects/
	uae-pavilion-shanghai-expo-2010)
Fig. 1.53	Bird's-eye view of the iconic UAE Pavilion Expo 2020
81	Dubai mimicking nature in the form of a falcon.
	(Image and source: Oliver Schuh + Barbara Burg,
	Palladium Photodesign, Germany, www.palladium.de) 56
Fig. 1.54	View of one of the UAE Pavilion's entrances, the floating
6 ,	wings with PV panels, and dynamic covers.
	(Image and source: Oliver Schuh + Barbara Burg,
	Palladium Photodesign, Germany, www.palladium.de) 57
Fig. 1.55	General view of the UAE Pavilion showing the left side
81	of the 28 floating wings with solar PV panels installed
	on them to generate clean energy. (Image credit and source:
	Mohsen Aboulnaga and Amina El-Haggan)
Fig. 1.56	The floating wings generating clean energy
118.1100	from renewable sources for the building energy
	annual consumption. (a) Front façade of the UAE Pavilion's
	entrance and the solar PV panels appearing on the wings;
	(b) one of the wings shading for pedestrians; and
	(c) close-up view of the floating wings.
	(Images' credit and source: (a) Mohsen Aboulnaga
	and Amina El Haggan, (b, c) Mohsen Aboulnaga
	and Aya Ghobashy)
	<u> </u>

List of Figures xxvii

Fig. 1.57	One of the entrances of the UAE Pavilion with white
	floating rips to reflect solar radiation in summer.
	(Images' credit and source: Mohsen Aboulnaga
	and Rana El-Bakry)
Fig. 1.58	The wings of the UAE Pavilion at night.
	(a) The kinetic rips to cover the floating wings;
	(b) smart rips to protect the PV panels from dust.
	(Images credit and source: Mohsen Aboulnaga
	and Amina El-Haggan)
Fig. 1.59	The Slovenia Pavilion, a real green oasis emulating
	nature and representing the country's forest, wood,
	and water. (a) Forest, the first element of nature,
	combined with wood as the second element of nature.
	(b) Water, the third element of nature, along with wood
	and green walls, a biophilic design. (Images' source
E' 1.60	and source: Mohsen Aboulnaga and Aya Ghobashy)
Fig. 1.60	Sultanate Oman's Pavilion Expo 2020, Dubai, emulating
	nature. (a) The building form reflecting a frankincense tree;
	(b) Façade of the Omani Pavilion mimicking nature;
	(c) Frankincense trees in Dhofar, Oman. (Image source:
	(a) (b) Sultanate Oman Government, https://www.arabnews.com/
	node/1975621/middle-east (c) https://commons.m.wikimedia.org/
	wiki/File:Frankincense_Tree_in_Dhofar_3.jpg) 63
Fig. 1.61	The Azerbaijan Pavilion at Expo 2020 mimicking nature
	in the form a long leave and mushroom tree structure made
	from sustainable timber. (Image credit and source:
	Ph. Musthafa Ebrahim Khumanpur – SCE Project,
	https://www.sceproject.it/featured/azerbaijian-
	pavilion-dubai-expo-2020)
Fig. 1.62	The complex geometry of the roof consisting
	of an ellipsoidal solid emulating a leaf covering
	a wooden mushroom. (a) Entrance of Azerbaijan
	Pavilion showing the 900 Sq.m-insufflated ETFE
	membrane leaf covering the structure; (b) Close-up view
	of an insufflated ETFE membrane leaf. (Images' credit
	and source: Ph. Musthafa Ebrahim Khumanpur – SCE Project,
	https://www.sceproject.it/featured/azerbaijian-pavilion-
	dubai-expo-2020)
Fig. 1.63	External view of the Azerbaijan pavilion portraying
115. 1.05	the complete suspension by steel cable
	over the mushroom wooden tree and visitors' suspended
Eig 164	footbridge. (Image credit and source: Ph. Musthafa Ebrahim
	Khumanpur – SCE Project https://www.sceproject.it/featured/
	azerbaijian-pavilion-dubai-expo-2020)
Fig. 1.64	Night view of the ellipsoidal solid roof of the Azerbaijan
	Pavilion and the suspended footbridge. (a) Night view

xxviii List of Figures

	(b) general view of the wooden mushroom tree structure	
	at night; and (c) view of the external staircase and suspended	
	wooden footbridge. (Images' credit and source:	
	Ph. Musthafa Ebrahim Khumanpur – SCE Project,	
	https://www.sceproject.it/featured/azerbaijian-	
	pavilion-dubai-expo-2020)	67
Fig. 1.65	General view of the visitors' suspended footbridge	
8	leading to the Azerbaijan Pavilion at Expo 2020.	
	(Image credit and source: Ph. Musthafa Ebrahim	
	Khumanpur – SCE Project, https://www.sceproject.it/featured/	
	azerbaijian-pavilion-dubai-expo-2020)	70
Fig. 1.66	External and interior views of The Azerbaijan Pavilion.	70
11g. 1.00	(a) The external view of the revered mushroom wooden tree;	
	(b) part of the mushroom wooden tree inside the pavilion;	
	and (c) interior of the pavilion showing the horizontal	
	and vertical wooden rips of mushroom tree structure	
	from the inside. (Images' credit and source:	
	Ph. Musthafa Ebrahim Khumanpur – SCE Project,	
	https://www.sceproject.it/featured/azerbaijian-	
	pavilion-dubai-expo-2020)	71
Fig. 1.67	The metal lattice gate to the Terra – The Sustainability	
	Pavilion at Expo 2020 Dubai. (Image credit and source:	
	Mohsen Aboulnaga and Amina El-Haggan)	73
Fig. 1.68	The Terra – The Sustainability Pavilion at Expo 2020	
	mimics nature in the form of the Dragon trees to create	
	the solar complex. (Images' source: Mohsen Aboulnaga	
	& Amina El-Haggan).	74
Fig. 1.69	The Terra – The Sustainability Pavilion generating	
	renewable energy of 4 GWh annually. (a) Dragon trees	
	in Socotra Island, Yemen, inspiring The Terra – Sustainability	
	Pavilion design. (b) part of the 18 E-trees PV array canopies,	
	each is supported on carbon fiber; and (c) dynamic "E-trees"	
	canopies to track the sun by rotating 180 degrees throughout	
	the day. (Images' credit and source: (a) Rod Waddington,	
	https://commons.m.wikimedia.org/wiki/File:Dragon%27s_	
	Blood_Tree,_Socotra_Is_(12473612124).jpg	
	(a) Rod Waddington, https://commons.m.wikimedia.org/wiki/	
	File:Dragon_Blood_Tree,_Socotra_Island_(10098980413).jpg	
	(a) Andrey Kotov200514, https://upload.wikimedia.org/wikipedia/	
	commons/e/e3/%D0%92%D0%B5%D0%BB%D0%B8%D0%	
	BA%D1%96_%D0%B4%D0%B5%D1%80%D0%B5%	
	D0%B2%D0%B0_%D0%B7_%D0%90%D1%84%D1%	
	80%D0%B8%D0%BA%D0%B8.jpg (b, c)	
	Mohsen Aboulnaga and Aya Ghobashy)	75
Fig. 1.70	General view of the Terra – Sustainability Pavilion	, 5
115. 1.70	to educate people and generate energy by the solar complex	

	(Image credit and source: Mohsen Aboulnaga
	and Aya Ghobashy)
Fig. 1.71	The shed fabric covering the walking passage around
	the 18 solar energy movable tree canopies.
	(Image credit and source: Mohsen Aboulnaga
	and Rana El-Bakry)
Fig. 1.72	The main Energy tree "E-tree" solar canopy fixed
	on polycarbonate material stem,
	the Terra – The Sustainability Pavilion Expo 2020.
	(Image credit and source: Mohsen Aboulnaga
	and Rana El-Bakry)78
Fig. 1.73	The energy tree "E-tree" solar canopy for harnessing
6	the light from the sun as well as harvesting rain water.
	(Image credit and source: Mohsen Aboulnaga
	and Amina El-Haggan)
Fig. 1.74	Key sustainability facts achieved
6 ,	in the Terra – The Sustainability Pavilion Expo 2020
	Dubai. (Image source: Developed by authors
	after Grimshaw Global, https://grimshaw.global/sustainability/
	expo-2020-sustainability-pavilion-case-study)
Fig. 1.75	The Mobility and Continuity Pavilion at Expo 2020
8	Dubai mimicking nature through the wave continuity
	and movements. (Image credit and source: Mohsen Aboulnaga
	and Sherry Elghoraiby)
Fig. 1.76	Alif – The Mobility Pavilion at Expo 2020 mimicking
6 , , , ,	nature. (a) Front view of the Mobility Pavilion illustrating
	continuity and movements; (b) the ripped and curved shape
	of the façade mimicking movements of the Mobility Pavilion;
	and (c) side view of the flowing curves, evoking movements
	at the same time on the façades. (Images' credit and source:
	(a, b) Mohsen Aboulnaga and Aya Ghobashy
	(c) Mohsen Aboulnaga and Sherry Elghoraiby)
Fig. 1.77	The main façades Japan Pavilion combining
115. 1.77	the traditional Japanese asanoha pattern (hemp leaf pattern)
	and arabesque. (a) The Japan Pavilion during daylight;
	(b) the Japan Pavilion at night. (Images' credit and source:
	Mohsen Aboulnaga and Aya Ghobashy
	(b) Mohsen Aboulnaga and Amina El-Haggan)
Fig. 1.78	The Japan Pavilion Expo 2020 coupled with three-dimensional
	lattices that represent Japanese origami. (a) The lattice
	of the pavilion façade illuminating and glittering at night;
	(b) the iconic façade with three-dimensional lattices reflected
	on dazzling water. (Images' credit and source:
	Mohsen Aboulnaga and Amina El-Haggan)
Fig. 1.79	Details of the Japan Pavilion façades depicting a traditional
	Japanese asanoha pattern. (a) Part of the façade mimicking
	traditional Japanese asanoha pattern (hemp leaf pattern):

xxx List of Figures

	(b) close-up view of the 3-D lattices of the façade.
	(Images' credit and source: (a) Mohsen Aboulnaga
	and Amina El-Haggan; (b) Mohsen Aboulnaga
	and Rana El-Bakry)85
Fig. 1.80	Details of the 3-D lattices in a harmonious setting
	to create shades and reflect sun light. (Image credit
	and source: Mohsen Aboulnaga and Rana El-Bakry)
Fig. 1.81	Nature – a source of inspiration for architecture.
	(Image source: Mohsen Aboulnaga)
Fig. 1.82	Nature (trees, green, and material) fort livability
	in urban spaces. (a) Trees, greenery, and material forming
	the urban spaces; (b) water and material – urban space's
	elements; and (c) water – nature element to reduce stress.
	(Images' credit and source: Mohsen Aboulnaga)
Fig. 1.83	Biomimicry influencing city's spaces.
11g. 1.65	(Image credit and source: Mohsen Aboulnaga)
Dia 1.04	
Fig. 1.84	Ecosystem and nature inspiration for biomimicry
E'. 1.05	in architecture. (Image credit and source: Mohsen Aboulnaga) 93
Fig. 1.85	Nature to inspire biomimicry in architecture
	for future cities in the post-COVID age.
	(a) Scilla siberica plant to inspire biomimetic architecture;
	(b) Dracophyllum recurvum plant to inspire biomimetic
	architecture; (c) Euphorbia ingens plant with fruit
	to inspire biomimetic architecture; (d) Dracophyllum
	menziesii plant to inspire biomimetic architecture;
	(e) Ludwigia sedioides plant to inspire biomimetic architecture;
	and (f) Lepidium oleraceum plant to inspire biomimetic
	architecture. (Images' source: (a) https://commons.m.
	wikimedia.org/wiki/File:Scilla_siberica_21(2)Balka_
	Vilna.jpg# (b) https://commons.m.wikimedia.org/wiki/
	Category:Plants#/media/File:Dracophyllum_recurvum.jpg
	(c) https://commons.m.wikimedia.org/wiki/File:Euphorbia_
	ingens_with_fruitjpg# (d) https://commons.m.wikimedia.
	org/wiki/File:Dracophyllum_menziesii.jpg (e) https://
	commons.m.wikimedia.org/wiki/Category:Plants#/media/
	File%3ALudwigia_Sedioides_close-up.jpg (f) https://
	commons.m.wikimedia.org/wiki/File:Lepidium_
	oleraceum.jpg#)94
Fig. 1.86	Nature inspiring biomimicry in architecture
	for future cities in the post-COVID age.
	(a) Corydalis marshaling plant to inspire
	biomimetic architecture; (b) Dracophyllum filifolium plant
	to inspire biomimetic architecture; (c) Miplanta plant
	to inspire biomimetic architecture; and (d) Corydalis
	paczoskii plant to inspire biomimetic architecture.
	(Images' source: (a) https://commons.m.wikimedia.

List of Figures xxxi

	org/wiki/File:Corydalis_paczoskii_08(4)Khortitsa.jpg#
	(b) https://commons.m.wikimedia.org/wiki/File:
	Dracophyllum_filiolium.JPG# (c) https://commons.m.
	wikimedia.org/wiki/Category:Plants#/media/File:
	Miplanta.jpg (d) https://commons.m.wikimedia.org/
	wiki/File:Medicago_Citrina_2c_JPG#)95
Fig. 1.87	Paper mulberry plant from nature to inspire
	biomimicry in architecture for future cities
	in the post-COVID age. (Image source:
	https://commons.m.wikimedia.org/wiki/File:
	Paper_mulberry.jpg#)
Fig. 1.88	Fritillaria ruthenica plants from Nature
	and ecosystem inspiring biomimicry for future cities
	in post-COVID. (Image source: https://commons.m.
	wikimedia.org/wiki/Category:Plants#/media/File%3A
	Fritillaria_ruthenicaVerhnya_Khortitsa.jpg)
Fig. 1.89	Nature inspires biomimicry in architecture
11g. 1.07	for future cities in the post-COVID age.
	(Image source: https://commons.m.wikimedia.org/
	wiki/Category:Plants#/media/File%3ADraccophyllum_
	fiordense_foliage.jpg)
Fig. 1.90	Fritillaria ruthenica plant – biodiversity and ecosystem
11g. 1.90	to inspire biomimicry in architecture for future cities
	in the post-COVID age. (Image source: https://
	commons.m.wikimedia.org/wiki/File:Fritillaria_
Eia 1.01	ruthenica_3a_Zaporizhia.jpgs#)
Fig. 1.91	Importance of nature to areas of global concern.
E:- 0.1	(Source: Developed by authors after the UNDP)
Fig. 2.1	The beauty of biomimicry in architecture blended
E' 00	with nature. (Image credit and source: Mohsen Aboulnaga) 108
Fig. 2.2	Fallingwater house, built over a waterfall blended
	within nature by Frank Lloyd Wright. (Image credit
	and source: Carol M. Highsmith, https://commons.m.
	wikimedia.org/wiki/File:Falingwater,_also_known_as_
	the_Edgar_JKaufmann,_Sr.,_residence,_Pennsylvania,_
	by_Carol_MHighsmith.jpg#)
Fig. 2.3	Förstes Weinterrassen blended with nature,
	Bad Neuenahr-Ahrweiler. (Image credit and source:
	Udo Heimermann, https://commons.m.wikimedia.org/
	wiki/File:Förstehof-Bad-Neuenahr_Ahrweiler.jpg#)
Fig. 2.4	Ancient Egyptian examples inspired from nature.
	(a) Head of the column inspired by opened leaves
	of the lotus plant in Luxor, (b) Head of the column
	with closed leaves of the lotus plant, (c) A set of columns'
	heads with opened lotus plants, (d) A set of columns'
	heads with closed leaves of the lotus plant in Karnak