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13.4. Poincaré’s generalized theorem . . . . . . . . . . . . . . . . . . . . . . 274
13.5. Current of an incompressible two dimensional field . . . . . . . . . . 277
13.6. Global versus local primitives . . . . . . . . . . . . . . . . . . . . . . . 279
13.7. Comparison of the existence conditions of a primitive . . . . . . . . . 282
13.8. Limits of gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Chapter 14. Distributions of Distributions . . . . . . . . . . . . . . . . . 285

14.1. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
14.2. Bounded sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.3. Convergent sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
14.4. Extraction of convergent subsequences . . . . . . . . . . . . . . . . . 293
14.5. Change of the space of values . . . . . . . . . . . . . . . . . . . . . . . 294
14.6. Distributions of distributions with values in E-weak . . . . . . . . . . 295

Chapter 15. Separation of Variables . . . . . . . . . . . . . . . . . . . . . 297

15.1. Tensor products of test functions . . . . . . . . . . . . . . . . . . . . . 297
15.2. Decomposition of test functions on a product of sets . . . . . . . . . . 301
15.3. The tensorial control theorem . . . . . . . . . . . . . . . . . . . . . . . 303
15.4. Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.5. The kernel theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
15.6. Regrouping of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 317
15.7. Permutation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Chapter 16. Banach Space Valued Distributions . . . . . . . . . . . . . 323

16.1. Finite order distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 323
16.2. Weighting of a finite order distribution . . . . . . . . . . . . . . . . . . 326
16.3. Finite order distribution as derivatives of continuous functions . . . . 328
16.4. Finite order distribution as derivative of a single function . . . . . . . 333
16.5. Distributions in a Banach space as derivatives of functions . . . . . . 335
16.6. Non-representability of distributions with values in a Fréchet space . 339
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Introduction

Objective. This book is the third of seven volumes dedicated to solving partial dif-
ferential equations in physics:

Volume 1: Banach, Frechet, Hilbert and Neumann Spaces
Volume 2: Continuous Functions
Volume 3: Distributions
Volume 4: Integration
Volume 5: Sobolev Spaces
Volume 6: Traces
Volume 7: Partial Differential equations

This third volume aims to construct the space of distributions with real or vectorial
values and to provide the main properties that are useful in studying partial differential
equations.

Intended audience. We 1 have looked for simple methods that require a minimal
level of knowledge to make this tool accessible to as wide an audience as possible
— doctoral students, university students, engineers — without loosing generality and
even generalizing certain results, which may be of interest to some researchers.

This has led us to choose an unconventional approach that prioritizes semi-norms
and sequential properties, whether related to completeness, compactness or continuity.

1. We? We, it’s just “me”! There’s no intention of using the Royal We, dear reader, but this modest (?) “we”
is commonly used in scientific texts when an author wishes to speak of themselves. It is out of modesty
that the writers of Port-Royal made this the trend so that they could avoid, they say, the vanity of “me”
[Louis-Nicolas BESCHERELLE, Dictionnaire universel de la langue française, 1845].
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Utility of distributions. The main advantage of distributions is that they provide
derivatives of all continuous or integrable functions, even those which are not dif-
ferentiable, and thus broaden the scope of application of differential calculus. This is
especially useful for solving partial differential equations.

To this end, a family of objects, the distributions, is defined, with the following
properties.
— Any continuous function is a distribution.
— Any distribution has partial derivatives, which are distributions.
— For a differentiable function, we find the conventional derivatives.
— Any limit of distributions is a distribution.
— Any Cauchy sequence of distributions has a limit.

These properties may be roughly summarized by saying that the space D′ of
distributions is the completion with respect to derivation of the space C of continuous
functions. This construction, due to Laurent SCHWARTZ, [69] and [72], is completed
here for distributions on an open subset Ω of Rd with values in a Neumann space E,
i.e. a sequentially complete separable semi-normed space. This includes values in a
Banach or Fréchet space.

Originality. The quest for simple methods 2 giving general properties led us to pro-
ceed as follows.
— Directly consider vectorial values, i.e. constructing D′(Ω;E) without any prior
study of real distributions.
— Assume that E is sequentially complete, i.e. a Neumann space.
— Use semi-norms to construct the topologies of E, D(Ω), D′(Ω;E), etc.
— Equip D′(Ω;E) with the simple topology.
— Introduce weighting to generalize the convolution to open domains.
— Explicitly construct the primitives.
— Separate the variables using a “basic” method.
— Only use integration for continuous functions.

Let us take a closer look at these points that lie off the beaten track.

Vector values. We consider distributions with values in a general Neumann space E
even though the partial differential equations in physics generally have real values.
This is useful in evolution equations to separate the time t from the variable of space x.
A distribution over t, x with real values is then identified with a distribution over t
with values in a space E of distributions on x, for example, with an element of

2. Focus and simplicity. This was one of Steve JOBS’ favourite mantras: “Simple can be harder than
complex: You have to work hard to get your thinking clean to make it simple. But it’s worth it in the end
because once you get there, you can move mountains.” [BusinessWeek, 1998].
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D′((0, T );E) whereE = D′(Ω), which is itself a Neumann space. This identification
is made possible by the fundamental kernel theorem, p. 312.

A list of the most useful Neumann spaces is given on page 43.

For stationary equations, the real distributions (that is, the case where E = R) are
sufficient. We will directly work on the case where E is a Neumann space in order
to avoid repetitions, the generalization often consisting of replacing R with E and the
absolute value | | with a semi-norm of E in the statements and proofs, when using
appropriate methods.

Particular features in the case of vector values. The main differences as compared
to distributions with real values are as follows, for a general space E.
— The space D′(Ω;E) is not reflexive and its topology of pointwise convergence on
D(Ω) does not coincide with its weak topology.
— The bounded subsets of D′(Ω;E) are not relatively compact.
— The distributions over Ω are not of a finite order over its compact parts: they cannot
always be expressed as finite order derivatives of continuous functions.
— Variables may be separated by constructing a bijection fromD′(Ω1 × Ω2;E) onto
D′(Ω1;D′(Ω2;E)) (even for a real distribution, i.e. for E = R, this brings in vector
values, in this case in D′(Ω2)).

Sequential completeness. We assume that E is a Neumann space, i.e. that all its
Cauchy series converge, since this is an essential condition for continuous functions to
be distributions. That is, for C(Ω;E) ⊂ D′(Ω;E), see section 3.4, The case where E
is not a Neumann space, p. 53.

This property is simpler than the completeness, i.e. the convergence of all the
Cauchy filters, and is especially more general: for example, if H is a Hilbert space
with infinite dimensions,H-weak is sequentially complete but is not complete [Vol. 1,
Property (4.11), p. 63].

It is also simpler and more general than quasi-completeness, i.e. the completeness
of bounded subsets, used by Laurent SCHWARTZ [72, p. 2, 50 and 52].

Semi-norms. We use families of semi-norms rather than locally convex topologies,
which are equivalent, in order to be able to define Lp(Ω;E) in Volume 4. Indeed, it is
possible to raise a semi-norm to a power p, but not a convex neighborhood!

The handling of semi-normed spaces is simple, although it is less familiar than
that of topological spaces: it follows the handling of normed spaces, the main dif-
ference being that there are several semi-norms or norms instead of a single norm.
For example, we bring in the topology of D(Ω) through the family of semi-norms
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‖ϕ‖D(Ω);p = supx∈Ω, |β|≤p(x) p(x)|∂βϕ(x)| indexed by p ∈ C+(Ω), which is much
simpler than its (equivalent) construction as the inductive limit of the DK(Ω).

Simply topology. We equip the space D′(Ω;E) with the family of semi-norms
‖f‖D′(Ω;E);ϕ,ν = ‖〈f, ϕ〉‖E;ν indexed by ϕ ∈ D(Ω) and ν ∈ NE (set indexing the
semi-norms of E), i.e. with the topology of simple convergence on D(Ω), as it is
well-suited to our study . . . and is simple. This simplicity is achieved without
restricting ourselves to a pseudo-topology as is done in several texts.

In addition, this topology has the same convergent sequences and the same
bounded sets as the topology of uniform convergence on the bounded subsets of
D(Ω) used by Laurent SCHWARTZ. The reasons for our choices are detailed on p. 45.

Open domain and weighting. We consider distributions defined on an open subset Ω
of Rd. As these do not necessarily have an extension to all of Rd, we introduce an
operation, we call it weighting, which plays a role for Ω that is similar to the role
played by convolution for Rd and which we constantly use.

The weighted distribution f � µ of a distribution f , defined on an open set Ω, by a
weight µ, which is a real distribution on Rd with a compact supportD, is a distribution
defined on the open set ΩD = {x ∈ Rd : x+D ⊂ Ω}. When f and µ are functions,
it is given by (f � µ)(x) =

∫
D̊
f(x+ y)µ(y) dy. When Ω = Rd, the convolution is

recovered up to a symmetry on µ, and all its properties are recovered up to a possible
sign.

Primitives. We show that a field of distributions q = (q1, . . . , qd) has a primitive f ,
that is ∇f = q, if and only if it satisfies 〈q, ψ〉 = 0E for all the test fields
ψ = (ψ1, . . . , ψd) such that ∇ . ψ = 0. It is the orthogonality theorem. We explicitly
determine all the primitives and among these determine one which depends
continuously on q.

We also demonstrate that when Ω is simply connected it is necessary and sufficient
that ∂iqj = ∂jqi for all i and j. It is the Poincaré’s generalized theorem.

Separation of variables. We show that the separation of variables is bijective from
D′(Ω1 × Ω2;E) onto D′(Ω1;D′(Ω2;E)) by means of inequalities. These are cer-
tainly laborious to establish, but they avoid the difficult topological properties used by
Laurent SCHWARTZ in his diabolical proof of this kernel theorem.

The advantage of this method is laid out in the commentary Originality. . . , p. 317.

Integration. The integration of continuous functions is essential to identify them with
distributions through the equality 〈f, ϕ〉 =

∫
fϕ, for all test functions ϕ. Since the
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theory of integration was not developed for values in a Neumann space, in Volume 2
we established results relative to uniformly continuous functions that meet our re-
quirements. We remind them before using them in this volume.

The general theory of integration with values in a Neumann space will be done
in a later volume in the context of integrable distributions, which play the role of the
usual classes of almost equal integrable functions. Indeed, it has seemed simpler to
thus construct general integration.

Prerequisite. The proofs in the main body of the text only use the definitions and
results already established in Volumes 1 and 2, recalled either in the Appendix or in
the text, with references to their proofs.

This book has been written such that it can be read in an out-of-order fashion by
a non-specialist: the proofs are detailed and include arguments that may be trivial
for an expert and the numbers of the theorems being used are systematically recalled.
These details are even more necessary 3 since the majority of the results are general-
izations, that are new, to functions and distributions with values in a Neumann space
of properties that are classic for values in a Banach space.

I request the reader to be lenient with how heavy this may make the text.

Comments. Unlike the main body of the text, the comments, appearing in smaller font, may refer to
external results or those not yet established. The appendix ‘Reminders’ is also written in smaller font as it
is assumed that the content is familiar.

Historical overview. Wherever possible, the origin of the concepts and results is
specified in footnotes 4.

3. Necessary details. As Laurent SCHWARTZ explained in the preamble to one of his articles [71, p. 88]:
“Although many proofs are relatively easy, we find it useful to write them in extenso, because whenever
topological vector spaces come into play there are so many ‘traps’ that great rigor is needed”.
Given that the great and rigorous Augustin CAUCHY has himself arrived at an erroneous result, we have
not treated any detail too lightly. Let us recall that, in 1821, in his remarkable Cours d’Analyse de l’École
Royale Polytechnique, he declared that he had ‘easily’ [18, p. 46] proven that if a real function with two
real variables is continuous with respect to both the variables, it is continuous with respect to their couple.
It was not till 1870 that Carl Johannes THOMAE [89, p. 15] demonstrated that this was inexact.
4. Historical overview. Objective. This is first of all to honour the mathematicians whose work has
made this book possible and inspire it. Although some may be missing, either due to limited space or
knowledge. The other objective is to show that the world of mathematics is an ancient human construction,
not a “revealed truth”, and that behind each theorem there are one or more humans, our contemporaries or
distant ancestors who — including the Greeks — reasoned just as well as us, without internet, computers
or even printing and paper.

The forgotten. The French are probably over-represented here, as they are in all french libraries and
teaching and, often, in french hearts. Among the French, I am over-represented, because this book is the
result of thirty years of work I have carried out to simplify and generalize distributions with vectorial values.
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Navigating this book.
— The table of contents, at the beginning of this book, lists the topics discussed.
— The index, p. 371, provides another thematic access.
— The table of notations, p. xv, specifies the meaning of the symbols used.
— The hypotheses are all stated within the theorems themselves.
— The numbering is common to all the statements, so that they can be easily found in
numerical order (for instance, Theorem 2.2 is found between statements 2.1 and 2.3,
which are definitions).
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Chapter 1

Semi-Normed Spaces
and Function Spaces

In this chapter, we provide definitions for the following essential notions.
— Semi-normed spaces and, in particular, Neumann, Fréchet and Banach spaces (§ 1.1).
— Topological equality and inclusion of semi-normed spaces (§ 1.2).
— Continuous mappings (§ 1.3) and differentiable functions (§ 1.4).
— Spaces of continuously differentiable functions and their semi-norms (§ 1.5).
— The integral of a uniformly continuous function with values in a Neumann space (§ 1.6).

We will make extensive use of their properties established in Volumes 1 and 2, and refer, as to make this
book self-contained, to their precise statements in the course of the text or in the Appendix with references
to their proofs.

1.1. Semi-normed spaces

Let us define separated semi-normed spaces 1 (the definitions of vector spaces and
of semi-norms are recalled in the Appendix, § A.2).

Definition 1.1.– A semi-normed space is a vector space E endowed with a family of
semi-norms {‖ ‖E;ν : ν ∈ NE}.

Any such space is said to be separated (or Hausdorff) if u = 0E is the only
element such that ‖u‖E;ν = 0 for all ν ∈ NE .

1. History of the notion of semi-normed space. John von NEUMANN introduced semi-normed spaces
in 1935 [56] (with an unnecessary countability condition). He also showed [56, Theorem 26, p. 19] that
they coincide with the locally convex topological vector spaces that Andrey KOLMOGOROV previously
introduced in 1934 [46, p. 29].
History of the notion of Hausdorff space. Felix HAUSDORFF had included the separation condition in its
original definition of a topological space in 1914 [40].

Distributions, First Edition. Jacques Simon. 
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A normed space is a vector space E endowed with a norm ‖ ‖E .

Caution. Definition 1.1 of a separated semi-normed space is general but not universal. For Laurent
SCHWARTZ [73, p. 240], a semi-normed space is a space endowed with a filtering family of semi-norms
(Definition 1.8). This definition is equivalent, since every family is equivalent to a filtering family [Vol. 1,
Theorem 3.15].

For Nicolas BOURBAKI [10, editions published after 1981, Chap. III, p. III.1] and Robert EDWARDS
[30, p. 80], a semi-normed space is a space endowed with a single semi-norm, which drastically changes its
meaning. �

Let us define bounded subsets 2 of a separated semi-normed space.

Definition 1.2.– LetU be a subset of a separated semi-normed spaceE, whose family
of semi-norms is denoted by {‖ ‖E;ν : ν ∈ NE}. We say that U is bounded if, for
every ν ∈ NE ,

sup
u∈U
‖u‖E;ν <∞.

Let us define convergent and Cauchy sequences 3 in a semi-normed space.

Definition 1.3.– Let (un)n∈N be a sequence in a separated semi-normed space E,
whose family of semi-norms is denoted by {‖ ‖E;ν : ν ∈ NE}.

(a) We say that (un)n∈N converges to a limit u ∈ E, and we denote un → u, if, for
every ν ∈ NE ,

‖un − u‖E;ν → 0 when n→∞.

(b) We say that (un)n∈N is a Cauchy sequence if, for every ν ∈ NE ,

supm≥n ‖um − un‖E;ν → 0 when n→∞.

CAUTION. We denote N def
= {0, 1, 2, . . .} and N∗ def

= {1, 2, . . .}, conforming to the ISO 80000-2 stan-
dard for mathematical and physics notation (edited in 2009).

Any possible confusion will be of no consequence, apart from surprising the reader used to the opposite
notation when seeing a term u0 of a series indexed by N, or the inverse 1/n of a number n in N∗. �

2. History of the notion of bounded set. Bounded sets in a semi-normed space were introduced in 1935
by John von NEUMANN [56]. Andrey KOLMOGOROV had introduced them in 1934 [46] for topological
vector spaces.
3. History of the notion of convergent sequence. Baron Augustin CAUCHY gave Definition 1.3 for
convergence in R, in 1821 [18, p. 19]. Niels ABEL contributed to the emergence of this notion.
History of the notion of Cauchy sequence. Augustin CAUCHY introduced the convergence criterion of
Definition 1.3 for real series, in 1821 [18, p. 115-116], admitting it (i.e. by implicitly considering R as the
completion of Q). Bernard BOLZANO previously stated this criterion in 1817 in [6], trying unsuccessfully
to justify it due to the lack of a coherent definition for R.
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Let us define several types of sequentially complete spaces.

Definition 1.4.– A separated semi-normed space is sequentially complete if all its
Cauchy sequences converge.

A Neumann space is a sequentially complete separated semi-normed space.

A Fréchet space is a sequentially complete metrizable semi-normed space.

A Banach space is a sequentially complete normed space.

Neumann spaces. We named these spaces in Volume 1 in homage to John VON NEUMANN, who intro-
duced sequentially complete separated semi-normed spaces in 1935 [56]. Thus, readers should recall the
definition before using it elsewhere. Examples of such spaces are given in the commentary Examples of
Neumann spaces, p. 43. �

Completeness and sequential completeness. A semi-normed space is complete if every Cauchy fil-
ter converges [SCHWARTZ, 73, Chap. XVIII, § 8, Definition 1, p. 251]. We shall not use this notion
since sequential completeness is much simpler and more general (complete implies sequentially complete
[SCHWARTZ, 73, p. 251]) and especially since certain useful spaces are sequentially complete but not
complete. For example, it is the case of any reflexive Hilbert or Banach space of infinite dimension endowed
with its weak topology [Vol. 1, Property (4.11), p. 63]. �

Completeness and Metrizability. Recall that, for a metrizable space, completeness is equivalent to se-
quential completeness [SCHWARTZ, 73, Theorem XVIII, 8; 1, p. 251]. This is why some authors speak of
completeness for Banach or Fréchet spaces, while in reality they only use sequential completeness. �

Let us give a definition of metrizability.

Definition 1.5.– A semi-normed space is metrizable if it is separated and if its family
of semi-norms is countable or is equivalent to a countable family of semi-norms.

Definitions of the equivalence of families of semi-norms and of their countability
are recalled on pages 4 and 350 (Definitions 1.6 and A.1).

Justification for the name “metrizable”. We refer here to a metrizable space since every countable family
or, what leads to the same thing, any sequence (‖ ‖k)k∈N of semi-norms can be associated with a distance,
or metric, d which generates the same topology, for instance

d(u, v) =
∑
k∈N

2−k
‖u− v‖k

1 + ‖u− v‖k
.

Definition 1.5 is, in fact, that of a separated countably semi-normable space. We shall abuse terminology
and speak of metrizable spaces since this equivalent notion is more familiar. To be precise, a metrizable
space is a space that is “topologically equal to a metric space”. �
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Superiority of a sequence of semi-norms over a distance. The semi-norms of a metrizable spaceE allow
us to characterize its bounded subsets U by (Definition 1.2)

supu∈U ‖u‖E;k <∞, for all k ∈ N.

On the contrary, if E is not normable and if d is a distance that generates its topology, its bounded subsets
are not characterized by

sup
u∈U

d(u, 0E) <∞.

What is worse, is that no “ball” {u ∈ E : d(u, z) < r}, for r > 0, is bounded. Indeed, the existence of a
non-empty bounded open subset is equivalent to normability, due to Kolmogorov’s Theorem 4. �

1.2. Comparison of semi-normed spaces

First, let us compare families of semi-norms on the same vector space.

Definition 1.6.– Let {‖ ‖1;ν : ν ∈ N1} and {‖ ‖2;µ : µ ∈ N2} be two families of
semi-norms on the same vector space E.

The first family dominates the second if, for every µ ∈ N2, there exist a finite
subset N1 of N1 and c1 ∈ R such that for every u ∈ E,

‖u‖2;µ ≤ c1 sup
ν∈N1

‖u‖1;ν .

Both families are equivalent if each one dominates the other. We also say that they
generate the same topology.

Terminology. The topology of E is the family of its open subsets. We can say that two families of semi-
norms generate the same topology instead of saying that they are equivalent, since the equivalence of the
families of semi-norms implies the equality of the families of open subsets [Vol. 1, Theorem 3.4], and
reciprocally [Vol. 1, Theorem 7.14 (a) and 8.2 (a), with L = T = Identity]. �

Let us see how we can compare two semi-normed spaces (the definition of a vector
subspace is recalled in the Appendix, § A.2).

Definition 1.7.– Let E and F be two semi-normed spaces, whose families of semi-
norms are denoted by {‖ ‖E;ν : ν ∈ NE} and {‖ ‖F ;µ : µ ∈ NF }.

(a) We denote E ≡↔F if E = F and if their additions, multiplications and families of
semi-norms coincide. That is to say, if they have the same vector space structure and
the same semi-norms.

4. History of Kolmogorov’s Theorem. Andrey KOLMOGOROV showed in 1934 [46, p. 33] that a
topological vector space is normable if and only if there exists a bounded convex neighborhood of the
origin, which is equivalent here to the existence of a bounded open set.
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(b) We say that E is topologically equal to F and we denote E =↔F if E = F , if
their additions and multiplications coincide and if their families of semi-norms are
equivalent.

(c) We say thatE is topologically included in F and we denoteE ⊂→F ifE is a vector
subspace of F and if the family of semi-norms ofE dominates the family of restrictions
to E of the semi-norms of F .

That is to say if, for every semi-norm µ ∈ NF , there exist a finite subset N of NE
and c ∈ R such that, for every semi-norm u ∈ E,

‖u‖F ;µ ≤ c sup
ν∈N
‖u‖E;ν .

(d) We say that E is a topological subspace of F if it is a vector subspace of F and
if it is endowed with the restrictions to E of the semi-norms of F or, more generally,
with a family equivalent to the family of these restrictions.

Caution. Suppose that E = F and that, for every µ ∈ NF , there exists ν ∈ NE such that, for every
u ∈ E,

‖u‖F ;µ = ‖u‖E;ν .

This equality does not imply topological equality E =↔F : it only implies E ⊂→F . Indeed, it does not
ensure the existence, for every ν ∈ NE , of a µ satisfying this equality or of a finite family of µ such that
‖u‖E;ν ≤ c supµ∈M ‖u‖F ;µ, which is necessary for the converse inclusion F ⊂→E.

Such an equality of semi-norms occurs for example in step 3, p. 28, of the proof of Theorem 2.12,
where we thus prove a converse inequality to get topological equality. �

Let us finally define filtering families of semi-norms.

Definition 1.8.– A family {‖ ‖ν : ν ∈ N} of semi-norms on a vector space E is fil-
tering if, for every finite subset N of N , there exist µ ∈ N such that, for every u ∈ E,

sup
ν∈N
‖u‖ν ≤ ‖u‖µ.

Utility of filtering families. The use of filtering families simplifies some statements, by substituting a
single semi-norm to the upper envelope of a finite number of semi-norms. This is for example the case
with the characterization of continuous linear mappings from Theorem 1.12 where we consider both cases.
Definition 1.9 of continuous mappings could similarly be simplified with a filtering family.

Any family of semi-norms is equivalent to a filtering family [Vol. 2, Theorem 3.15], but this one is not
necessarily pleasant to use. �

Spaces endowed with filtering families. The “natural” family of some spaces is filtering. For example,
D(Ω) is endowed (Definition 2.5) with the family, which is filtering (Theorem 2.7), of the semi-norms,
indexed by p ∈ C+(Ω),

‖ϕ‖D(Ω);p = sup
x∈Ω

sup
|β|≤p(x)

p(x)|∂βϕ(x)|.

A single norm also constitutes, on its own, a filtering family of semi-norms. �
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Utility of non-filtering families. The “natural” family of some spaces is not filtering. For example,D′(Ω)
is endowed (Definition 3.1) with the non-filtering family of the semi-norms, indexed by ϕ ∈ D(Ω),

‖f‖D′(Ω);ϕ = |〈f, ϕ〉|.

If the aim was to consider filtering families only, then D′(Ω) should be endowed with the semi-norms

|||f |||D′(Ω);N = sup
ϕ∈N

|〈f, ϕ〉|

indexed by the finite subsetsN ofD(Ω). The maximum over finite subsets would of course disappear from
Definition 1.9 of continuous functions but it would reappear here. �

1.3. Continuous mappings

We now define various notions of continuity 5 of a mapping from a semi-normed
space into another.

Definition 1.9.– Let T be a mapping from a subset X of a separated semi-normed
space E into another separated semi-normed space F , and let {‖ ‖E;ν : ν ∈ NE}
and {‖ ‖F ;µ : µ ∈ NF } be the families of semi-norms of E and F .

(a) We say that T is continuous at the point u of X if, for every ν ∈ NE and ε > 0,
there exist a finite subset M of NF and η > 0 such that:

v ∈ X, sup
µ∈M

‖v − u‖F ;µ ≤ η ⇒ ‖T (v)− T (u)‖E;ν ≤ ε.

We say that T is continuous if it is so at every point of X .

(b) We say that T is uniformly continuous if, for every ν ∈ NE and ε > 0, there exist
a finite subset M of NF and η > 0 such that:

u ∈ X, v ∈ X, sup
µ∈M

‖v − u‖F ;µ ≤ η ⇒ ‖T (v)− T (u)‖E;ν ≤ ε.

(c) We say that T is sequentially continuous at the point u ofX if, for every sequence
(un)n∈N of X:

un → u in E ⇒ T (un)→ T (u) in F .

We say that T is sequentially continuous if it is so at every point of X .

5. History of the notions of continuity. Augustin CAUCHY defined sequential continuity for a real function
on a line segment in 1821, in [18]. Bernard Placidus Johann Nepomuk BOLZANO also contributed to the
emergence of this notion.
Eduard HEINE defined the uniform continuity of a function defined on a part of Rd in 1870, in [42]. It
had already been used implicitly by Augustin CAUCHY in 1823 to define the integral of a real function [19,
p. 122-126], and then explicitly by Peter DIRICHLET.
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(d) We say that T is bounded if its image T (X) = {T (u) : u ∈ X} is bounded in F .
That is to say if, for every µ ∈ NF ,

sup
u∈X
‖T (u)‖F ;µ <∞.

Recall that continuity always implies sequential continuity [Vol. 1, Theorem 7.2] 6.

Theorem 1.10.– Any continuous mapping from a subset of a separated semi-normed
space into a separated semi-normed space is sequentially continuous.

The converse is true if the initial space is metrizable [Vol. 1, Theorem 9.1].

Theorem 1.11.– A mapping from a subset of a metrizable separated semi-normed
space into a separated semi-normed space is continuous if and only if it is sequentially
continuous.

For linear mappings, Definition 1.9 gives [Vol. 1, Theorem 7.14]:

Theorem 1.12.– Let L be a linear mapping from a separated semi-normed space E
into a separated semi-normed space F , and let {‖ ‖E;ν : ν ∈ NE} and
{‖ ‖F ;µ : µ ∈ NF } be the families of semi-norms of E and F . Then:

(a) L is continuous if and only if, for every µ ∈ NF , there exist a finite subset N of
NE and c ≥ 0 such that: for every u ∈ E,

‖Lu‖F ;µ ≤ c sup
ν∈N
‖u‖E;ν .

This is also equivalent to the statement: L is uniformly continuous.

(b) If the family of semi-norms of E is filtering, then L is continuous if and only if, for
every µ ∈ NF , there exist ν ∈ NE and c ≥ 0 such that: for every u ∈ E,

‖Lu‖F ;µ ≤ c ‖u‖E;ν .

Observe that topological inclusion is equivalent to the continuity of identity.

6. Numbering of statements. The numbering is common to all the statements — Definition 1.1, . . . ,
Definition 1.9, Theorem 1.10, Theorem 1.11, etc. —, to make it easier to find a given result by following
the order of the numbers. It is not worthwhile therefore to look for Theorems 1.1 to 1.9, as these numbers
have been assigned to definitions. There is also no need to look for Definitions 1.10, 1.11, etc.
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Theorem 1.13.– The topological inclusion E ⊂→F of a separated semi-normed space
into another is equivalent to the continuity of the identity mapping from E into F .

Proof. Definition 1.7 (c) of topological inclusion coincides with the characterization
of continuity from Theorem 1.12 (a) applied to the identity, i.e. for Lu = u. �

For semi-norms, Definition 1.9 gives [Vol. 1, Theorem 7.11]:

Theorem 1.14.– A semi-norm p on a separated semi-normed space E with a filter-
ing family {‖ ‖E;ν : ν ∈ NE} of semi-norms is continuous if and only if there exist
ν ∈ NE and c ≥ 0 such that: for every u ∈ E,

p(u) ≤ c‖u‖E;ν .

Addition and multiplication by a real number t for mappings with values in a
vector space are defined by

(T + S)(u)
def
= T (u) + S(u), (tT )(u)

def
= tT (u). (1.1)

1.4. Differentiable functions

We reserve the term function for a mapping defined on a subset of Rd, which in
general is denoted by Ω. Throughout the book, the dimension d is an integer ≥ 1.

Recall that a function is continuous if and only if it is sequentially continuous
(Theorem 1.11, since Rd is normed).

Gradient being defined in Ed
def
= {(u1, . . . , ud) : ui ∈ E, ∀i}, recall that this

product space is endowed with the semi-norms, indexed by ν ∈ NE ,

‖u‖Ed;ν
def
= (‖u1‖2E;ν + · · ·+ ‖ud‖2E;ν)1/2, (1.2)

which makes it a separated semi-normed space [Vol. 1, Theorem 6.11].

We denote by |z| def
= (z2

1 + · · ·+ z2
d)1/2 the Euclidean norm of z ∈ Rd and, for

u ∈ Ed,
z . u def

= z1u1 + · · ·+ zdud.

Observe that
‖z . u‖E;ν ≤ |z|‖u‖Ed;ν . (1.3)
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Indeed, from the Cauchy-Schwarz inequality in Rd, see (A.1), p. 354,

‖z . u‖E;ν ≤
d∑
i=1

|zi|‖ui‖E;ν ≤
( d∑
i=1

z2
i

)1/2( d∑
i=1

‖ui‖2E;ν

)1/2

= |z|‖u‖Ed;ν .

Let us define various levels of differentiability for a function with values in a
separated semi-normed space.

Definition 1.15.– Let f be a function from an open subset Ω of Rd into a separated
semi-normed space E, whose family of semi-norms is denoted by {‖ ‖E;ν : ν ∈ NE}.

We say that f is differentiable at the point x of Ω, if there exists an element of
Ed, denoted by∇f(x) and called the gradient of f at the point x, such that, for every
ν ∈ NE and ε > 0, there exists η > 0 such that, if z ∈ Rd, |z| ≤ η and x+ z ∈ Ω,
then

‖f(x+ z)− f(x)− z .∇f(x)‖E;ν ≤ ε |z|.

We say that f is differentiable if it is differentiable at every point of Ω, and that it
is continuous differentiable if, moreover,∇f is continuous from Ω into Ed.

We say that f is m times differentiable, where m ∈ N∗, if it has successive
gradients∇f ,∇2f , . . . ,∇mf (these are elements ofEd, Ed

2

, . . . , Ed
m

respectively).

We say that f is m times continuously differentiable if, moreover, its successive
gradients are continuous. We extend this notion and the previous one to m = 0 by
denoting

∇0f
def
= f.

We say that f is infinitely differentiable if it is m times differentiable for every
m ∈ N∗.

When d = 1, the differentiability of f at the point x reduces to the existence of
an element of E, denoted by f ′(x) and called the derivative 7 at the point x, such

7. History of the notion of the derivative of a real function. EUCLIDE, in his Elements [31, Book III,
p. 16] was already looking for the tangent to a curve. Pierre de FERMAT, in 1636, found the tangent for the
curve of equation y = xm with a calculation prefiguring that of the derivative. Isaac NEWTON introduced
in 1671 the fluxion of a function y = f(x) which he denoted by ẏ [57, p. 76]. Gottfried von LEIBNIZ
developed infinitesimal calculus in 1675 [51]. The notion of derivative was made rigorous in 1821 by
Augustin CAUCHY [18, p. 22].
History of the notation. The notation dy/dx was introduced by Gottfried von LEIBNIZ in 1675 [51]. This
was what Joseph Louis LAGRANGE denoted by f ′x in 1772 [49].
The symbol ∇ was introduced by Sir William Rowan HAMILTON in 1847, by inverting the Greek letter
∆, which had already been used in an analogous context (to designate the Laplacian); the name nabla was
given to him by Peter Guthrie TAIT on the advice of William Robertson SMITH, in 1870, in analogy to the
form of a Greek harp which in Antiquity bore this name (νάβλα).
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that, for every ν ∈ NE and ε > 0, there exists η > 0 such that, if t ∈ R, |t| ≤ η and
x+ t ∈ Ω, then

‖f(x+ t)− f(x)− tf ′(x)‖E;ν ≤ ε |t|. (1.4)

The gradient here has only one component: ∇f(x) = f ′(x). The derivative is often
denoted as df/dx instead of f ′, in particular when we wish to specify the variable
with respect to which we are differentiating.

Utility of assuming that Ω is open. This hypothesis guarantees the uniqueness of the gradient at every
point where it exists [Vol. 2, Theorem 2.2]. If not, for example if Ω was just a point, then every function
would be differentiable and would admit every element of E as its gradient. However, the notion of
differentiability can be extended to the closure of an open set while preserving the uniqueness of the gradient
[Vol. 2, Definition 2.26]. �

Let us define partial derivatives 8, denoting by ei the i-th basis vector of Rd, i.e.

(ei)i = 1, (ei)j = 0 if j 6= i,

and denoting by Jm,nK the interval of integers {i ∈ N : m ≤ i ≤ n}.

Definition 1.16.– Let f be a function from an open subset Ω of Rd into a separated
semi-normed space E, whose family of semi-norms is denoted {‖ ‖E;ν : ν ∈ NE}.

We say that f has a partial derivative ∂if(x) ∈ E at the point x of Ω, where
i ∈ J1, dK, if the function xi 7→ f(x) is differentiable at the point xi with derivative
∂if(x).

That is to say, if, for every ν ∈ NE and all ε > 0, there exists η > 0 such that, if
t ∈ R, |t| ≤ η and x+ tei ∈ Ω, then

‖f(x+ tei)− f(x)− t∂if(x)‖E;ν ≤ ε |t|. (1.5)

Clarification. More precisely, f has a partial derivative ∂if(x) at the point x if the function

s 7→ f(x1, . . . , xi−1, s, xi+1, . . . , xd),

which is defined on the open subset {s ∈ R : (x1, . . . , xi−1, s, xi+1, . . . , xd) ∈ Ω} of R, has the deriva-
tive ∂if(x) at the point xi. �

8. History of partial derivatives. Partial derivatives appeared in 1747 with Alexis Claude CLAIRAUT and
Jean le Rond D’ALEMBERT [24], and in 1755 with Leonhard EULER [32].
The symbol ∂ was introduced by Nicolas de Caritat, Marquis of CONDORCET, in 1773 [22].


