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Preface

This book is meant to present most of the results of mathematical logic that are
relevant to the philosophy of mathematics.

Since the hard core of such results consists of Godel’s incompleteness theorems,
this explains the title of the book, The Theory of Godel, which is reminiscent of
the subtitle of the very first book on the subject that Mostowski described as an
attempt to present “the theory of Godel,” namely “the famous theory of undecidable
sentences created by Kurt Godel in 1931 (Mostowski 1952, v).

The presentation of Godel’s incompleteness theorems and other limitative results
in this book is in the spirit, though not in the letter of Jeroslow (1973). Other
presentations can be found in Boolos (1993), Epstein and Carnielli (2008), Felscher
(2000), Fitting (2007), Girard (1987), Goldstern and Judah (1998), Grandy (1977),
Halbeisen and Krapf (2020), Isaacson (2018), Kennedy (2022), Lindstrém (1997),
Murawski (1999), Robbin (2006), Smith (2013), Smullyan (1992), Swierczkowski
(2003), Tourlakis (2003), and Zach (2021).

Results are presented in the form most relevant for use in the philosophy
of mathematics. Their implications for Hilbert’s approach to the philosophy of
mathematics are discussed in the Appendix. As to their implications for the
philosophy of mathematics in general, the interested reader may refer to Cellucci
(2022).

The book is self-contained, all notions being explained in full detail, but of course
previous exposure to the very first rudiments of mathematical logic will help.

I am very grateful to two anonymous referees for useful remarks and suggestions.
I also warmly thank Elena Griniari from Springer for her invaluable help in the
editorial process.

Roma, Italy Carlo Cellucci
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Chapter 1 )
First-Order Logic Shethie

1.1 First-Order Languages

Summary 1.1.1 In this section we introduce a basic kind of formal languages, first-
order languages.

Definition 1.1.2 The symbols of a first-order language L are:

(i) infinitely many individual variables vg, vy, v2, ...;
(i) any number of individual constants;
(iii) for each positive integer n, any number of n-ary function constants;
(iv) for each positive integer n, any number of n-ary predicate constants;
(v) the equality symbol = ;
(vi) connectives -, — ;
(vii) the universal quantifier V;
(vii) parentheses (, ) and comma, .

Definition 1.1.3 Individual constants, function constants and predicate constants
are called the non-logical symbols of L. The equality symbol, connectives and the
universal quantifier are called the logical symbols of L.

Definition 1.1.4 The terms of a first-order language L are defined as follows:

(i) any individual variable is a term;
(ii) any individual constant is a term;
(iii) if f is an n-ary function constantand 1, . . ., , are terms, then f(#1, ..., ;) is
a term.

Proposition 1.1.5 There is a unique set X such that:

(i) any individual variable is in X;
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2 1 First-Order Logic

(ii) any individual constant is in X;
(iii) if f is an n-ary function constant and t1, ..., t, arein X, then f(t1,...,t,) is
in X;

(iv) ifY is any set satisfying (i)-(iii), then X C Y.

This unique set X is the set of terms of L.
Proof Let @ be the set of all sets Y satisfying (i)—(iii); namely ¥ € & iff (1) any
individual variable is in Y; (2) any individual constant is in Y; (3) if f is an n-ary
function constant and #1,...,¢, are in Y, then f(#,...,t,) isin Y. Then let X be
the intersection of all the elements of ®; namely t € X iff t € Y forany ¥ € ®.
Clearly X satisfies (1)—(iv).

Proposition 1.1.6 (Induction Principle for Terms) Let P be any property. If

(i) P(v;) for all individual variables v;;
(ii) P(c), for all individual constants c;
(iii) if P(t1), ..., P(ty), then P(f(t1, ..., t,)), for all n-ary function constants f;

then P(t), for all terms of L.

Proof Let X be the set of all terms ¢ of L such that P(r). Then X satisfies the
conditions [1.1.5 (i)—(iii)] on the set of terms of L, so any term of L is an element
of X, namely P (#) holds for all terms of L.

Definition 1.1.7 We call an application of the Induction Principle for Terms [1.1.6]
a proof by induction on t.

Definition 1.1.8 The atomic formulas of a first-order language L are all expressions
of the form P(#1,...,t,) where P is an n-ary predicate constant and 1, ..., #, are
terms, and all expressions of the form (f = s) where 7, s are terms.

Definition 1.1.9 The formulas of a first-order language L are defined as follows:

(i) A is a formula, for all atomic formulas A;
(@i1) if A is a formula, then —A is a formula;
(iii) if A and B are formulas, then (A — B) is a formula;
(iv) if A is a formula and v; is an individual variable, then Vv; A is a formula (i =
0,1,2,..).

Proposition 1.1.10 There is a unique set X such that:

(i) A € X, for all atomic formulas A;

(ii) if A € X, then —A € X;
(iii) if A€ Xand B € X, then (A — B) € X;
(iv) if A e X, thenVviAe X (i =0,1,2,..);
(v) if'Y is any set satisfying (i)-(iv), then X C Y.

Proof Similarly to the corresponding proposition for terms 1.1.5.
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Proposition 1.1.11 (Induction Principle for Formulas) Let P be any property.
If
(i) P(A), for all atomic formulas A;
(ii) if P(A), then P(—A);
(iii) if P(A) and P(B), then P(A — B);
(iv) if P(A), then P(Nv;A) (i =0,1,2,...);

then P(A), for all formulas A of L.

Proof Similarly to the corresponding proposition for terms 1.1.6.

Definition 1.1.12 We call an application of the Induction Principle for Formulas
1.1.11 a proof by induction on A.

Definition 1.1.13 A first-order language is a language in which symbols, terms
and formulas are as described above. Thus a first-order language is completely
determined by its non-logical symbols.

Definition 1.1.14 The cardinality of a first-order language is the cardinality of the
set of its non-logical symbols. A first-order language is finite iff its cardinality is
finite. Similarly for denumerable, countable or uncountable.

Assumption 1.1.15 In what follows all the basic first-order languages considered
are supposed to be countable.

Definition 1.1.16 We often write:

X, Y, Z, ... (possibly with subscripts) for individual variables,
t,u,s, ... (possibly with subscripts) for terms,
A, B, C, ... (possibly with subscripts) for formulas.

Moreover we write:

(t # u) for —=(t = u),

(A A B) for =(A — —B),

(A vV B) for (A — B),

(A < B)for (A — B)A(B — A)),

'7\1 A; for ((..(A1 A ADA ) A Ap),
=

.(1/1 A; for ((..(A1 V ADV )V Ap),
A

Ix A for —=Vx—A4,
Vxi..x,A forVx;...Vx, A,
dx1...x, A for 3xy...3x, A.

Definition 1.1.17 We also call A, vV, <> connectives and Ax quantifier.
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Definition 1.1.18 We call —A the negation of A, (A A B) the conjunction of A and
B, (A Vv B) the disjunction of A and B, (A — B) the implication from A to B,
(A < B) the equivalence between A and B, Vx A the universal quantification of A,
dx A the existential quantification of A.

Definition 1.1.19 The opposite of a formula A is B if A is a negation —B, and —A
if A is not a negation.

Definition 1.1.20 We say that a formula A of a first-order language L is quantifier-
free iff no quantifier occurs in A.

Notation 1.1.21 In writing terms and formulas we may omit parentheses if no
ambiguity can result. Specifically, we assume that outermost parentheses can always
be omitted. Thus we may write A A (B — C) for (A A (B — C)). We assume that
parentheses can always be omitted in (f = s). Moreover we assume that A and Vv
bind more strongly than — and <». Thus AA B — A will stand for ((AA B) — A).
Finally we assume that A and V are associative to the left. Thus A A B A C will
stand for ((A A B) A C). This convention is not used with — and <.

Example 1.1.22

(a) The First-Order Language of Groups L is the first-order language whose non-
logical symbols are the individual constant O and the binary function constant
+ . We write x+y for +(x, y). (For the dot notation, see Remark 2.1.6).

(b) The First-Order Language of Successor Lg is the first-order language whose
only non-logical symbol is the binary relation constant Suc.

(c) The First-Order Language of Real Numbers Ly is the first-order language
whose non-logical symbols are the individual constants 0 and 1, the binary
function constants + and * and the binary relation constant <. We write x+y
for +(x, y), x'y for :(x, y) and x <y for <(x, y).

Definition 1.1.23 The subterms of a term ¢ of a first-order language L are defined
as follows:

(i) if ¢ is an individual variable or individual constant, the only subterm of 7 is ¢;
(i) iftis f(#1,...,t,), the subterms of t are f(¢1,...,t,) and the subterms of at
least one of 11, ..., t;.

Definition 1.1.24 The subformulas of a formula A of a first-order language L are
defined as follows:

(i) if A is an atomic formula, the only subformula of A is A;
(i1) if A is =B, the subformulas of A are —B and the subformulas of B;
(iii) if A is B — C, the subformulas of A are B — C and the subformulas of B or
C;
(iv) if A is Vx B, the subformulas of A are Vx B and the subformulas of B.
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1.2 Free Variables

Summary 1.2.1 In this section we introduce some notions concerning the occur-
rences of individual variables in formulas.

Definition 1.2.2 Let ¢ be a term of a first-order language L. We say that all
occurrences of an individual variable x in ¢ are free. We say that an individual
variable x occurs free in t iff x has some free occurrence in ¢.

Definition 1.2.3 Let ¢ be a term of a first-order language L.We say that ¢ is closed
iff no individual variable occurs free in ¢. Thus ¢ is closed iff no individual variable
occurs in .

Definition 1.2.4 Let A be a formula of a first-order language L. The free occur-
rences of an individual variable x in A are defined as follows:

(i) if A is an atomic formula, all occurrences of x in A are free;
(i1) if A is =B, the free occurrences of x in A are the free occurrences of x in B;
(iii) if A is B — C, the free occurrences of x in A are the free occurrences of x in
Bor C;
(iv) if A is VyB, the free occurrences of x in A are the free occurrences of x in B
when x is different from y, otherwise x has no free occurrences in Vy B, and in
that case all occurrences of x in Yy B are said to be bound occurrences.

Definition 1.2.5 Let A be a formula of a first-order language L. We say that an
individual variable x occurs free in A, or is a free variable of A, iff x has some
free occurrence in A. We say that A is closed, or a sentence, iff A contains no free
variable.

Definition 1.2.6 Let A be a formula of a first-order language L. We say that A is
a universal generalization of a formula B iff A is Vx...Vx, B for some individual
variables x1, ..., x, (n > 0). This includes the case n = 0, namely any formula is
a universal generalization of itself. If x1, . . ., x,, are all the free variables of B, then
we say that A is the universal closure of B. (We assume the order of the variables
X1, ..., Xy to be fixed in some way). So the universal closure of a formula is a
sentence.

1.3 Substitution

Summary 1.3.1 In this section we introduce the notion of substituting an individual
variable by a term in a term or a formula.
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Definition 1.3.2 Let u and ¢ be terms and x an individual variable of a first-order
language L. We define u[x/¢], the result of substituting t for any free occurrence of
X in u, as follows:

(i) ifuis x, then ulx/t]ist;

(i) if u is an individual variable y different from x, then u[x/#] is y;
(iii) if u is an individual constant c, then u[x/t]is c;
@(v) ifuis f(uy,...,un), thenulx/t]is f(uilx/tl, ..., uylx/t]).

Definition 1.3.3 Let A be a formula, x an individual variable and ¢ a term of a
first-order language L. We define A[x/¢], the result of substituting t for any free
occurrence of x in A, as follows:

@) if Ais P(uy, ..., uy), then A[x/t]is P(uy[x/t], ..., un[x/t]);
(i) if Aisu) = up, then A[x/t]is ui[x/t] = uz[x/t];
(iii) if A is =B, then A[x/t]is —=B[x/t];
(iv) if Ais B — C,then A[x/t]is B[x/t] — C[x/t];
(v) if Ais Vx B, then A[x/t]is A;
(vi) if A is VyB, then A[x/t] is VyB[x/t] when y is different from x, otherwise
Alx/t]isVyB.

Notation 1.3.4 We extend the notation A[x/¢] to a set of formulas I" by writing
I'[x/t] for {A[x/t]: A eT}.

Remark 1.3.5 The definition of A[x/¢] forbids substituting x by + when x occurs
bound in A. There is, however, another case were substitution should be forbidden,
namely when some occurrence of an individual variable in ¢ becomes bound after
the substitution A[x/¢]. This appears, for instance, from the fact that the substitution
(Ay(x # y))[x/y] changes the meaning of Iy(x # y) in an absurd way. For,

Ay(x # y)Ix/ylis Iy(y # y) and, while Jy(x # y) may be true, Iy(y # y)
is always false. To avoid this problem we state the following definition.

Definition 1.3.6 Let A be a formula, x an individual variable and ¢ a term of a
first-order language L. We define when ¢ is substitutable for x in A as follows:

(i) if A is an atomic formula, then 7 is always substitutable for x in A;
(@i1) if A is =B, then ¢ is substitutable for x in A iff 7 is substitutable for x in B;
(iii) if A is B — C, then ¢ is substitutable for x in A iff 7 is substitutable for x in
both B and C.
(iv) if A is Vx B, then ¢ is always substitutable for x in A.
(v) if A is VyB where y is different from x, then ¢ is substitutable for x in A iff y
does not occur free in ¢ and ¢ is substitutable for x in B.

Remark 1.3.7 With reference to the above example 1.3.5, y is not substitutable for
x in y(x # y), while z is substitutable for x in Iy(x # y) where z is an individual
variable distinct from y.



