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Preface

Measure theory was initiated at the beginning of the twentieth century and “mea-
sure” is an important notion in analyzing the subsets of Euclidian spaces. In 1989,
E. Borel first established a measure theory on subsets of the real numbers known as
Borel sets, and Lebesgue measure was introduced by H. Lebesgue in 1902 and the
related integral based on measure theory is more comprehensive than the Riemann
integral (see [51, 117]). In fact, the notion of measure and its significance widely
generalize the classical definitions of “length” and “area” in Euclidian spaces. In
1918, the concept of outer measures was introduced and studied by C. Carathéodory
(see [160]). Since then, measure theory and the calculus theory based on it were
developed rapidly in the field of pure and applied mathematics.

In 1988, a new analysis theory called time scale theory that can unify continuous
and discrete analysis was proposed by S. Hilger (see [118]). Then it has been widely
used to study various classes of dynamic equations and models in the real-world
applications (see [61, 63, 107, 141, 202]). Time scale is an arbitrary closed subset of
the real line, and the calculus on a time scale includes the classical Riemann integral
and the discrete sum, and the different form of the calculus between the classical
Riemann integral and the discrete sum such as q-calculus and its generalizations is
a big advantage. Measure theory based on time scales is powerful and significant in
studying functions on time scales or hybrid domains (see [86]). In 1999, Agarwal
et al. investigated the basic calculus on time scales and some of its applications
(see [4]), and Guseinov et al. analyzed Riemann delta and nabla integration on time
scales (see [112–114]). To understand basic integral on time scales, Cabada et al.
formally introduced the concept of �-measure on time scales (see [69]) and the
relation of the Lebesgue �-integral and the usual Lebesgue integral is thoroughly
investigated. Based on these fundamental work, Deniz et al. introduced the notion
of Lebesgue-Stieltjes measure on time scales in both � and ∇ forms, and the
relation between Lebesgue-Stieltjes integral and Lebesgue-Stieltjes �-integral was
established (see [87]).

With the rapid development of time scale analysis, a new view of dynamic
derivatives on time scales was introduced by Q. Sheng (see [164]), and a new
analysis method which can then unify � and ∇-cases together on time scales. In
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2006, Q. Sheng et al. proposed the concept of combined dynamic derivatives on
time scales, and it was the first time that � and ∇-dynamic equations can transfer
mutually, and some new dynamic behavior which are between � and ∇-cases and
outside of difference and differential equations can also be investigated based on
this theory (see [165]). This combined idea was used to analyze different dynamic
equations and inequalities and was also applied to hybrid dynamic behavior that will
not appear in the real line and discrete time scales [16, 17, 159, 166].

Now it is natural to ask a question see how to analyze the measure of a time scale
in a combined form which not only can the� and ∇ measurability transfer mutually
but also can induce a new hybrid measure. In this book, a new measure theory called
combined measure theory on time scales is established, and ♦α-measurability is
proposed and studied.

Since time scale theory is a new and exciting type of mathematics and is
more comprehensive and versatile than the traditional theories of differential and
difference equations as it can mathematically and precisely depict the continuous-
discrete hybrid processes and hence is the optimal way forward for accurate
mathematical modelling in applied sciences such as physics, chemical technology,
population dynamics, biotechnology and economics and social sciences. The one
of the most important of applications is to study of almost periodic and almost
automorphic functions and dynamic equations on hybrid time scales. Almost
periodic phenomena are common and important in the real world, and the concept
of almost periodic functions was first studied by H. Bohr and later generalized by V.
Stepanov, H. Weyl, and A.S. Besicovitch, among others (see [54, 56, 57, 168, 211]).
In 1955–1962, S. Bochner observed in various contexts that a certain property
enjoyed by the almost periodic functions on the groupG can be applied in obtaining
more concise and logical proofs of certain theorems in terms of these functions,
and S. Bochner called his property “almost automorphy” since it first aroused
in work on differential geometry (see [58–60]). Based on well-known almost
periodic and almost automorphic functions proposed by Bohr and Bochner, many
new generalized concepts were introduced and studied by several researchers on
the real line. Unfortunately, these theories do not work on non-translational and
irregular time scales since the classical concepts of almost periodic and almost
automorphic functions purely depend on the translation of functions, the results
of the current study of almost periodic and almost automorphic problems are
restricted to periodic time scales under translations. Nevertheless, for example,
qZ := {qn : q > 1, n ∈ Z} is not periodic under translations. This time scale leads
to q-difference dynamic equations and plays an important role in different fields
of engineering and biological science (see [43, 65]). However, it was impossible
to study almost periodic problems for q-difference dynamic equations in the past
because qZ is so irregular (the graininess function μ is unbounded) and there was
no concept of almost periodic functions defined on it. The irregular distribution
on the real line leads to many difficulties in studying functions on time scales,
especially in investigating functions defined by the arbitrary shifts of arguments such
as periodic functions, almost periodic functions and almost automorphic functions,
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etc. The classes of functions defined by the shifts of arguments are referred to
as Shift Functions. In fact, the time scale without shift invariance will change
the classical concept of relatively dense set on the real line, the convergence of
function sequences, the completeness of function spaces, an almost periodicity of
the variable limit integrals, etc. Therefore, it is very significant to make clear these
basic properties before studying dynamic equations with shift operators on irregular
time scales. In this book, the theory of matched spaces of time scales is established
under which the closedness of time scales under non-translational shifts will be
guaranteed so that qZ and some other types of irregular time scales can be regarded
as the periodic time scales under shifts. Furthermore, the periods set of this new type
of periodic time scale may be completely separated from the time scale T. These
fundamental results established in this book will smooth the path to investigate the
periodic, almost periodic and almost automorphic problems in which the definition
of the functions is determined by the irregular shift of time variables.

In this monograph, we establish a theory of combined measure and shift invari-
ance of time scales and present the applications to realistic dynamical mathematical
models on irregular hybrid time scales. The monograph is organized as 9 chapters:

In Chap. 1, the basic knowledge of calculus on the time scales is introduced
including Riemann integration, stochastic calculus, combined derivatives and shift
operators, etc., to make the book self-contained. Based on this knowledge, the
combined Liouville formula and α-matrix exponential solutions to diamond-α
dynamic equations are obtained and fundamental results of the quaternion combined
impulsive matrix dynamic equation on time scales are established. The content of
this chapter is the necessary theoretical knowledge to be used in the later chapters.

In Chap. 2, the combined measure theory on time scales is established, some
important notions such as ♦α-measurability, ♦α-measurable functions, Lebesgue-
Stieltjes combined ♦α-measure and the related integrals are introduced and studied.
Based on the theory of combined measurability on time scales, the Riemann
measure calculus is highly unified and deeply discussed on irregular hybrid time
scales.

In Chap. 3, the concept of matched spaces of time scales is introduced and their
basic properties are established. Based on it, the fundamental theory of the shift
invariance of time scales is addressed. The whole chapter is devoted to the theory
of the matched spaces of time scales and the intrinsic connections of some basic
concepts introduced in this chapter are presented. Moreover, singularity theory of
time scales under the action of the shift operators is established.

Chapter 4 is mainly devoted to establish a theory of almost periodic functions
through the theory of matched spaces of time scales. Some basic notions and
properties of periodic functions under the complete-closed time scales in shifts are
presented. Moreover, a theory of δ-almost periodic functions under matched spaces
is developed and a generalized notion of δ-almost periodic functions called n0-order
�-almost periodic functions is proposed and investigated.

In Chap. 5, based on the theory of matched space of time scales, we develop
a theory of almost automorphic functions. A notion of weighted pseudo δ-almost
automorphic functions and a new generalized type of almost automorphic functions
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called n0-order weighted pseudo δ-almost automorphic functions under matched
spaces are introduced and studied. Some of their basic properties are established.
Moreover, some fundamental results of the discontinuous S-almost automorphic
functions are obtained through introducing the S-equipotentially almost automor-
phic sequence under the complete-closed time scales under shift operators (short
for S-CCTS).

In Chap. 6, some basic notions of C0-semigroup and Stepanov-like almost
automorphic functions in matched spaces of time scales are introduced and studied.
The concept of C0-semigroup on a quantum time scale is proposed and some basic
properties are established and the notion of the Stepanov-like almost automorphic
functions is introduced on a quantum time scale and their fundamental properties
are investigated. Moreover, the weak automorphy of such functions in the quantum
case is discussed. Finally, the theory of shift-semigroup and Stepanov-like almost
automorphic functions under the matched space of time scales is established.

In Chap. 7, based the theory of δ-almost periodic functions and n0-order �-
almost periodic functions developed in Chap. 4, some fundamental results of the
δ-almost periodic solutions and n0-order �-almost periodic solutions of a general
dynamic equations are established under matched spaces of time scales. Particularly,
the basic results of almost periodic problems of the q-dynamic equations on a
quantum time scale are included as the special case. In addition, by using the
developed theory of matched spaces of time scales, the basic theory of dynamic
equations under matched space of time scales is established and some effective
methods are provided to study the almost periodic solutions of dynamic equations
on hybrid time scales.

In Chap. 8, based on the theory established in Chap. 5, two types of almost
automorphic solutions of dynamic equations under the matched spaces are dis-
cussed systematically. The weighted pseudo δ-almost automorphic solutions and
the n0-order weighted pseudo �-almost automorphic solutions of the general
inhomogeneous dynamic equations are studied. Moreover, the almost automorphy
of the solutions to dynamic equations with shift operators is analyzed, and some
basic results of the discontinuous cases are established.

In Chap. 9, we will introduce some new types of neutral impulsive stochastic
dynamical models on irregular time scales. By using almost periodic results of
stochastic dynamic equations with shift operators, the mean-square almost periodic
solutions for a new type of neutral impulsive stochastic Lasota-Wazewska timescale
model are investigated. Moreover, the mean square almost periodic stochastic
process with shift operators is applied to study the almost periodic oscillations for
delay impulsive stochastic Nicholson’s blowflies timescale model on hybrid time
scales.

This is a monograph devoted to developing a theory of combined measure and
shift invariance of time scales with the related applications to shift functions and
dynamic equations. The study of shift closedness of time scales is significant to
investigate the shift functions such as the periodic functions, the almost periodic
functions, and the almost automorphic functions and their generalizations, which
have many important applications in dynamic equations on arbitrary time scales.
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The book is written at a graduate level and is intended for university libraries,
graduate students, and researchers working in the field of general dynamic equations
on time scales, and it will stimulate further research into the time scale theory. The
book is also a good reference material for those undergraduates who are interested
in dynamic equations on time scales and familiar with functional analysis, measure
theory, and ordinary differential equations.
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Chapter 1
Riemann Integration, Stochastic
Calculus, and Shift Operators on Time
Scales

This chapter mainly introduces basic knowledge of calculus on time scales.
In Sect. 1.1, concepts and fundamental properties of Riemann delta and nabla
integration on time scales are introduced including some basic results of Riemann
integral and fundamental theorems of calculus. In Sect. 1.2, stochastic calculus and
some basic results of stochastic dynamic equations on time scales are provided.
Section 1.3 is mainly devoted to introducing the concept of shift operators on time
scales by which a new concept of periodicity is introduced; shift operator plays
an important role in discussing shift invariance of time scales in later chapters. In
Sect. 1.4, momentous hybrid derivatives called combined derivatives or diamond-
α derivatives which can strictly include delta and nabla derivatives are introduced,
and some basic properties of combined dynamic derivatives and integrations are
established. In Sect. 1.5, the combined Liouville formula and α-matrix exponential
solutions to diamond-α dynamic equations are obtained. In Sect. 1.6, fundamental
results of the quaternion combined impulsive matrix dynamic equation on time
scales are established. The content of this chapter is the necessary theoretical
knowledge to be used in the later chapters.

1.1 Riemann Integration on Time Scales

A time scale T (which is a special case of a measure chain) is an arbitrary nonempty
closed subset of the real numbers R. Thus, it is a complete metric space with the
metric d(t, s) = |t − s|.

For t ∈ T, we define the forward jump operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t},
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2 1 Riemann Integration, Stochastic Calculus, and Shift Operators on Time Scales

while the backward jump operator ρ : T→ T is defined by

ρ(t) = sup{s ∈ T : s < t}.

In this definition, we put in addition σ(maxT) = maxT if there exists a finite
maxT, and ρ(minT) = minT if there exists a finite minT. Obviously, both σ(t)
and ρ(t) are in T when t ∈ T since that T is a closed subset of R.

If σ(t) > t , we say that t is right-scattered, while if ρ(t) < t , we say that t is
left-scattered. Also, if t < maxT and σ(t) = t , then t is called right-dense, and if
t > minT and ρ(t) = t , then t is called left-dense.

We introduce the sets T
κ and Tκ which are derived from the time scale T as

follows: If T has a left-scattered maximum t1, then T
κ = T− {t1}; otherwise Tκ =

T. If T has a right-scattered minimum t2, then Tκ = T− {t2}; otherwise Tκ = T.
For a, b ∈ T with a ≤ b, we define the closed interval [a, b]T in T by [a, b]T =

{t ∈ T : a � b}. Open intervals, half-open intervals, etc. are defined accordingly.
If f : T→ R is a function and t ∈ T

κ , then the delta (or Hilger) derivative of f
at the point t is defined to be the number fΔ(t) (provided it exists) with the property
that for each ε > 0 there is a neighborhood U (in T) of t such that

|f (σ(t))− f (s)− fΔ(t)[σ(t)− s]| � ε|σ(t)− s| for all s ∈ U.

If t ∈ Tκ , then we define the nabla derivative of f at the point t to be the
number f ∇(t) (provided it exists) with the property that for each ε > 0 there is
a neighborhood U (in T) of t such that

|f (ρ(t))− f (s)− f ∇(t)[ρ(t)− s]| � ε|ρ(t)− s| for all s ∈ U.

Note that the delta and nabla derivatives are particular cases of the alpha
derivative introduced by Ahlbrandt et al. in [28], namely, with α = σ and
α = ρ, respectively. In fact, some important discrete dynamic equations such
as Hamiltonian systems, Riccati equation, etc. (see [2, 24–27]) can be unified
by time scales effectively (see [29–31]). The special and common feature of the
continuous and discrete dynamic systems could be generally built by this powerful
mathematical tool (see Aulbach et al. [20–23], Agarwal et al. [2, 3, 5–8, 10–
13, 16, 17], Akhmet et al. [34, 35], Akın et al. [36–38], Atici et al. [44–47]).

If T = R, then f is delta differentiable (nabla differentiable) at t if f is
differentiable in the ordinary sense at t . In this case we then have fΔ(t) = f ∇(t) =
f ′(t). If T = Z, then f is delta differentiable (nabla differentiable) at t and we have

fΔ(t) = f (t + 1)− f (t) = Δf (t), f ∇(t) = f (t)− f (t − 1) = ∇f (t),

where Δ is the usual forward difference operator and ∇ is the usual backward
difference operator defined by the last equations above.

A partition of [a, b)T is any finite ordered subset P = {t0, t1, . . . , tn} ⊂ [a, b]T,
where a = t0 < t1 < . . . < tn = b. The number n depends on the particular
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partition, so we have n = n(P ). Let σ and ρ be the forward and backward jump
operators in T, respectively, and f be a real-valued bounded function on [a, b)T.

Denote

M = sup{f (t) : t ∈ [a, b)T}, m = inf{f (t) : t ∈ [a, b)T},

Mi = sup{f (t) : t ∈ [ti−1, ti)T}, mi = inf{f (t) : t ∈ [ti−1, ti)T}.

The upper Darboux Δ-sum U(f, P ) and the lower Darboux Δ-sum L(f, P ) of f
with respect to P are defined by

U(f, P ) =
n∑

i=1
Mi(ti − ti−1), L(f, P ) =

n∑

i=1
mi(ti − ti−1).

Then

m(b − a) � L(f, P ) � U(f, P ) � M(b − a). (1.1)

The upper Darboux Δ-integral U(f ) of f from a to b is defined by

U(f ) = inf{U(f, P ) : P is a partition of [a, b)T}

and the lower Darboux Δ-integral L(f ) is

L(f ) = sup{L(f, P ) : P is a partition of [a, b)T}

In view of (1.1), U(f ) and L(f ) are finite real numbers. Obviously, L(f ) � U(f ).

1.1.1 Riemann Delta and Nabla Integration on Time Scales

In this subsection, we will introduce the concepts and properties of the Riemann
delta and nabla integration on time scales (see [112–114]).

Definition 1.1 (see [112, 113]) We say that f is Δ-integrable (delta-integrable)
from a to b (or on [a, b)T) provided L(f ) = U(f ). In this case, we write

∫ b
a
f (t)Δt

for this common value. We call this integral the Darboux Δ-integral.

If P andQ are two partitions of [a, b)T such that every point of P belongs toQ,
i.e., P ⊂ Q, then we say thatQ is a refinement of, or is finer than, P . The following
lemma can be proved by using the similar way as that in the case T = R.

Lemma 1.1 (see [112, 113]) Let f be a bounded function on [a, b)T. If P and Q
are partitions of [a, b)T and Q is a refinement of P , then L(f, P ) � L(f,Q) �
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U(f,Q) � U(f, P ), i.e., adding more points to a partition increases the lower sum
and decreases the upper sum.

Lemma 1.2 (see [112, 113]) If f is a bounded function on [a, b)T, and if P andQ
are any two partitions of [a, b)T, then L(f, P ) � U(f,Q), i.e., every lower sum is
less than or equal to every upper sum.

Proof The set P ∪ Q is also a partition of [a, b)T. By applying Lemma 1.1 and
P ⊂ P ∪Q and Q ⊂ P ∪Q, it follows that L(f, P ) � L(f, P ∪Q) � U(f, P ∪
Q) � U(f,Q). This completes the proof. 	


Obviously, Lemma 1.2 yields the following result:

Theorem 1.1 (see [112, 113]) If f is a bounded function on [a, b)T, then L(f ) �
U(f ).

In fact, we can easily have L(f, P ) � L(f ) � U(f ) � U(f,Q) for all
partitions P andQ of [a, b)T. In particular, for all partitions P of [a, b)T, it follows
thatL(f, P ) � L(f ) � U(f ) � U(f, P ). Hence the following result is immediate:

Theorem 1.2 (see [112, 113]) If L(f, P ) = U(f, P ) for some partition P of
[a, b)T, then the function f isΔ-integrable from a to b and

∫ b
a
f (t)Δt = L(f, P ) =

U(f, P ).

In the following theorem, a “Cauchy criterion” for integrability and its proof can
be given similar to the case T = R.

Theorem 1.3 (see [112, 113]) A bounded function f on [a, b)T is Δ-integrable if
and only if for each ε > 0 there exists a partition P of [a, b)T such that U(f, P )−
L(f, P ) < ε.

Lemma 1.3 (see [112, 113]) For every δ > 0 there exists at least one partition
P : a = t0 < t1 < · · · < tn = b of [a, b)T such that for each i ∈ {1, 2, . . . , n}
either ti− ti−1 � δ or ti− ti−1 > δ and ρ(ti) = ti−1, where ρ denotes the backward
jump operator in T.

Definition 1.2 (see [112, 113]) For given δ > 0, the set of all partitions P : a =
t0 < t1 < · · · < tn = b is denoted by Gδ([a, b)T) or simply by Gδ which possess
the property indicated in Lemma 1.3.

The following criterion for integrability can easily follow from the case T = R.

Theorem 1.4 (see [112, 113]) A bounded function f on [a, b)T is Δ-integrable if
and only if for each ε > 0 there exists δ > 0 such that

P ∈ Gδ implies U(f, P )− L(f, P ) < ε (1.2)

for all partitions P of [a, b)T.
The Riemann definition of integrability is given as follows:
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Definition 1.3 (see [112, 113]) Let f be a bounded function on [a, b)T, and let
P : a = t0 < t1 < · · · < tn = b be a partition of [a, b)T. In each interval [ti−1, ti )T,
where 1 � i � n, choose an arbitrary point ξi and form the sum

S =
n∑

i=1
f (ξi)(ti − ti−1). (1.3)

S is called a Riemann Δ-sum of f corresponding to the partition P . f is said to be
Riemann Δ-integrable from a to b (or on [a, b)T) if there exists a number I with
the property that for each ε > 0 there exists δ > 0 such that |S − I | < ε for every
Riemann Δ-sum S of f corresponding to a partition P ∈ Gδ independent of the
way in which we choose ξi ∈ [ti−1, ti)T, i = 1, 2, . . . , n. It is easily seen that such
a number I is unique. The number I is the Riemann Δ-integral of f from a to b.

Theorem 1.5 (see [112, 113]) A bounded function f on [a, b)T is Riemann Δ-
integrable if and only if it is (Darboux)Δ-integrable, in which case the values of the
integrals are equal.

Proof Assume that f is (Darboux) Δ-integrable from a to b in the sense of
Definition 1.1. Let ε > 0 and δ > 0 be chosen such that (1.2) of Theorem 1.4
holds. We claim that

∣∣∣∣S −
∫ b

a

f (t)Δt

∣∣∣∣ < ε (1.4)

for every RiemannΔ-sum (1.3) associated with a partition P ∈ Gδ . In fact, we have
L(f, P ) ≤ S ≤ U(f, P ) and so (1.4) follows from the inequalities

U(f, P ) < L(f, P )+ ε � L(f )+ ε =
∫ b

a

f (t)Δt + ε,

L(f, P ) > U(f, P )− ε � U(f )− ε =
∫ b

a

f (t)Δt − ε.

i.e., (1.4) holds; hence f is Riemann Δ-integrable and I = ∫ b
a
f (t)Δt .

Now assume that f is Riemann Δ-integrable in the sense of Definition 1.3, and
consider ε > 0. Let δ > 0 and let I be as given in Definition 1.3. Select any
partition P : a = t0 < t1 < · · · < tn = b of [a, b) such that P ∈ Gδ , and
for each i = 1, 2, . . . , n, choose ξi in [ti−1, ti) such that f (ξi) < mi + ε, where
mi = inf{f (t) : t ∈ [ti−1, ti )}. The Riemann Δ-sum S for this choice of ξi satisfies
S < L(f, P )+ ε(b − a) as well as |S − I | < ε. It follows that L(f ) � L(f, P ) >

S−ε(b−a) > I −ε−ε(b−a). Since ε is arbitrary, we conclude that L(f ) � I . A
similar argument shows thatU(f ) � I . SinceL(f ) � U(f ), it follows thatL(f ) =
U(f ) = I . This shows that f is (Darboux) Δ-integrable and that

∫ b
a
f (t)Δt = I .

The proof is completed. 	
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In the definition of
∫ b
a
f (t)Δt , we assumed that a < b. The following definitions

remove this restriction:

∫ a

a

f (t)Δt = 0,
∫ b

a

f (t)Δt = −
∫ a

b

f (t)Δt, a > b. (1.5)

Theorem 1.6 (see [112, 113]) Assume that a and b are arbitrary points in T. Every
constant function f (t) = c(t ∈ T) is Δ-integrable from a to b and

∫ b

a

cΔt = c(b − a). (1.6)

Proof Let a < b. Consider a partition P : a = t0 < t1 < · · · < tn = b of [a, b)T.
Obviously we have U(f, P ) = L(f, P ) = c(b − a) and therefore Theorem 1.2
shows that f is Δ-integrable and (1.6) holds. Formula (1.6) for a = b and a > b

follows by the definition (1.5). Note that every RiemannΔ-sum of f associated with
P is also equal to c(b − a). The proof is completed. 	


Theorem 1.7 (see [112, 113]) Let t be an arbitrary point in T. Every function f
defined on T is Δ-integrable from t to σ(t) and

∫ σ(t)

t

f (s)Δs = [σ(t)− t]f (t). (1.7)

Proof If σ(t) = t , then (1.7) is obvious, because both sides of (1.7) are equal to zero
in this case. Let now σ(t) > t . Then a single partition of [t, σ (t))T is P : t = s0 <

s1 = σ(t), and since [s0, s1)T = [t, σ (t))T = {t}, we have U(f, P ) = f (t)[σ(t)−
t] = L(f, P ). Therefore, it follows from Theorem 1.2 that f is Δ-integrable from
t to σ(t) and (1.7) holds. Note that the Riemann Δ-sum of f associated with P is
also equal to f (t)[σ(t)− t]. This completes proof. 	


Theorem 1.8 (see [112, 113]) Assume a, b ∈ T and a < b. Then we have the
following:

(i) If T = R, then a bounded function f on [a, b)T is Δ-integrable from a to b
if and only if f is Riemann-integrable on [a, b)T in the classical sense; in this
case

∫ b

a

f (t)Δt =
∫ b

a

f (t)dt,

where the integral on the right is the usual Riemann integral.
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(ii) If T = Z, then every function f defined on Z is Δ-integrable from a to b and

∫ b

a

f (t)Δt =
b−1∑

k=a
f (k). (1.8)

Proof Clearly, the above given Definitions 1.1 and 1.3 of the Δ-integral coincide
in case T = R with the usual Darboux and Riemann definitions of the integral,
respectively. Notice that the classical definitions of Darboux’s and Riemann’s
integrals do not depend on whether the subintervals of the partition are taken closed,
half-closed, or open. Moreover, if T = R, then Gδ([a, b)T) consists of all partitions
of [a, b)T the norm (mesh) of which is less than or equal to δ. So part (i) of the
theorem is valid.

To prove part (ii), let a < b. Then b = a + p for some positive integer p.
Consider the partition P ∗ of [a, b)Z defined by P ∗ : a = t0 < t1 < . . . < tp = b,
where t0 = a, t1 = a + 1, . . . , tp = a + p. P ∗ contains all points of [a, b]Z and
[ti−1, ti )Z = {ti−1} for each i ∈ {1, 2, . . . , p}. Then

U(f, P ∗) =
p∑

i=1
Mi(ti − ti−1 =

p∑

i=1
f (ti−1),

L(f, P ∗) =
p∑

i=1
mi(ti − ti−1) =

p∑

i=1
f (ti−1).

So U(f, P ∗) = L(f, P ∗) = pi =
p∑
i=1

f (ti−1) =
b−1∑
k=a

f (k), and it follows from

Theorem 1.2 that f is Δ-integrable from a to b and (1.8) holds. This completes the
proof. 	


The concept of ∇-integral (nabla integral) on time scales can be described briefly
as follows:

Definition 1.4 (see [112, 113]) Let P : a = t0 < t1 < . . . < tn = b be a partition
of (a, b]T and f be a real-valued bounded function on (a, b]T. Now let

M ′ = sup{f (t) : t ∈ (a, b]T}, m′ = inf{f (t) : t ∈ (a, b]T},
M ′
i = sup{f (t) : t ∈ (ti−1, ti]T}, m′i = inf{f (t) : t ∈ (ti−1, ti]T}.

We call the sums

U ′(f, P ) =
n∑

i=1
M ′
i (ti − ti−1) and L′(f, P ) =

n∑

i=1
m′i (ti − ti−1)
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respectively as the upper and lower Darboux ∇-sums of f .

It follows that

m′(b − a) � L′(f, P ) � U ′(f, P ) � M ′(b − a).

Definition 1.5 (see [112, 113]) The numbers

U ′(f ) = inf{U ′(f, P ) : P is a partition of (a, b]T}

and

L′(f ) = sup{L′(f, P ) : P is a partition of (a, b]T}

are called the upper and lower Darboux ∇-integrals of f from a to b, respectively.

U ′(f ) and L′(f ) are finite and the inequality L′(f ) � U ′(f ) holds.

Definition 1.6 (see [112, 113]) f is said to be ∇-integrable (nabla integrable) from
a to b (or on (a, b]T) if L′(f ) = U ′(f ). In this case we write

∫ b
a
f (t)∇t for this

common value. We call this integral the Darboux ∇-integral.

Definition 1.7 (see [112, 113]) A Riemann ∇-sum of f associated with the parti-
tion P is a sum of the form

s′ =
n∑

i=1
f (ξi)(ti − ti−1),

where ξi ∈ (ti−1, ti]T for i = 1, 2, . . . , n. The function f is Riemann ∇-integrable
from a to b (or on (a, b]T) if there exists a number I ′ with the following property:
For each ε > 0 there exists δ > 0 such that |S′ − I ′| < ε for every Riemann ∇-sum
S′ of f associated with a partition P ∈ Gδ , independent of the way in which we
choose the points ξi ∈ (ti−1, ti]T, i = 1, 2, . . . , n, where Gδ denotes as above the
set of all partitions P of (a, b]T possessing the property indicated in Lemma 1.3
(note that the inequality ti−1 < ti with ρ(ti) = ti−1 is equivalent to ti−1 < ti with
σ(ti−1) = ti ). The number I ′ is the Riemann ∇-integral of f from a to b.

Remark 1.1 A bounded function f on (a, b]T is Riemann Δ-integrable if and only
if it is (Darboux) ∇-integrable, in this case the values of the integrals equal.

For the special case T = R, the Riemann ∇-integral, as in the case of the ∇-
integral, coincides with the usual Riemann integral. For the case T = Z, it follows

that
∫ b
a
f (t)∇t =

b∑
k=a+1

f (k), a < b. Comparing this with (1.8) shows that the

delta and nabla integrals are in general different.
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Remark 1.2 In the concept of theΔ-integral, the subintervals of a partition P : a =
t0 < t1 < . . . < tn = b were adopted as the intervals [ti−1, ti )T, i = 1, 2, . . . , n.
In [110, 111], in the definition of the Δ-integral, the intervals [ti−1, ρ(ti)]T, i =
1, 2, . . . , n, were adopted instead of the intervals [ti−1, ti)T, i = 1, 2, . . . , n. It can
be shown that these two representations of the intervals are equivalent (see [113]).

1.1.2 Some Fundamental Results of the Riemann Integral

In this section, some properties of the Riemann delta integral are presented which
also hold for the Riemann nabla integral.

Theorem 1.9 (see [112, 113]) Let f be Δ-integrable on [a, b)T and let M and m
be its supremum and infimum on [a, b)T, respectively. Let, further, ϕ : R → R

be a function defined on [m,M] such that there exists a positive constant B with
|ϕ(x)− ϕ(y)| � B|x − y| for all x and y in [m,M] (this condition is called as the
Lipschitz condition). Then the composite function h(t) = ϕ(f (t)) is Δ-integrable
on [a, b)T.
Proof For an arbitrary ε > 0. By Theorem 1.3, there exists a partition P : a = t0 <

t1 < . . . < tn = b of [a, b)T such that U(f, P ) − L(f, P ) < ε/B. Let Mi and mi
be the supremum and infimum of f on [ti−1, ti)T, respectively, and let M∗

i and m∗i
be the corresponding numbers for h. By the condition on ϕ, we have, for all s and τ
in [ti−1, ti )T,

h(s)− h(τ) �|h(s)− h(τ)| = |ϕ(f (s))− ϕ(f (τ))|
�B|f (s)− f (τ)| � B(Mi −mi).

Hence M∗
i − m∗i ≤ B(Mi − mi) because there exist two sequences (sk) and (τk)

of points in [ti−1, ti)T such that h(sk) → M∗
i and h(τk) → m∗i as k → ∞.

Consequently,

U(h, P )− L(h, P ) =
n∑

i=1
(M∗

i −m∗i )(ti − ti−1) � B

n∑

i=1
(Mi −mi)(ti − ti−1)

= B[U(f, P )− L(f, P )] < B
ε

B
= ε

and h is Δ-integrable on [a, b]T by Theorem 1.3. This completes the proof. 	

The following theorem is more general than Theorem 1.9 and can be shown

similar to the case T = R; we will not repeat the proofs here.

Theorem 1.10 (see [112, 113]) Let f be Δ-integrable on [a, b)T and let M and
m be its supremum and infimum on [a, b)T, respectively. Let, further, ϕ : R → R
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be a continuous function on [m,M]. Then the composite function h = ϕ ◦ f is
Δ-integrable on [a, b)T.

Corollary 1.1 (see [112, 113]) If f isΔ-integrable on [a, b)T, then for an arbitrary
positive number α, the function |f |α is Δ-integrable on [a, b)T.
Proof In fact, it is sufficient to consider the continuous function ϕ(x) = |x|α and
apply Theorem 1.10. 	


Theorem 1.11 (see [112, 113]) Let f be a bounded function that is Δ-integrable
on [a, b)T. Then f is Δ-integrable on every subinterval [c, d)T of [a, b)T.
Proof Let ε > 0 and P be a partition of [a, b)T such that U(f, P )− L(f, P ) < ε.
Adding to P the points c and d, we get a new partition P ′ of [a, b)T. Then by
Lemma 1.1 we also have U(h, P ′) − L(h, P ′) < ε. Now consider the partition
P ′′ of [c, d)T consisting of all points of P ′ belonging to [c, d]T. For upper and
lower Δ-sums Ũ and L̃ of f on [c, d)T associated with this partition P ′′, we have
Ũ − L̃ � U(f, P ′)− L(f, P ′). So, Ũ − L̃ < ε and by Theorem 1.3 the function f
is Δ-integrable on [c, d)T. 	


The proof of the following theorem is similar to the case T = R.

Theorem 1.12 (see [112, 113]) Let f and g be Δ-integrable functions on [a, b)T
and c be a real number. Then

(i) cf is Δ-integrable and
∫ b
a
cf (t)Δt = c

∫ b
a
f (t)Δt;

(ii) f + g is Δ-integrable and
∫ b
a
[f (t)+ g(t)]Δt = ∫ b

a
f (t)Δt + ∫ b

a
g(t)Δt.

Theorem 1.13 (see [112, 113]) Let f and g be Δ-integrable functions on [a, b)T.
Then their product fg is Δ-integrable on [a, b)T.
Proof We claim that if f is Δ-integrable on [a, b)T, then f 2 is Δ-integrable on
[a, b)T. In fact, f 2(t) = ϕ(f (t)) with ϕ(x) = x2, and ϕ satisfies the Lipschitz
condition on any finite interval [m,M]. Therefore f 2 is integrable by Theorem 1.9.
Now the desired result follows from the identity 4fg = (f + g)2 − (f − g)2 by
Theorem 1.12. This completes the proof. 	


Following the proof of the case T = R, the following theorem is immediate:

Theorem 1.14 (see [112, 113]) Let f be a function defined on [a, b)T and let c ∈ T

with a < c < b. If f is Δ-integrable from a to c and from c to b, then f is Δ-
integrable from a to b and

∫ b

a

f (t)Δt =
∫ c

a

f (t)Δt +
∫ b

c

f (t)Δt.

Theorem 1.15 (see [112, 113]) If f and g are Δ-integrable on [a, b)T and if
f (t) � g(t) for all t ∈ [a, b)T, then

∫ b
a
f (t)Δt �

∫ b
a
g(t)Δt .
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Proof By Theorem 1.12, h = g − f is Δ-integrable on [a, b)T. Since h(t) � 0
for all t ∈ [a, b)T, it is clear that L(h, P ) � 0 for all partitions P of [a, b)T and
so

∫ b
a
h(t)Δt = L(h) � 0. Applying Theorem 1.12 again, we see that

∫ b
a
g(t)Δt −∫ b

a
f (t)Δt = ∫ b

a
h(t)Δt � 0. The proof is completed. 	


Theorem 1.16 (see [112, 113]) If f is Δ-integrable on [a, b)T, then |f | is Δ-
integrable on [a, b)T and

∣∣∣∣
∫ b

a

f (t)Δt

∣∣∣∣ �
∫ b

a

|f (t)|Δt. (1.9)

Proof The result easily follows from Theorem 1.15 provided we know |f | is
Δ-integrable on [a, b)T. In fact, −|f | � f � |f | and so − ∫ b

a
|f (t)|Δt �∫ b

a
f (t)Δt �

∫ b
a
|f (t)|Δt , which implies (1.9). We now prove that |f | is Δ-

integrable. Consider the function ϕ(x) = |x|. This function satisfies a Lipschitz
condition on any interval. Further, we have |f (t)| = ϕ(f (t)). Therefore, |f | is Δ-
integrable by Theorem 1.9. This completes the proof. 	


Corollary 1.2 (see [112, 113]) Let f and g be Δ-integrable on [a, b)T. Then
∣∣∣∣
∫ b

a

f (t)g(t)Δt

∣∣∣∣ �
∫ b

a

|f (t)g(t)|Δt � ( sup
t∈[a,b)T

|f (t)|)
∫ b

a

|g(t)|Δt.

For the case T = R, the following theorem is immediate:

Theorem 1.17 Let (fk) be a sequence of Δ-integrable functions on [a, b)T, and
suppose that fk → f uniformly on [a, b)T for a function f defined on [a, b)T.
Then f is Δ-integrable from a to b and

∫ b
a
f (t)Δt = lim

k→∞
∫ b
a
fk(t)Δt .

The statement for the series of functions of Theorem 1.17 can be stated as
follows:

Theorem 1.18 (see [112, 113]) Suppose that
∞∑
k=1

gk is a series of Δ-integrable

functions gk on [a, b)T that converges uniformly to g on [a, b)T. Then g is Δ-

integrable and
∫ b
a
g(t)Δt =

∞∑
k=1

∫ b
a
gk(t)Δt .

1.1.3 Fundamental Theorems of Calculus

In this subsection, we will present two versions of the fundamental theorem of
calculus. Before this, some basic definitions concerning the time scales and some
mean value theorems for derivatives on time scales will be presented.
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Theorem 1.19 (see [112, 113]) Let f be a continuous function on [a, b]T that is
Δ-differentiable on [a, b)T (the differentiability at a is understood as right-sided)
and satisfies f (a) = f (b). Then there exist ξ, τ ∈ [a, b)T such that fΔ(τ) ≤ 0 ≤
fΔ(ξ).

Proof Since the function f is continuous on the compact set [a, b]T, f assumes
its minimum m and its maximumM . Therefore there exist ξ, τ ∈ [a, b]T such that
m = f (ξ) andM = f (τ). Since f (a) = f (b), we may assume that ξ, τ ∈ [a, b)T.
Hence fΔ(τ) � 0 and fΔ(ξ) � 0. This completes proof. 	


Theorem 1.20 (see [112, 113], Mean Value Theorem) Let f be a continuous
function on [a, b]T which is Δ-differentiable on [a, b)T. Then there exist ξ, τ ∈
[a, b)T such that

fΔ(τ) � f (b)− f (a)
b − a � fΔ(ξ).

Proof By applying Theorem 1.19 to the function

ϕ(t) = f (t)− f (a)− f (b)− f (a)
b − a (t − a),

we can obtain the desired result immediately. 	


Corollary 1.3 (see [112, 113]) Let f be a continuous function on [a, b]T that is Δ-
differentiable on [a, b)T. If fΔ(t) = 0 for all t ∈ [a, b)T, then f is a constant
function on [a, b]T.

Corollary 1.4 (see [112, 113]) Let f be a continuous function on [a, b]T that is
Δ-differentiable on [a, b)T. Then f is increasing, decreasing, nondecreasing, and
nonincreasing on [a, b]T if fΔ(t) > 0, f Δ(t) < 0, f Δ(t) � 0, and fΔ(t) � 0 for
all t ∈ [a, b)T, respectively.

In the similar way, the analogue of∇-derivative of Theorem 1.20 can be obtained.

Theorem 1.21 (see [112, 113]) Let f be a continuous function on [a, b]T that is ∇
differentiable on (a, b]T. Then there exist ξ, τ ∈ (a, b]T such that

f ∇(τ ) � f (b)− f (a)
b − a � f ∇(ξ).

For Δ-predifferentiable functions, there is a generalization of Theorem 1.20 as
follows:

Definition 1.8 (see [112, 113]) A function f : T→ R is calledΔ-predifferentiable
(with region of Δ-differentiation D), provided that the following conditions hold:
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(i) f is continuous on T;
(ii) D ⊂ T

k,Tk −D is countable and contains no right-scattered elements of T;
(iii) f is Δ-differentiable at each t ∈ D.

Theorem 1.22 (see [112, 113]) Let f and g be real-valued functions defined on T.
Suppose both f and g are Δ-predifferentiable with region of Δ-differentiation D.
Then |fΔ(t)| � gΔ(t) for all t ∈ D implies |f (r) − f (s)| � g(r) − g(s) for all
r, s ∈ T, r � s.

In Theorem 1.22 by letting f = 0, we have the following:

Corollary 1.5 (see [112, 113]) Let g : T → R be a Δ-predifferentiable function
with region of Δ-differentiation D. If gΔ(t) � 0 for all t ∈ D, then g is
nondecreasing on T.

Theorem 1.23 (see [112, 113]) Let f be a continuous function on [a, b]T ⊂ T

that is Δ-predifferentiable on [a, b)T with region of Δ-differentiation D ⊂ [a, b)T.
Suppose f (a) = f (b). Then there exist ξ, τ ∈ D such that fΔ(τ) � 0 � fΔ(ξ).

Proof If f is a constant function, then fΔ(t) = 0 for all t ∈ [a, b)T and, therefore,
the theorem holds in this case. Now suppose that f is not constant. To prove that
there exists τ ∈ D such that fΔ(τ) � 0, we suppose the contrary: let fΔ(t) > 0 for
all t ∈ D. Applying Corollary 1.5 to the function f : [a, b]T → R, we get that f
is nondecreasing on [a, b]T. But this gives a contradiction, since f (a) = f (b) and
f is nonconstant. Therefore the desired point τ ∈ D exists. Similarly, considering
the function −f , we can prove that there exists ξ ∈ D such that fΔ(ξ) � 0. This
completes the proof. 	


Based on Theorem 1.23, similar to the proof of Theorem 1.20, the following
generalization is immediate:

Theorem 1.24 (see [112, 113]) Let f be a continuous function on [a, b]T ⊂ T that
isΔ-predifferentiable on [a, b)T with region ofΔ-differentiationD ⊂ [a, b)T. Then
there exist ξ, τ ∈ D such that (b − a)f Δ(τ) � f (b)− f (a) � (b − a)f Δ(ξ).

Let [a, b]T be a closed bounded interval in T. A function F : [a, b]T → R is
called a Δ-antiderivative of f : [a, b)T → R provided F is continuous on [a, b]T
and Δ-differentiable on [a, b)T, and FΔ(t) = f (t) for all t ∈ [a, b)T.
Theorem 1.25 (see [112, 113]) (Fundamental theorem of calculus I ). Let f be Δ-
integrable function on [a, b)T. If f has a Δ-antiderivative F : [a, b]T → R, then

∫ b

a

f (t)Δt = F(b)− F(a). (1.10)

Proof Let ε > 0. By Theorem 1.3, there exists a partition P : a = t0 < t1 < . . . <

tn = b of [a, b)T such that
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U(f, P )− L(f, P ) < ε. (1.11)

Applying Theorem 1.20 to F : [ti−1, ti]T → R for each i = 1, 2, . . . , n, we obtain
ξi, τi ∈ [ti−1, ti )T such that (ti − ti−1)f (τi) � F(ti)− F(ti−1) � (ti − ti−1)f (ξi).
Hence summing we have

n∑
i=1
(ti − ti−1)f (τi) � F(b)−F(a) �

n∑
i=1
(ti − ti−1)f (ξi).

So the estimate

L(f, P ) � F(b)− F(a) � U(f, P ) (1.12)

follows. Since we have L(f, P ) �
∫ b
a
f (t)Δt � U(f, P ) for all partitions P of

[a, b)T, inequalities (1.11) and (1.12) imply that | ∫ b
a
f (t)Δt−[F(b)−F(a)]| < ε.

Since ε is arbitrary, (1.10) holds. This completes the proof. 	


Theorem 1.26 ([112, 113], Integration by Parts) Let μ and ν be continuous
functions on [a, b]T that areΔ-differentiable on [a, b)T. If uΔ and vΔ are integrable
from a to b, then

∫ b

a

uΔ(t)vΔ(t)Δt +
∫ b

a

u(σ (t))vΔ(t)Δt = u(b)v(a). (1.13)

Proof Let F = uv; then FΔ(t) = uΔ(t)v(t) + u(σ(t))vΔ(t) and FΔ is Δ-
integrable. Now Theorem 1.25 shows that

∫ b
a
FΔ(t)Δt = F(b) − F(a) =

u(b)v(b)− u(a)v(a) and so (1.13) holds. The proof is completed. 	


Theorem 1.27 (see [112, 113], Fundamental Theorem of Calculus II) Let f be
a function which isΔ-integrable from a to b. For t ∈ [a, b]T, let F(t) =

∫ t
a
f (s)Δs.

Then F is continuous on [a, b]T. Further, let t0 ∈ [a, b)T and let f be arbitrary at t0
if t0 is right-scattered, and let f be continuous at t0 if t0 is right-dense. Then F is
Δ-differentiable at t0 and FΔ(t0) = f (t0).

Proof Choose B > 0 such that |f (t)| � B for all t ∈ [a, b)T. If t, τ ∈ [a, b]T and
|t − τ | < ε/B where t < τ , say, then

|F(τ)− F(t)| =
∣∣∣∣
∫ τ

t

f (s)Δs

∣∣∣∣ �
∫ τ

t

|f (s)|Δs �
∫ τ

t

BΔs = B(τ − t) < ε.

This shows that F is (uniformly) continuous on [a, b]T. Let t0 ∈ [a, b)T be right-
scattered. Then, since F is continuous, it is Δ-differentiable at t0 and we have by
Theorems 1.14 and 1.7,

FΔ(t0) = lim
t→t0

F(t)− F(t0)
t − t0 = lim

t→t0

1

t − t0
[∫ t

a

f (s)Δs −
∫ t0

a

f (s)Δs

]
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= lim
t→t0

1

t − t0
∫ t

t0

f (s)Δs.

Let ε > 0. Since f is continuous at t0, there exists δ > 0 such that s ∈ [a, b)T and
|s − t0| < δ imply |f (s)− f (t0)| < ε. Then

∣∣∣∣
1

t − t0
∫ t

t0

f (s)Δs − f (t0)
∣∣∣∣ =

∣∣∣∣
1

t − t0
∫ t

t0

[f (s)− f (t0)]Δs
∣∣∣∣

� 1

|t − t0|
∫ t

t0

|f (s)− f (t0)|Δs

� ε

|t − t0|
∣∣∣∣
∫ t

t0

Δs

∣∣∣∣ = ε

for all t ∈ [a, b]T such that |t− t0| < δ and t = t0. Hence the desired result follows.
	


A function F : [a, b]T → R is said to be a Δ-preantiderivative of f : [a, b)T →
R provided F is continuous on [a, b]T and Δ-predifferentiable on [a, b)T with
region of Δ-differentiation D ⊂ [a, b)T, and FΔ(t) = f (t) for all t ∈ D.

The following result is a generalization of Theorem 1.25:

Theorem 1.28 Let f be a Δ-integrable function on [a, b)T. If f has a Δ-
preantiderivative F : [a, b]T → R, then

∫ b
a
f (t)Δt = F(b)− F(a).

Proof The proof is analogous to that of Theorem 1.25 and uses Theorem 1.24. 	

Let T be a time scale and σ and ρ be the forward and backward jump functions

on T. The following knowledge is aboutΔ-measure on time scales and can be found
in [69].

Let J1 be the family (collection) of all left closed and right open intervals of
T of the form [a, b)T = {t ∈ T : a � t < b} with a, b ∈ T and a � b. The
interval [a, a)T is understood as the empty set. J1 is a semiring of subsets of T.
Let m1 : J1 → [0,∞) be the set function on J1 (whose values belong to the
extended real half-line [0,∞)) that assigns to each interval [a, b)T its length b−a :
m1([a, b)T) = b − a. Then m1 is a countably additive measure on J1. We denote
by μΔ the Carathéodory extension of the set function m1 associated with family J1
(for the Carathéodory extension, see [39]) and call μΔ the Lebesgue Δ-measure on
T.

Now we briefly describe the Carathéodory extension μΔ of m1. First, using the
pair (J1,m1), an outer measure m∗1 is generated on the family of all subsets of T as
follows:

Let E be any subset of T. If there exists at least one finite or countable system
of intervals Vj ∈ J1(j = 1, 2, . . .) such that E ⊂ ⋃

j Vj , then we put m∗1(E) =
inf

∑
j

m1(Vj ), where the infimum is taken over all coverings of E by a finite or


