
Poul M. F. Nielsen · Martyn P. Nash · 
Xinshan Li · Karol Miller · 
Adam Wittek   Editors

Computational 
Biomechanics 
for Medicine
Towards Translation and Better Patient 
Outcomes



Computational Biomechanics for Medicine



Poul M. F. Nielsen ·Martyn P. Nash · Xinshan Li ·
Karol Miller · Adam Wittek
Editors

Computational Biomechanics
for Medicine
Towards Translation and Better Patient
Outcomes



Editors
Poul M. F. Nielsen
Auckland Bioengineering Institute
University of Auckland
Auckland, New Zealand

Xinshan Li
Department of Mechanical Engineering
University of Sheffield
Sheffield, UK

Adam Wittek
Intelligent Systems for Medicine
Laboratory
The University of Western Australia
Perth, WA, Australia

Martyn P. Nash
Auckland Bioengineering Institute
University of Auckland
Auckland, New Zealand

Karol Miller
Intelligent Systems for Medicine
Laboratory
The University of Western Australia
Perth, WA, Australia

ISBN 978-3-031-09326-5 ISBN 978-3-031-09327-2 (eBook)
https://doi.org/10.1007/978-3-031-09327-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-09327-2


Preface

Computational biomechanics exploits our knowledge of physics and physiological
and biological processes, to enable quantitative predictions of outcomes resulting
from the complex interactions that occur in living systems. Biomechanical models
increasingly provide valuable tools to improve the diagnosis, treatment, and moni-
toring of many diseases, as well as enhancing our understanding of how healthy
bodies function.

The first volume in the Computational Biomechanics for Medicine book series
was published in 2010. Since then, the book has become an annual forum for special-
ists in computational sciences to describe their latest results and discuss the appli-
cation of their techniques to computer-integrated medicine. The twelfth volume in
the Computational Biomechanics for Medicine book series comprises fifteen of the
latest developments in continuum biomechanics and patient-specific computations,
by researchers from New Zealand, Australia, Serbia, Denmark, France, the United
Kingdom, Argentina, and the United States of America. Topics covered in this book
include:

• Tissue biomechanics;
• Patient-specific modelling;
• Vessel fluid mechanics;
• Biomedical instrumentation;
• Medical image analysis.

v



vi Preface

The Computational Biomechanics for Medicine book series provides the commu-
nity with the most up-to-date source of information for both researchers and
practitioners.

Auckland, New Zealand
Auckland, New Zealand
Perth, Australia
Perth, Australia
Sheffield, UK

Poul M. F. Nielsen
Martyn P. Nash

Karol Miller
Adam Wittek
Xinshan Li

The original version of this chapter has been revised. “All authors contributed equally to the
manuscript” has been incorporated in Chapter https://doi.org/10.1007/978-3-031-09327-2_4

https://doi.org/10.1007/978-3-031-09327-2_4


Contents

Solid Mechanics

Towards Accurate Measurement of Abdominal Aortic Aneurysm
Wall Thickness from CT and MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Andy T. Huynh and Karol Miller

Patient-Specific Finite ElementModeling of Aneurysmal Dilatation
After Chronic Type B Aortic Dissection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Shaojie Zhang, Joan D. Laubrie, S. Jamaleddin Mousavi,
Sabrina Ben Ahmed, and Stéphane Avril

Characterizing the Biomechanics of an Endovascular
Intervention in Cerebral Aneurysms Using Kirchhoff–Love Shells
of Nonuniform Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Nicolás Muzi, Francesco Camussoni, Luis G. Moyano, andDaniel Millán

Imaging-Based Patient-Specific Biomechanical Evaluation
of Atherosclerosis and Aneurysm: A Comparison Between
Structural-Only, Fluid-Only and Fluid–Structure Interaction
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Jessica Benitez Mendieta, Phani Kumari Paritala, Jiaqiu Wang,
and Zhiyong Li

Automatic Framework for Patient-Specific Biomechanical
Computations of Organ Deformation: An Epilepsy (EEG) Case
Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Saima Safdar, Benjamin Zwick, George Bourantas, Grand R. Joldes,
Simon K. Warfield, Damon E. Hyde, Adam Wittek, and Karol Miller

Generating Scoliotic Computed Tomography Volumes from Finite
Element Spine Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Austin Tapp, Michael Polanco, Isaac Kumi, Sebastian Bawab,
Stacie Ringleb, Rumit Kakar, Carl St. Remy, James Bennett,
and Michel Audette

vii



viii Contents

Morphological Variation in an Endothelial Cell Population:
A Virtual-Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Yi Chung Lim, Michael Cooling, Sue McGlashan, and David S. Long

Fluid Mechanics

Efficient and Accurate Computation of Quantitative Flow Ratio
(QFR) for Physiological Assessment of Coronary Artery Stenosis
from a Single Angiographic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
George C. Bourantas, Grigorios Tsigkas, Konstantinos Katsanos,
Fivos V. Bekiris, Benjamin F. Zwick, Adam Wittek, Karol Miller,
and Periklis Davlouros

Predicting Plaque Progression in Patient-Specific Carotid
Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Tijana Djukic, Smiljana Djorovic, Branko Arsic, Branko Gakovic,
Igor Koncar, and Nenad Filipovic

Imaging

Assessing Fibre Reorientation in Soft Tissues with Simultaneous
Mueller Matrix Imaging and Mechanical Testing . . . . . . . . . . . . . . . . . . . . . 145
Alexander W. Dixon, Andrew J. Taberner, Martyn P. Nash,
and Poul M. F. Nielsen

A Direct Geometry Processing Cartilage Generation Method
Using Segmented Bone Models from Datasets with Poor Cartilage
Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Faezeh Moshfeghifar,Max Kragballe Nielsen, José D. Tascón-Vidarte,
Sune Darkner, and Kenny Erleben

Development of an Open Source, Low-Cost Imaging System
for Continuous Lung Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Samuel Richardson, Andrew Creegan, Alex Dixon,
Llewellyn Sim Johns, Haribalan Kumar, Kelly Burrowes,
Poul M. F. Nielsen, J. Geoffrey Chase, and Merryn H. Tawhai

Measuring Three-Dimensional Surface Deformations of Skin
Using a Stereoscopic System and Intrinsic Features . . . . . . . . . . . . . . . . . . . 183
Amir HajiRassouliha, Debbie Zhao, Dong Hoon Choi,
Emily J. Lam Po Tang, Andrew J. Taberner, Martyn P. Nash,
and Poul M. F. Nielsen

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



Solid Mechanics



Towards Accurate Measurement
of Abdominal Aortic Aneurysm Wall
Thickness from CT and MRI

Andy T. Huynh and Karol Miller

Abstract Abdominal Aortic Aneurysm (AAA) is the focal dilation or widening of
the infrarenal artery. It is a vascular disease commonly found in older adults with
prevalence increasing steadily with age. The disease is often discovered by unrelated
medical examinations and screenings due to its asymptomatic nature. People unaware
of their condition may only find out after the catastrophic event of a ruptured AAA,
where most patients will not survive if left untreated. The current clinical rupture
risk indicator for AAA repair is a AAA diameter exceeding 5.5 cm. There are many
limitations with the clinical rupture risk indicator due to its derivation coming from
population statistics and not patient-specific circumstances. Computation of AAA
wall stress using three-dimensional (3D) reconstructions of patient CT scans have
often been used by researchers as a potential patient-specific rupture risk indicator.
A property that has a great influence on the stress distribution and magnitude is the
aortic wall thickness. Unfortunately, there are no validated, non-invasive methods
for measuring aortic wall thickness of patients with AAA. Researchers have utilised
either CT orMRI as input into their customwall detection algorithms, however, there
has not yet been a study which utilises both. Therefore, this study aims to develop a
non-invasive, and patient-specific method of detecting aortic wall thickness utilising
both CT and MRI scans.
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1 Introduction

AbdominalAorticAneurysm (AAA) is the focal dilation orwidening of the infrarenal
artery and is most commonly fusiform in shape [1]. It is a vascular disease commonly
found in older adults with prevalence increasing steadily with age [2]. Although the
prevalence and incidence of AAA has declined globally, there have been rising AAA
rates in many regional areas around the world, including the Oceanic region [2]. In
Australia, approximately 7% of elderly men aged 65 years and above suffer from
AAA—equating to about 114,000 Australian men [3]. This highlights the need for
improved disease surveillance and prevention.

Due to the asymptomatic nature of the disease, it is often discovered by unrelated
medical examinations and screening [1]. People unaware of their condition may only
find out after the catastrophic event of a ruptured AAA. The majority of patients
with a ruptured AAA will not survive if left untreated, having an overall mortality
rate of approximately 80–90% [4]. Unfortunately, even with immediate surgery by
experienced vascular surgeons, the mortality remains high between 41 and 55% [5].
As such, it is crucial for doctors to identify the location on the AAA vessel at highest
risk of rupturing prior to the catastrophic event.

There are many limitations to the current clinical rupture risk indicator due to its
derivation coming from population statistics and not patient-specific circumstances.
Clinical rupture risk indicator for elective repair only factors the AAA diameter
size (>5.5 cm for men and >5 cm for women), growth rate (>1 cm/year) and some
patient symptoms [1]. This is insufficient as there are many other patient-specific
factors such as age, smoking, atherosclerosis, hypertension, ethnicity, and family
history [1]. Further evidence indicates that 60% of AAAs that were recommended
for elective repair often remained stable [6] and 20%of small AAAhave ruptured [7].
Research is currently being undertaken to visualise and understand patient-specific
biomechanics of AAA. This novel approach aims to develop a non-invasive and
patient-specific biomechanical rupture risk assessment for AAA.

Computation of AAAwall stress using three-dimensional (3D) reconstructions of
patient CT scans have often been used by researchers as a potential rupture risk indi-
cator [8–10]. Although it was recently discovered that neither stress magnitude nor
stress distribution alone had any noticeable relationship with AAA symptoms [11],
wall stress calculations still holds great practical importance in research. Wall thick-
ness is a property that has a great influence on the stress distribution and magnitude
[8, 12]. Unfortunately, there are no validated, non-invasive methods for measuring
aortic wall thickness [13]. Additionally, the poor soft tissue contrast of CT scans
alone limit the visibility and measurement of the aortic wall, resulting in a majority
of AAA rupture risk studies assuming a uniform wall thickness [14]. BioPARR is a
software system used for estimating the rupture potential index (RPI) for AAA [14].
The software only requires the segmentation of the AAA and wall thickness specifi-
cation as manual user inputs with all other steps being automated. Unfortunately, the
wall thickness specification is applied either by assuming uniform wall thickness or
manually measuring wall thickness at sparse locations and using them to generate
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the walls through interpolation and smoothing [14]. As such, substantial research
efforts are needed to investigate patient-specific aortic wall thickness measurement
techniques for reliable estimates of AAA wall stress.

Researchers have utilised either CT or MRI as input into their custom wall detec-
tion algorithms, however, there has yet been a study which utilises both. Semi-
automatic wall detection from CT has been developed based on common image
analysis techniques using image intensity and contours [13, 15]. Similarly, MRI has
also been studied to detect wall contours based on image gradient measurements
[16].

In our method, both CT and MRI are used to detect aortic wall thickness with
the assistance of common image processing techniques. Utilising both modalities,
advantages such as cross-checking measurements and having improved visibility of
the aortic walls can be achieved. Exact methods to achieve this have not been clearly
outlined in existing literature. This study therefore aims to develop a non-invasive,
and patient-specific method of detecting aortic wall thickness utilising both CT and
MRI scans.

2 Methods

The aortic walls were detected from patient CT andMRI data using image processing
techniques included in the MATLAB software. Our method involves registering the
CT andMRI scans of the patients using open-source software 3D Slicer [17] to align
the datasets. This is followed by importing the data into an in-houseMATLAB script
to detect the aortic walls using Canny edges. Canny edges use adaptive thresholding
with hysteresis to detect edges based on the intensity gradients of the image [18].
The edges produced from the CT and MRI slices are overlaid to give an improved
structural visibility of the wall thickness for measurement. This process simplifies
the analysis of the images by reducing the amount of data to be processed while
preserving useful structural information [18].

2.1 Patient Data

A pilot cohort of four patient CT and MRI scans were used in this study. Patient
data were acquired randomly from the MRI in AAA to predict Rupture or Surgery
(MA3RS) study [19]. The patients were under surveillance for AAA with maximum
diameter greater than 4 cm [14]. The scans were previously used by Joldes et al. and
is described in their BioPARR paper [14].
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2.2 Registration of Patient CT and MRI Scans

Image registration is the process of aligning two or more images and has many appli-
cations in themedical field. The patient’sMRI and CT data sets were registered using
open-source software 3D Slicer. The automatic registration of inter-modality images
is difficult since different imagemodalities reveal and represent different information
about the organ [14]. To overcome this difficulty, a label map registration algorithm
outlined in the BioPARR paper was followed in this study [14]. A disadvantage of
using this registration method is that it cannot account for local deformations [14].
A summary of the steps is shown below [14].

Manual segmentation of the AAA was applied to both the CT and MRI scans
using the ‘Editor’ module within the 3D Slicer software. Labels of the segmented
AAA were produced for each modality and are used to acquire the registration
transformation.

The general registration and resampling algorithm (BRAINSFit and BRAINSRe-
sample) were used to register the CT and MRI images. This involved using the
resulting transformation acquired from the label map registration to register the MRI
and CT images and bring them to the same coordinate system. The deformed MRI
and CT images (Fig. 1) will be used for further image processing to detect the aortic
walls.

2.3 Detection of Aortic Wall from CT and MRI

The aortic wall detection algorithm was developed using MATLAB and the Image
Processing Toolbox included. The Image Processing Toolbox allows users to use a
variety of different algorithms for image processing, visualisation, and analysis.

Fig. 1 The registration of the CT andMRI dataset using 3D slicer a checkerboardwithMRI top-left
b checkerboard with CT top-left
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The CT and deformed (registered) MRI scans were read into theMATLAB script.
The files were in ‘.nrrd’ format and required adjustment to the coordinate system in
order to visualise and save the images. Users can specify the number of sample of
slices to analyse from the patient’s CT/MRI volume and scale of the image size that
the wall detection algorithm will be applied. In this experiment, a sample size of 50
image slices and scale factor of 4was used.The size of the samplewill be subject to the
time available to the user (depending on the clinical workflow) and the computational
hardware available. The scale factor will depend on the quality/resolution of the
scans. Further parameters are specified by the user for semi-automatic segmentation
of the aortic walls based on the contrast and quality of the image being assessed.
This includes in-built MATLAB functions such as low-light image enhancement and
edge detection using the Canny method. The algorithm first enhances the visibility
of the aortic walls using low-light image enhancement techniques and then produces
edges using Canny edge detection. Figure 2 shows the aortic walls from the CT and
MRI.

Fig. 2 Detection of aortic walls, Top = CT and Bottom = MRI a original image b aortic wall
detection using our algorithm
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Fig. 3 Samples of overlaying wall edges detected from CT and MRI. Green= CT and magenta=
MRI

2.4 Overlaying Wall Edges of CT and MRI

By overlaying the edges detected from the CT and MRI scans, an improved visuali-
sation of the aortic walls can be produced. From Fig. 3, a sample of aortic wall edges
detected using our algorithm is displayed. The images include both edges detected
from CT (in green) and MRI (in magenta).

2.5 Measurement of Aortic Wall Thickness

Measurement of the aortic wall thickness was donemanually using open-source soft-
ware, ImageJ. The software allows for users to define the spatial scale so measure-
ments can be presented in millimetres. A total of 50 axial slices were analysed
for each patient in which 10 of the best quality edges produced by our algorithm
were selected for measurement. For each slice, four approximately equidistant aortic
wall measurements were taken by measuring the shortest distance between the outer
wall and inner wall. This totals to 80 measurements per patient. Additionally, only
measurements where both the CT and MRI edges are aligned at either the inner or
outer wall were taken as this has a higher chance for the edges to represent the aortic
wall. It is also used as a reference point to compare measurements from the CT
edges and MRI edges. Alignment of edges is represented as white, edges from CT
is represented as green and edges from MRI is represented as magenta (Fig. 4). It
should be noted that this method may overestimate the wall thickness measurements
due to the slices not being perpendicular to the aortic axis.
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Fig. 4 Example measurement of aortic wall thickness for CT (green) and MRI (magenta) pair

Table 1 Summary of overall aortic wall thickness measurements for each patient

Patient Modality Mean
(mm)

SD
(mm)

Minimum
(mm)

Maximum
(mm)

1 CT
MRI

2.05
1.88

0.28
0.29

1.44
1.54

2.58
2.97

2 CT
MRI

1.97
2.05

0.36
0.31

1.56
1.56

3.25
2.81

3 CT
MRI

1.97
1.77

0.29
0.16

1.34
1.47

2.54
2.10

4 CT
MRI

1.92
1.75

0.25
0.13

1.42
1.44

2.59
2.03

3 Results

3.1 Summary of Results

For each patient, pairs of CT andMRI aortic wall thickness were measured, totalling
to 80 measurements per patient (40 for CT and 40 for MRI). The summary of
results of aortic wall thickness measurements from CT and MRI for each patient
are summarised below (Table 1).

3.2 Statistical Analysis

The mean ± standard error of the aortic wall measurements from edges created by
CT and MRI are displayed below (Fig. 5). For each patient, a sample size of 10
slices was used. Each slice was used to manually measure 4 pairs (CT and MRI)
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Fig. 5 Plots showing mean ± standard error of aortic wall measurement from CT and MRI for
each sample slice a Patient 1 b Patient 2 c Patient 3 d Patient 4

of approximately equidistant aortic wall thickness. The results show thickness vari-
ability depending on the location of the aneurysm in both axial and coronal/sagittal
planes.

Bland–Altman plots were used to assess the agreement between the aortic wall
thickness measurements from edges created using CT and edges created using MRI.
This graphical assessment uses an approach based on quantifying the variation of
the differences between measurements by two different methods on the same subject
[20]. We use this method of analysis to see if measuring wall thickness from edges
created from CT and MRI are comparable and if they can be used interchangeably.
This is important as one of themain advantages of using ourmethod forwall thickness
measurements is the increased visibility of the surrounding wall over methods which
uses only one or the other modality.

The plots display the difference between the measurements by the CT and MRI
for each subject against their average (Fig. 6). For patient 1, the plot shows a positive
bias of 0.18 mm ± 0.3 mm, suggesting that on average the CT measures 0.18 mm
more than the MRI measures. Additionally, the 95% limits of agreement (LOA)
ranged from −0.41 mm (mean +1.96 SD) to 0.76 mm (mean −1.96 SD). Patient
2 shows a negative bias of −0.08 mm ± 0.38 mm with 95% LOA ranging from −
0.82 mm to 0.67 mm. Patient 3 shows a positive bias of 0.20 mm ± 0.26 mm with
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Fig. 6 Bland–Altman plots of the difference between the paired aorticwall thicknessmeasurements
from CT and MRI a Patient 1 b Patient 2 c Patient 3 d Patient 4. The difference between CT and
MRI-based measurement can be as much as 0.6 mm, approximately a pixel size (0.625 mm) in the
original images. This shows that it is difficult to obtain accuracies better than the pixel size of the
original image

95% LOA ranging from −0.30 mm and 0.70 mm. Lastly, patient 4 shows a positive
bias of 0.17 mm ± 0.31 mm and 95% LOA of −0.45 mm to 0.78 mm.

4 Discussion and Conclusions

In this study, we present a patient specific and non-invasive method to measure the
aortic wall thickness by overlaying patient CT and MRI data. This was achieved
using an in-house script incorporating image processing techniques included in the
MATLAB software. Most researchers have used either CT or MRI for measuring
wall thickness, however, the lack of information from using one or the other may be
compensated by overlaying both modalities.

The need for modelling non-uniformwall thickness in abdominal aortic aneurysm
biomechanics has been a problem for many researchers. The comparison between
assuming uniform wall thickness and variable wall thickness for tension and stress
field computation was presented by Joldes et al. [8]. The paper suggested that incor-
porating wall thickness measurements is necessary for a reliable estimation of AAA
stress field.
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Using our method, local measurements of the aortic wall thickness can be
achieved. By overlaying CT andMRI, an improved ‘completeness’ of the aortic wall
is produced allowing researchers to conduct more local wall thickness measurements
to reliably describe their AAA geometric model. Our results show that aortic wall
thickness varies along both axial and coronal/sagittal planes (Fig. 5). This gives the
possibility for researchers to develop geometric biomechanical models with varying
local thickness. Unlike raw CT or MRI, Canny edges allows users to measure the
wall thickness based on the pixel edges reflecting the outer and inner wall boundaries.
This avoids the random error associated with measuring wall thickness using raw
CT or MRI where users are required to distinguish between the unclear boundaries
of the inner and outer wall.

Currently, using both CT and MRI to measure aortic wall thickness may not be
common practice, as it is an expensive process to acquire both modalities. However,
it should be noted that the processes used to detect the aortic walls from these images
are both computationally and financially feasible. If the quality of the CT is sufficient
for the user to detect thewalls, then an additionalMRImay not be necessary, lowering
the cost of the process. There are studies which use either CT or MRI to detect and
measure aortic wall thickness but use interpolation algorithms [15] or mean distance
[21]. With the expense of requiring both modalities, the method presented here
allows users to locally measure wall thickness without any interpolation algorithms
to estimate the wall boundaries.

A limitation in our study is that the measurement results are not compared to
ground truth as it is not available. Bland–Altman plots were used to assess the agree-
ment of using aortic wall thickness measurements using edges created between CT
and MRI. The plots show that the bias (or mean difference) was close to the ideal
zero value across all four patients, ranging between−0.08 to 0.20 mm. Additionally,
plots across all patients only have 1–2 values lying outside the 95% LOA. It is also
observed that depending on the modality, measurement of wall thickness may vary
by as much as 1 pixel size of the original image.

Another limitation is the uncertainty of measurements due to several factors.
Image resizing was incorporated in the script as the original CT and MRI resolution
quality was too low for the algorithm to detect and produce Canny edges. The nearest
neighbour interpolation was used to resample the pixels and scale the image by a
factor of 4. This may introduce noise and jagged boundaries [22] which can affect
accuracy of measurements as aortic walls are rounded in shape. Registration of CT
and MRI was also a necessary step to produce overlayed edges. Accuracy of regis-
tration methods determines the reliability of the aortic wall thickness measurements.
Since the method of registration has not yet been validated for our application, the
registration error may have significant effects on our results.

We believe the next step to progress this novel technique of patient specific, non-
invasive detection of local aortic wall thickness is to introduce a larger cohort of
patient data and validating our method using ground truth wall thickness measure-
ments. Additionally, the method could be simplified by automating the significant
step ofmanuallymeasuring the aorticwall thickness, improving both the repeatability
and accuracy of this approach.


