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Preface
My computational fluid dynamics (CFD) for wind
engineering journey started around January 1983 at Texas
Tech University (TTU) when myself and Dr. Kishor Mehta
were brainstorming on new research areas on a Saturday
morning and what I can consider for my PhD topic. Before
that, I did not know anything about CFD and not much in
fluid mechanics except taking a four‐semester course work
in my undergraduate program. Sincse I had reasonable
background on numerical methods and its application to
solid mechanics from my master’s work in India and in the
United States, I decided to apply those concepts to wind
engineering applications. Especially, the tornado force on
building fascinated me because only after I came to
Lubbock, TX, I came to know about tornado and its
devastation. In India where I grew up, I was exposed to
hurricane‐type wind extensively, and this may be another
reason for me getting into wind engineering research area.
At that time, I did not realize what I was getting into. Dr.
Mehta did say I might not realize my dream even after 80
years old. However, Dr. James McDonald (my advisor) and
Dr. Kishor Mehta did support my idea, and I started to
apply numerical methods in fluid mechanics for tornado
forces on buildings. I did not do any substantial work in my
PhD work, but it did open the CFD application for wind
engineering research area. My next vertical advancement
happened when I visited Commonwealth Scientific and
Industrial Research Organization (CSIRO), Australia, as a
research scientist to work under Dr. John Holmes during
the summer of 1990. He is a fun and nice person to work
with, and I am glad he gave me an opportunity to work on
CFD application to thunderstorm downdraft modeling.
There I met Dr. David Peterson, and he taught me the



implementation of the SIMPLE method of solving the
Navier–Stokes (NS) equations and law of the wall boundary
condition. There I used CFD to compute velocity in a
thunderstorm downdraft and flow over 3D building using k‐
ε turbulence model. The paper (Selvam and Holmes 1992)
becomes the beginning of thunderstorm downdraft study in
wind engineering. From there on different challenges in
CFD for wind engineering were resolved and now we are in
a much better situation for application in wind engineering.
Dr. Allan Larsen in 1998, Dr. Partha Sarkar in 2010, and Dr.
Prem Krishna in 2002, 2008, and 2017 requested me to
write review papers on CFD for wind engineering. Those
experiences gave me chances to reflect and advance myself
for further developments. In the recent years, Dr. Arindam
Chowdhury from Florida International University has
become another motivator to expand my journey. Dr.
Chowdhury and his student Dr. M. Moravej provided me
wind tunnel data for the 1:6 scale TTU building, and he
explained to me the partial turbulence simulation (PTS)
method reported in Mooneghi et al. (2016) paper. This
helped me to learn more about turbulence effects on
building and challenges in wind tunnel modeling. He is a
great person, and he opened my mind to learn more about
inflow turbulence generation methods and energy cascade
in turbulence. This is a concept many did not apply in
turbulence modeling. If this concept were understood for
practical application, the CFD application would have
progressed much quicker. Murakami et al. (1987) used
recycling method of considering turbulence in the flow
using large eddy simulation (LES) for the first time in wind
engineering. The recycling method has been used in many
applications for several years after that. I also tried to
implement it and reported my findings in Selvam (1997),
and I thought at that time the turbulence energy has to be
maintained as time goes on. From the numerical



experiment, I found that after some time, most of the
turbulence energy got lost in the computation. This could
be due to the numerical diffusion as well as the energy
cascade phenomenon. Because of my ignorance, I did not
report the details in any of my publications. In recent years,
I learnt that because of energy cascade and 3D modeling,
the energy from lower frequency is transferred to higher
frequency and also the waves get stretched and twisted.
In this work, random Fourier‐based inflow turbulence
generation method is used as inflow in Chapter 5 and the
peak pressure on building is computed. The program
developed for this case can be used for building
aerodynamics study without inflow and with inflow. This
helps the student to learn the power of CFD to some extent.
This tool also gives a chance for students to generate their
own wind data and analyze them for wind spectrum. The
other notable problem considered is the vortex shedding in
2D cylinders. This provides a pathway to understand the
vortex‐induced vibration (VIV) issues in thin structures and
bridges. The program for that also is used for class
instruction. The programs developed for this class can run
on a personal computer, and this makes it easier for
students to use. The outputs are written in a format
suitable for tecplot visualization program. The open‐source
visualization programs like ParaView can be used, and it is
not user‐friendly. However, the data can be manipulated for
other systems easily because the files are in ASCII format.
To perform CFD modeling for building and bridge
aerodynamics, some understanding of the NS equation,
properties of turbulence, turbulence modeling, introduction
to finite difference method, and wind engineering is
necessary, and they are introduced briefly in Chapters 1–4.
At the end of each chapter, necessary homework problems
by hand or computers are provided to have hands‐on
experience.



A brief review of CFD application in wind engineering is
provided in Chapter 6. I do apologize to many researchers
whose work I could not include in Chapter 6 due to lack of
time and space. In Chapter 7, use of OpenFOAM for wind
engineering is introduced.
This course material was developed in the summer of 2020
to teach in the fall semester. Before the Fall of 2020, I
taught CFD class twice, which helped me to develop the
course material more focused toward wind engineering.
The material for the class was expanded as the courses
were taught. I had few fresh graduate students like Ms.
Kaley Collins, Mr. Caleb Chestnut, and Mr. Gerardo Aguilar
who gave a lot of support to teach this class in addition to
my graduate students (Mr. Sumit Verma and Ms. Zayuris
Atencio). Because of them, I got Mr. Andrew Deschenes,
Mr. Wesley Keys, and Mr. Yancy Schrader in my class as
students. The participation of all of them really improved
the course material.
Even though the course material is more toward wind
engineering application, if someone wants to write their
own program, numerical algorithms are provided and
several programs are listed for their own development.
The course was taught in the Fall of 2020 with our own
CFD research code and tecplot up to Chapter 5. The
students ran the programs on personal computer, and that
made it easier for students. The visualization program
tecplot is user‐friendly, but it is a commercial program. If
someone wants to teach the Chapter 5 material using open‐
source CFD program OpenFOAM and open‐source
visualization program ParaView, they can do so by using
the material in Chapter 7. The major challenge may be to
adopt an inflow turbulence generator available from
OpenFOAM.



Since no other textbook on computational wind engineering
is available at this time, I developed a teaching philosophy
after several months of reflection. If you have any
comments for improvement after going over the material,
please email it to me. This means a lot and I greatly
appreciate. I do hope this material is useful for students,
industry practitioners, and researchers. I would like to
thank Dr. A. Chowdhury for going over the material and
providing valuable comments for improvement. Finally, I
like to acknowledge the financial support received from
Airforce, Navy, NASA, NSF, FHWA, James T. Womble
Professorship and the Department of Civil Engineering,
University of Arkansas over the years to conduct many of
the research work reported in this book.
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1
Introduction
Fluid mechanics and heat transfer have extensive
application. From aeronautical industry to automatic
industry, it is applied to several areas. Some of the notable
areas are:

1. Aeronautical industry – design of airplane to electronic
devices

2. Automobile industry
3. Building and bridge aerodynamics (Selvam 2017)
4. Electronic cooling (Silk et al. 2008; Sarkar and Selvam

2009)
5. Environmental flow and heat transfer
6. Metrological flow and weather prediction
7. Hydraulic flow
8. Water treatment (Liu and Zhang 2019)
9. Wind energy

In all areas, computer modeling has been extensively used
in the recent years, and this branch of computation is
called computational fluid dynamics (CFD). CFD provides
the detail of velocities, pressure, and temperature at every
point at each time in the computational domain. This helps
to create animation in time and provides the detail of the
flow changes in time. To gather this much of information
from experiment is very expensive. In certain situation like
weather prediction, we cannot do any experiment and
computer simulation is the only tool to predict the weather.



The major challenge in CFD is to develop a reliable
computer model for a particular application. If this is
established for a particular application, it will be very
useful in the design of the system.
The CFD is applied from single‐phase flow to multiphase
flow. In the multiphase flow, it can be liquid–vapor flow,
solid–liquid flow, and solid–liquid–vapor flow. In these flows,
chemical reactions can occur. Some of the challenging
flows I encountered in the past 30 years are
Wind–bridge interaction: Here the bridge moves due to
wind and hence beyond certain velocities the bridge can
flutter as reported in Selvam et al. (2002). Below the
critical velocity for flutter, the bridge will not have
unlimited oscillations. The concept of moving grid has to be
used in addition to regular CFD modeling. The Tacoma
Narrow Bridge failed due to flutter for a velocity of 64  km/h
(17.8  m/s) in 1940. The critical velocity for flutter for Great
Belt East Bridge is 252  km/h (70  m/s) as reported in Selvam
et al. (2002). The critical velocity depends upon the shape
and structural properties of the bridge. The flow features
during flutter condition are shown in Figure 1.1.



Figure 1.1 Flow around great Belt East Bridge during
flutter condition.

Heat transfer mechanism in spray cooling: Here, when
a liquid droplet impacts a hot plate with a bubble growing
in a thin liquid film; heat is removed due to complex
interaction of droplet impact and vapor bubble. This high
heat removal phenomena are explained in Selvam et al.
(2006). For this, multiphase flow modeling of liquid and
vapor is considered. In Figure 1.2 the liquid and vapor
phases before the droplet impacts a vapor bubble in a
liquid film are shown.



Figure 1.2 Multiphase flow modeling of liquid droplet
impacting a vapor bubble in liquid film.

Tornado–building interaction: This study is reported in
Selvam and Millett (2003, 2005). Here in a tornadic flow
how a roof of a building is lifted up is explained using CFD.
Figure 1.3 shows the velocity vector over the roof when a
tornado‐like vortex coincides with the center of a cubical
building.



Figure 1.3 Velocity vectors around the roof when a
tornado‐like vortex coincides with the center of a cubical
building.

1.1 Brief Review of Steps in CFD
Modeling
In the CFD modeling, the steps are very similar to well‐
established solid mechanics modeling. The major
differences being most of the CFD applications are
nonlinear and hence several iterations or time steps need
to be performed.



Step 1: Grid Generation or Preprocessing: This may be
the most time‐consuming part if one has a complicated
domain. If simple domain where in rectangular grid
systems can be used, then the grid generation may be an
easier task. Still one has to focus on the grid refinements in
the boundary layer and in the regions of steep flow. Also,
one has to make sure that grid spacing variation should not
be high. The preferred ratio is 1.0–1.5. Very large ratios
like more than 5 or 10 are not preferable. For this step,
extensive grid generation programs were developed in the
recent years.
Step 2: Flow Solver: Once the grid is generated for a
particular problem and the proper initial and boundary
conditions are given for the problem, one can solve the
Navier–Stokes (NS) equations. This is the most computer
time‐intensive step. For this several methods from direct to
iterative procedures are developed to solve the Ax = b
equations. To reduce computer time, high performance or
parallel computing is also utilized. Sarkar and Selvam
(2009) utilized parallel computing to reduce the computer
time from 50 to 3 days for spray cooling applications. They
also compared the performance of different iterative
solvers in the parallel computing environment.
Step 3: Postprocessing: In this step, the output from flow
solver is processed to mine valuable information. Here this
can be done by regular x–y graphs, contours, vector plots,
and the combination of all. If the data is written for several
time steps for the whole region, one can make animation
using software like TECPLOT, and flow features can be
investigated. The flow visualization technique is very
sophisticated and some time it is an art than science.
If it is a design, then one can change the parameters of the
flow variable or computational domain and further
computer runs can be made for further investigations.



Benefits of CFD:

1. Data available for all points in space and time.
2. Inexpensive comparing to experiment. Especially with

the developments in computer speed and memory, CFD
programs can run in a personal computer. The major
hurdle is validating the CFD with experiment to have
reliability.

3. Visualization and animation of data to understand the
physical problem is easy to implement. This helps
anyone to understand complex fluid phenomena.

1.2 CFD for Wind Engineering or
Computational Wind Engineering
In wind engineering, the loads on building and bridges are
obtained from wind tunnel (WT) measurements or field
measurements. The field measurement is very expensive
and only very limited field studies are conducted like Texas
Tech University building. Currently, WT is the major tool
used to investigate forces on buildings and to develop code
regulations like ASCE 7‐16. In recent years, CFD is
emerging as an alternate tool. For more than 30 years,
different researchers raised its capabilities and slowly it is
becoming a reasonable tool to be used in wind engineering
because of the availability of high‐performance computers
with large storage capacities. The work reported by Selvam
(1992) took more than a day for one computer run. With
the current computer capabilities, one can solve the same
problem in few minutes. Hence, the speed increased may
be more than 100 times in a single processor. With multiple
processors, we can increase the speed at least 10 times. If
the CFD model is well validated with experiments, then it
becomes the most economical tool compared to


