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Preface

Disease assessment is an essential aspect of the plant disease epidemics study.
Phytopathometry is the foundation for all subsequent analyses, interpretations,
characterization, and comparisons of plant disease epidemics. Disease quantification
represents the magnitudes of the effectiveness of management strategies adopted in
controlling plant diseases and also provides numerical estimates of crop losses due to
these diseases. The accuracy in plant disease assessment is the pillar of integrated
disease management. An assessment in a precise way to represent a quantitative link
between theory and practice of disease management. If someone wants to develop a
predictive model in a meaningful way, disease intensity must be quantified with a
high degree of accuracy. Therefore, we are attempting to provide the readers with
comprehensive information in a well-compiled way. Any manuscript reflects the
authors’ specialty, interest, and training. As the title of this manuscript depicts, it
deals with plant disease assessment approaches. In this manuscript, a broad topic of
study, “Plant diseases assessment,” has tried to break down into different striking
chapters. It will give a comprehensive picture of approaches to visual estimation for
assessing plant diseases.

This book will help plant scientists directly or indirectly deal with plant disease
diagnosis and management. It will be helpful for researchers and students in gaining
knowledge and skills in disease quantification, developing predictive models for
plant disease epidemics, assessing crop losses, and the magnitude of plant disease
control methods. This book deals with the classical concept of plant disease assess-
ment and methods based on visual observations to knowledge regarding the modern
and emerging technologies in phytopathometry, predictive models, disease warning
systems, and decision support systems. It will delineate remote sensing approaches
for assessing diseases in plants. Here, we squeeze it with a statement that this
manuscript gives a beautiful shift from classical to modern approaches to explaining
plant disease assessment.

Faisalabad, Pakistan Imran Ul Haq
Siddra Ijaz
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Phytopathometry: A Transdisciplinary
Concept 1
Imran Ul Haq and Siddra Ijaz

Abstract

Globalization, modern cultivation techniques, climate change, and human
activities have promoted the distribution of plant pathogens, resulting in frequent
host–pathogen interactions and disease incidences. These causative factors are
impossible to control as even the most rigorous quarantine system could not
completely avoid the movement of plant pathogens and germplasm across
countries and continents. Susceptibility of cultivated varieties against plant
pathogens, especially fungi, has significantly increased because varieties are
developed focusing on higher yield. Additionally, plant pathogens undergo
frequent mutations and genetic changes to adapt to climate changes, overcome
pesticide resistance, and infect plant germplasm previously resistant. Plant dis-
ease identification, quantification, and estimation of subsequent yield losses are
crucial in modern-day agriculture to ensure food safety and security for the
increasing global population. Phytopathometry utilizes systematized
and specialized approaches for plant disease assessment and presents qualitative
and quantitative data. Phytopathometry underpins all activities in plant pathology
and extends into other related disciplines such as agronomy, plant breeding, and
horticulture. Digital and biotechnology underpinned by contemporary artificial
intelligence efficiently process sensory data for plant disease measurement.
Modern phytopathometry tools aided with detailed knowledge of pathogen–
host system biology are poised to become an integral part of precision agriculture.
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Use of machine learning, deep learning, digital technology, biotechnology,
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engineering, and nanotechnology in phytopathometry is exposing plant
pathologists to new terminology, concepts, and ideas which were not even
thinkable a few decades ago. Moreover, innovations in robotics have provided
flexibility and precision in deploying these sensors for accurate disease assess-
ment, even in large field areas. In this chapter, we have discussed various
phytopathometry tools and approaches and their transdisciplinary uses.

Keywords

Disease index · Visual assessment · Remote sensing · Digital imagery · Artificial
intelligence · Advanced technology

1.1 Introduction

Phytopathometry is the branch of plant pathology that utilizes systematized and
specialized approaches to assess and measure plant diseases. This neologism was
first coined by Large (1953) in his research article on late blight of potato and
choke of cocksfoot diseases. He researched acquiring valuable data/information
from disease surveys based on the new science of phytopathometry (Large 1953).
Phytopathometry was derived from the Greek words “phyton” plant, “pathos”
disease, and “metron” measure. Phytopathometry is a ““branch of phytopathology
that deals with detection, identification, and measurement of plant diseases indicated
by disease symptoms or pathogen signs on particular disease sample/s.”

Gregory (1982) recapitulated E.C. Large’s disease measurement requirements
focusing on resulting yield losses: morphological characteristics and development of
healthy crop plants; disease path and trajectory on field plants; evaluation of disease
intensity by devising/utilizing standard area diagram or field key; assessment of
disease progression in field trials over the course of several years and comparing
yield with control plots; assessment of disease severity concerning particular host
growth stage and its effect on yield by using disease progress curves. This tactical
and expanded perspective of phytopathometry, stated by E.C. Large and reiterated
by P.H. Gregory, encompasses yield losses on disease (Gregory 1982; Nutter et al.
1991; Large 1966). However, phytopathometry should not be considered synony-
mous with an estimation of plant disease losses because it is a broader term aiming to
ameliorate the recording and reporting of plant diseases by presenting qualitative and
quantitative results. This encompassing approach makes phytopathometry a trans-
disciplinary concept as it helps in forecasting yield losses (agronomy), breeding
aiming for resistance against plant diseases (plant breeding and genetics), evaluation
of disease control methods and their application time, system biology and
co-evolution of host–pathogen interaction (biotechnology), and myriad other
reasons. Hence, phytopathometry underpins all plant pathology activities and
extends into other related disciplines. Artificial intelligence (AI) and digital



technology have recently been used to design automated sensors in phytopathometry
(Madden et al. 2007b; Bock et al. 2010, 2016).
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It is worth mentioning that phytopathometry measures plant diseases but is not
limited or subservient to disease epidemiology or crop yield losses as its services
intersect with statistics and measurement science and also interface closely with
visual disease assessment and imaging and sensing technology. Historically, visual
disease estimation was standard as compared to instrument-based disease measure-
ment. Recent advances in imaging and sensing technology have significantly
improved and opened new horizons for remote phytopathometry, especially in
achieving the goals of plant disease quantification. This sensor-based and remote
sensing approach in phytopathometry is transdisciplinary as it involves plant pathol-
ogy, engineering, agronomy, and information technology (Bock et al. 2021).

1.2 Role of Phytopathometry in Precision Agriculture

Globalization, recent cultivation techniques, climate changes, and human activities
promoted the distribution of plant pathogens and resulted in frequent plant–pathogen
interactions and disease incidences. These causative factors are almost impossible to
control, and the most rigorous system of quarantine and preventive measures could
not completely avoid the movement of pathogens and plant germplasm across
continents. Susceptibility of plants against pathogens, especially fungi, has increased
in modern cultivation practices because crop varieties are developed focusing on
higher yield. These varieties, as compared to wild relatives, are less adaptive to local
conditions and less resistant to pathogens. Additionally, pathogens have undergone
genetic changes to adapt to climatic changes and overcome plant and pesticide
resistance. New pathogenic strains have emerged, posing new challenges to sustain-
able agriculture. Cultivation of genetically uniform crop plants, unbalanced
fertilizers and pesticides, reduced crop rotation, and low tillage cultivation may
further aggravate the crop yield losses. With new challenges to crop production,
demand for innovative strategies to identify and control plant pathogens has also
increased. Plant pathogens compromise the quality, quantity, and input costs, seri-
ously threatening world food safety and security. For practical crop production,
balanced approaches to integrated plant protection are being proposed by
researchers. These approaches recommend crop rotation, resistant verities, effective
chemical and biological plant protection strategies, accurate estimation of disease
severity, and monitoring of the spread of plant pathogens (Parnell et al. 2017; Oerke
and Dehne 2004; Gewin 2003; Fisher et al. 2012; Brasier 2008; Ul Haq and Ijaz
2020; Ul Haq et al. 2020).
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1.3 Phytopathometry Tools in the Modern Era

Today, visual disease assessment based on scientific reasoning and understanding
provides a firm base to reliably and accurately assess plant diseases, i.e., standard
area diagrams (Del Ponte et al. 2017) and ordinal disease scale (Chiang et al. 2014).
However, digital technology underpinned by contemporary artificial intelligence
incredibly processes sensor data for measuring disease severity. Image analysis,
thermal imaging, and chlorophyll fluorescence are innovative and practical assets of
disease measurement. Innovations in robotics have provided flexibility and precision
in the application of these assets. Hence, digital technologies are poised to become
an integral part of precision agriculture. AI has been applied to plant pathometry,
though recently, and is crucial for the field success of ingeniously designed sensors.
The use of AI and digital technology in phytopathometry exposes plant pathologists
to new concepts, terms, and ideas that were not even thinkable a few decades ago
(Bock et al. 2022).

1.4 Phytopathometry Approaches

Disease quantification by symptomatology falls under the umbrella term “remote
sensing.” Remote sensing could be defined as gathering and monitoring the physical
information about an area/object by measuring the radiation (reflected/emitted)
without direct contact. Various methods are used to detect, identify, and quantify
the symptoms such as thermograph, laser induced fluorescence, nuclear magnetic
resonance imaging, radar, microwave, and cameras. Visual estimation and image
analysis technologies fall under remote sensing (Abazov et al. 2006).

Disease severity is determined by analyzing the digital image of a given sample. It
could be inferred by the disease-affected area, and the texture and color of the
infected area by using the segmentation step are quantification algorithms which
isolate the affected area from healthy plant parts and process. Disease severity
analysis based on symptoms, even if performed by plant pathologists who follow
the complete diagnostic guidelines, results in variability or error due to some degree
of subjectivity. This statement means that methods employed to validate the auto-
matic approaches to disease quantification are also subject to some degree of
variability. It should be considered when evaluating the performance of remote
sensing methods (Arnal Barbedo 2013; Merga 2018).

1.4.1 Visual Disease Assessment

In visual assessment, the eye and the relevant parts of the brain, in combination,
work rapidly to acquire an image, process and interpret it, and act as an image
analysis system. This quick process helps the observer to assess the disease type and
severity of a particular plant sample. The observer’s response regarding detection
and disease estimation depends upon the visual rater’s cognitive ability, eye health,



and how light/color is perceived (Bock et al. 2010). Various disease assessment
scales are used in visual phytopathometry:
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1.4.1.1 Nominal Scales
These scales differentiate disease stages through simple descriptive terms such as
“mild,” “moderate,” or “severe.” These scales are subjective and lack quantitative
information. These scales are used only when the observer performs the task at a
particular location and in a specific season (Bock et al. 2021; Nutter et al. 1991).

1.4.1.2 Ordinal Scales
Ordinal scales are widely used while rating disease severity for viral diseases as
symptoms are difficult to measure quantitatively (Madden et al. 2007a; Bock et al.
2010). These disease severity scales are also descriptive, simple, and have use for a
particular observer, location, and season. These scales divide disease severity stages
into different classes which represent the increasing disease symptoms severity.
These scales are further explained by different diagrams and mostly in descriptions
explaining symptoms intensity. Sometimes, mostly in case of fungal diseases, these
grade fungal disease severity divides the symptoms into numerals, e.g., ranging from
0 to 9. These are also used in disease resistance breeding programs while assessing
genotypes.

1.4.1.3 Interval Scales
Disease interval scales, also known as category scales, comprise different categories
that contain numerals representing disease severity in percentage. These scales
include a standard area diagram of different levels, e.g., 1–5 for rust diseases,
illustrating symptoms severity of 1%, 5%, 10%, 20%, and 50%. Hence, the sample
leaf is assigned a specific category by the observer.

1.4.1.4 Ratio Scales
The ratio scale is a percent scale and has been used in phytopathometry over the
years for studying various diseases. In this scale, the observer has a continuous range
of percentages from 0% to 100% and grades the sample leaf according to the
percentage area covered by the disease symptoms. Observers, according to their
ability, vary in accuracy and reliability while assessing disease severity.

1.4.1.5 Advantages and Disadvantages of Visual Disease Assessment
Visual disease assessment is quick. Rater’s ability to identify and differentiate
between different diseases could be enhanced with some training. Rater can choose
from various available disease rating scales and can assess disease severity without
any equipment. Visual assessment accuracy depends only on the observer’s ability,
health, and concentration. This subjectivity results in significant variability in dis-
ease assessment. However, visual inspection is used by farmers and plant
pathologists to assess the disease for the foreseeable and more appropriate disease
control strategy. Other remote sensing and phytopathometry approaches are making
significant contributions.
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1.4.2 Digital Imaging in Phytopathometry

Visual monitoring is a widely used method in plant disease detection and, if
combined in a prognosis system with regional weather and other epidemiological
parameters, can help forecast disease spread in specific regions. It, especially the
moisture and temperature data, could help in timely and effective plant protection
strategies to avoid the upcoming disease threat in fields or greenhouses (Bock et al.
2010). However, visual disease assessment by an expert in the area is time-
consuming and requires an observer, which is a bottleneck in disease management,
especially when monitoring large fields. Hence, various other innovative methods
are being developed to estimate and accordingly adapt disease control strategies
effectively.

Disease severity plays a crucial role in understanding the disease development
and consequent losses in various pathosystems but is challenging to achieve in visual
and sensory-basedphytopathometry approaches. Since the first visual assessment
attempt of disease quantification by Cobb in 1892, it has significantly improved and
is better understood (Cobb 1892). Though instruments, cameras, and aerial photog-
raphy, were used in the first half of the twentieth century (Bawden 1933) but usage of
proximal tools for remote sensing was performed and reported in the late twentieth
century, i.e., thermal spectrometers (Pinter et al. 1979), image analysis (Lindow and
Webb 1983), and multispectral radiometer (Nutter et al. 1985). The nascent remote
sensing field owing to sophisticated sensors is significantly effective in identifying,
detecting, and measuring the disease (Mahlein et al. 2018; Bock et al. 2022).

1.4.2.1 Principles of Photography
Photography has been used in phytopathometry for many decades. Aerial photogra-
phy started in the 1920s still and continue to use to detect and quantify plant disease
severity. Microscopic digital image analysis is widely used in plant pathology to
study pathogen’s morphology. Digital cameras are inexpensive and commonly used
in laboratories and fields. These are the primary device while sampling and are easy
to use, and the rater could study the disease symptoms later. Digital cameras include
a light-sensitive screen (which captures the light from the image), a lens (increase
magnification), and a display screen. Monochromatic cameras measure the intensity
of the incoming light with photo sensors on their screen. Photo sensors convert
captured light into electric charge and release proportional to the received light
intensity. Photo sensors are memory cells whose contents, analog signals, are then
converted into binary signals (0, 1) with the help of a frame grabber, and the binary
data is transmitted to the computer. Computer based on these binary digital readings
of 0 and 1 draws the image on the screen. So, each photo sensor on a digital camera’s
screen is represented on the computer screen by a pixel whose location and bright-
ness are determined through image processing. On their photosensitive screen, color
cameras have specific photo sensors for red, green, and blue. These photo sensors
could be re-arranged in different ways. Each photo sensor is sensitive to particular
wavelength/color, and the final image is prepared by advanced image analysis,
which compares each pixel with its surrounding pixels using an interpolation



algorithm. This algorithm portrays the original color of the sample by using the RGB
color model.
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1.4.2.2 Factors Responsible for Image Quality
Various factors that affect digital image quality, such as focus, light on the object,
and light uniformity, are affected by image analysis.

1.4.2.3 Pros and Cons of Digital Photography
Image analysis systems with agreement verification are quick, accurate, reliable,
powerful, and relatively inexpensive. According to needs and issues, specific soft-
ware is adapted in phytopathometry. However, there is tremendous variability in
plant color, shape, texture, and disease symptoms which influence the performance
and results of image analysis. Software should deal with various diseases on various
plants and varying physiological conditions or damage on sample leaves. Hence,
program training and ground trothing are done to make it more efficient and ensure
quality disease severity measurement results.

1.4.3 Android Applications to Quantify Plant Disease Severity

Android portable applications are new tools for semiautomatic disease assessment.
These are used for individual leaves and other samples. These applications, such as
“Leaf Doctor,” use an algorithm to accurately, precisely, and robustly identify leaf
shapes, lesion types, and disease severity. The accuracy of Leaf Doctor has been
evaluated in various research articles, and it was found to have a low degree of error;
however, in some cases, such as mallow rust and lilac powdery mildew, due to high
color contrast between diseased and healthy leaf sections. Compromising contrast
results in reduced accuracy and robustness of the Leaf Doctor Algorithm, such as in
powdery mildew of Lilac (Barbedo 2014). Coefficient variation shows a signifi-
cantly negative relationship (both linear and nonlinear) with mean observed disease
severity, which is also observed in individual raters estimating disease severity
manually. These applications are accurate, precise, and robust for most diseases
with faster processing time. This application also helps rapidly construct standard
area diagrams from actual host–pathogen systems, estimated by an expert. These
SADs improve the accuracy and precision of estimates with excellent reproducibility
(Braido et al. 2014; Pethybridge and Nelson 2015).

1.4.3.1 Image Processing Software
Image processing software allows the editing of the obtained image in various ways,
i.e., contrast correction, image rotation, sharpness, inversion, and various other
manipulations. It is achieved by using multiple image-enhancing software such as
Adobe Photoshop. Image editing, modification, geometric correction, and edge
enhancement are also performed using image analysis programs (Bock et al. 2010;
Merga 2018). Specific image analysis protocols must be followed regardless of the
software being explored. The color image is composed of red, green, and blue, and



each image pixel has a specific value for each respective color based on the RGB
model. This model generates the correct color in a three-dimensional color space.
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1.4.4 Statistical Methods in Phytopathometry

Statistical models are used to analyze the false positives and negatives in image
analysis by comparing them with visual observations of an expert. Statistical
methods evaluate the quality of image analysis results compared with the estimated
actual value for assessing disease severity. Moreover, the repeatability and repro-
ducibility of various image analysis methods and statistical methods are explored
(Zhao et al. 2009; Bock and Nutter 2011).

1.4.4.1 Regression Analysis
Regression analysis is widely used in image analysis to evaluate the quality of
disease severity measurements. It judges the accuracy, precision, and reliability of
results; however, it should be applied carefully as specific circumstances could
generate incorrect conclusions. Standard errors, slope, and intercept are regression
parameters assessing the estimated measurements’ quality. Reliability and precision
are measured using the coefficient of determination; its higher value indicates high
precision. Various color and monochrome images of different disease samples
assessed through image analysis were evaluated for accuracy and precision using a
regression model.

1.4.4.2 Concordance Correlation Coefficient
Lin’s concordance correlation coefficient quantifies agreement in disease severity by
evaluating the degree to which the observations fall on the concordance line. It
combines the systematic and constant bias measure of accuracy with precision to
consider the relational fit to the concordance line. It was used in image analysis of
citrus canker symptoms severity to investigate the precision and accuracy of results
(Bock and Nutter 2011).

1.4.4.3 Analysis of Variance and General Linear Modeling
ANOVA and GLM investigate the source of error in disease severity estimates.
Another method, Kruskal–Wallis test, compared the image analysis and visual
assessments of powdery mildew on cherry leaves and found that image analysis
produced significantly negative results compared to visual rating.

1.4.4.4 Correlation Coefficient
The correlation coefficient indicates the degree of precision in disease severity
assessment obtained using various methods. It quantifies the strength between
variables and measures it by working as a component of the concordance correlation
coefficient, i.e., strawberry Phomopsis disease severity rating methods and citrus
canker severity on grapefruit. Hence, it evaluates and compares various image
analysis methods and raters. Bland–Altman plots, absolute error, relative error,



and chi-square hypothetical variance tests are also used to assess the precision of
image analysis by comparing with visual assessments.
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1.5 Hyperspectral Imaging

Optical sensors operate within different regions of the electromagnetic spectrum to
measure the changes in plant physiology either due to abiotic stress or due to the
disease. Biotic or abiotic diseases cause changes in tissue color, canopy morphology,
leaf shape, plant density, transpiration rate, and interaction of radiation with plant
surface; these variations could be measured using highly sensitive and powerful
sensors (Fiorani et al. 2012; Mahlein 2016). These sensors are noninvasive and
provide information beyond the visible light spectrum, except RGB imaging, which
expands human perception and phytopathometry capabilities. Hyperspectral sensing
showed promising results in identifying various plant parameters and diseases. It
enables the detection of biotic diseases and abiotic stresses, resulting in new
opportunities for field phenotyping and disease management.

1.5.1 Spectral Resolution Range of Hyperspectral Sensors

Hyperspectral sensors have increased spectral resolution compared to conventional
(RGB) digital cameras. These can assess the RGB, visible spectrum (400–700 nm),
near-infrared spectrum (700–1000 nm), and shortwave infrared (1000–2500 nm).
Hence, the modern hyperspectral sensor covers high complexity spectral range from
350 to 2500 nm. These sensors are categorized into various classes based on their
respective spectral resolution, scale, and imaging principles. Spectral resolution
depends on measured wave bands; spectral scale could be ultraviolet, visible, near-
infrared, or shortwave infrared, whereas imaging principle could be based on
imaging or non-imaging system.

In the case of the non-imaging sensor system, spectral information over a specific
area and within the sensor’s field of view is averaged with spatial resolution
information. Hyperspectral data is observed as three dimensions in huge matrices
with spatial x-axes, y-axes, and on z-axes, spectral information depicting intensity/
wave band is represented. Due to spatial dimension, HSI systems provide extra
details such as color, gradient, and shape and are preferred over non-imaging
methods (Behmann et al. 2015). Though multispectral sensors are comparable to
HS sensors but are less complex and informative and provide object’s spectral
information in broad wave bands such as RGD and NIR. These are less expensive
and are used in unmanned airborne vehicles due to their lightweight. The reflectance
average of non-imaging hyperspectral sensors provides spatial resolution with a
specific allocation of the hyperspectral pixel. Research on HSI helped to design
and develop new materials, efficient detectors, and software, and is widely used in
various fields, e.g., food production, agriculture, and medicines (Cheng et al. 2017).
Hyperspectral imaging provides site-specific, selective, and reliable information that



significantly improves sustainable agricultural management and is recommended
and used in precision agriculture and plant phenotyping (assessing genotypes)
(Simko et al. 2017).
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1.5.2 Setup of Hyperspectral Sensors

Setups consist of a hyperspectral sensor, a light source (efficient in both sunlight and
artificial light), and a control unit to measure and save the captured data (images).
This setup could easily be mounted on any platform, such as tractors, unmanned
airborne vehicles, robots, satellites, and handheld. The collected data from HSI is
saved in a hyperspectral data cube, which displays spatial information data in a
two-dimensional image. Wavelength range and targeted object determine the
required imaging detector. The most commonly used sensors for visible and near-
infrared spectra are complementary metal-oxide semiconductors and Si-based
charge coupled devices, which are implemented on various sensing types, e.g.,
full-frame and push-broom cameras. Light interaction with the plant is the crucial
knowledge required for hyperspectral analysis and interpretation of signals. The
optical properties of the leaf depend upon light transmission through the leaf, light
absorbed by the leaf, and light reflected (either from internal structure or from the
waxy cuticle and cell wall). The maximum absorption and reflectance capacity of
various compounds of the electromagnetic spectrum have been studied to explain the
optical properties of plants (Mahlein et al. 2018; Merzlyak et al. 2008).

Several biochemical and histological changes could be characterized and
interpreted during plant pathogenesis through HSI. Light reflectance from plant
due to the involvement of various biophysical and biochemical interactions is a
complex phenomenon. Visible light spectrum is mainly absorbed by leaf pigments
such as chlorophyll, anthocyanins, and carotenoids (Gay et al. 2008). Near-infrared
and shortwave infrared stimulate molecular motion and induce high reflectance and
absorption by characteristic spectral pattern compounds. Leaf and cell structure
influence the NIR reflectance due to matter interaction (Slaton et al. 2001), whereas
SWIR can detect the plant/cell’s water content (Seelig et al. 2008). Hence, remote
sensing through hyperspectral imaging can determine the reflected and transmitted
light and characterize the absorption activities of leaf compounds. Various android
applications are being developed to determine the leaf compounds by observing
reflected and transmitted light through HSI. However, due to its handling and setup
complexity, transmittance sensing is used by only a few experts in phytopathometry.

1.5.3 Pathogenesis and Reflectance Signatures

Diseases are a gradual and dynamic process that consists of a series of events, one
autonomously leading to the next, once pathogenesis is triggered. Pathogenesis
triggers changes/abnormalities in various processes of the host plant’s physiology
and biochemistry. The resulting symptoms of pathogenesis influence the optical



properties of the infected host. We must dive further than identification based on
characteristic symptomatology or visible signs of plant–pathogen interaction. Dif-
ferent plant–host interaction stages should be understood in more depth. Every plant
pathologist knows that plant pathogens could be biotrophs (obtain nutrients from
living tissues), necrotrophs (get nutrients from dying or dead tissues), or
hemibiotrophs (could be both depending upon the developmental stage and environ-
mental conditions). Each interaction consists of complex biochemical, biophysical,
and histological processes regulating disease symptoms. Hence, reflectance changes
during plant–pathogen interaction could be explained by abnormalities in the cell’s
chemical composition, ultimately generating changes in leaf appearance (e.g., chlo-
rosis) and structure (e.g., lesions) during different stages of pathogenesis and at
specific spatial and temporal dynamics host influence the reflective light’s wave-
length (Villa et al. 2013; Virlet et al. 2016).
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Close-range HSI improves the spatial resolution of pathogenesis while consider-
ing specific space and time and results in more accurate hyperspectral analysis. The
human eye and even the conventional HSI systems are challenged by deciding on
early host–pathogen interactions when the size is observed in the submillimeter. This
submillimeter size could be observed by improving the camera’s spatial resolution
through hyperspectral microscope setups, which could observe small and subtle
reactions of the host plant. This ability opens up new opportunities for plant disease
management, especially in breeding systems and compound testing. Hyperspectral
image must be linked with the biological process involved in host–pathogen inter-
action. Consequently, an objective and accelerated plant phenotyping process could
be achieved with reduced human and plant material involvement.

1.5.4 Potential of Hyperspectral Imaging in Phytopathometry

HIS, being a non-targeted remote sensing approach, collect a considerable amount of
extra information about changes in processes and chemical composition of the host
plant cell. This information is scattered across the measured spectrum, changing
relevance over time (Behmann et al. 2015). Thus, analyzing the data to acquire a
small proportion of specific information from the gathered hyperspectral signals is
challenging. Recently, several approaches have been applied to improve HIS results
for effective phytopathometry:

1.5.4.1 Preprocessing and Data Handling
Data is preprocessed to be normalized, having no illumination. In the case of
sunlight as an illumination source, complex algorithms increase robustness against
variation. This spectral normalization of data becomes critical if HIS involves
extensive field observation data where continuous observations are impossible to
make, and the interpolation strategy could fail. It is achieved by complex and robust
approaches involving standard normal variant and explicit modeling by choosing
suitable radiation transfer models. In an experiment, using the REGLOGSEP model
based on singular value decomposition significantly improved the data quality, but



plant geometry was challenging (Jay et al. 2016). However, another model
incorporating a radiative transfer model, PROCOSINE, was introduced for close-
range scenarios, which can estimate local illumination and plant-physiological
parameters (e.g., the content of plant pigments) and is less affected by plant geome-
try (Féret et al. 2017).
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1.5.4.2 Vegetation Indices: An Important Tool in HSI
Hyperspectral experiment’s massive data have various variable factors, but mostly
only one is required for disease severity analysis. Vegetation indices highlight
specific factors while reducing the impact of others (e.g., while assessing
anthocyanins concentrations variable and unwanted chlorophyll content factor is
suppressed by using anthocyanin reflective index). These express the spectral
changes in a manageable manner. Though developed through remote sensing
satellites, this technique is now being applied in proximal and close-range disease
detection scenarios. In different disease studies, vegetation indices were successfully
applied to deduce plant diseases, chlorophyll content, and yield estimation (Gitelson
et al. 2014; Jay et al. 2017). However, vegetation indices do not cope with most
bands, blank them out, and could not take full advantage of hyperspectral data.

1.5.5 Machine Learning

Machine learning approaches cope with hundreds of reflective bands and can detect,
quantify, and characterize plant disease severity in laboratory and field conditions.
Machine learning learns about model characteristics from the obtained data rather
than using a specific model. These highly complex methods reveal the important
unknown aspects of the hyperspectral data. Supervised approaches such as regres-
sion analysis rely on annotated training data, whereas unsupervised techniques
don’t. Unsupervised methods can recognize patterns because they can identify
statistical coherences and uncover unknown relations in the data set. In a
hyperspectral image analysis-based study to detect early Alternaria pathogenesis in
oilseed crops, different machine learning algorithms were evaluated for their respec-
tive efficacy, and it was found that multilayer perception produced results with the
highest accuracy (Baranowski et al. 2015). Zhu et al. evaluated the HSI machine
learning algorithms for presymptomatic tobacco mosaic virus detection. Eight bands
out of 434 variable bands were combined with texture features for evaluating
machine learning algorithms. Three machine learning algorithms, namely neural
network, random forest, and support vector machine, were assessed, and it was
found that the neural network approach was able to detect tobacco mosaic virus, just
after 2 days of inoculation, with high accuracy of 90% (Zhu et al. 2017). Powdery
mildew of grapevine was detected by incorporating spatial and spectral
characteristics with hyperspectral image analysis data. Various relevant wavelength
bands in visible, near-infrared, and shortwave infrared spectrums were obtained
using two cameras. When spatial context was integrated with HSI, it generated
more informative hyperspectral images and increased the accuracy of results



compared with HIS data processing without incorporating spatial context (Knauer
et al. 2017).

Unsupervised methods exploit all the available hyperspectral data but generate
results with the target specification. Established data clustering methods are applied
to hyperspectral data in preprocessing for segmentation and labeling. More advanced
machine learning approaches could reparametrize the data informatively. Mixed
techniques such as self-taught, semi-supervised, and transfer learning can deal
with limited available information but are rarely used in phytopathometry.

1.5.6 Deep Learning

Deep learning represents the data more abstractly and informatively while optimized
for a specific task. It has great potential for analyzing a large amount of hyperspectral
data involving hundreds of bands and where particular optimal disease features are
unknown (LeCun et al. 2015). Deep learning is a practical approach in HSI, where
images have high dimensions with limited training data. HSI provides large amounts
of data, complex features, and unknown and unfocused relations, which are benefi-
cial for deep learning. In deep learning, specific programs are used to analyze the
data on specialized servers. Resulted classification is sent to the smartphone and
service providers by using the latest algorithms, detect and quantify the disease. This
approach also improve the underlying model being used. For successful machine
learning use in disease detection and quantification specific feature and model
selection, optimization of data sets is required.

1.5.7 HSI for Disease Resistance Breeding

Continuous research in plant breeding for disease resistance is required because
plant pathogens evolve to overcome resistant varieties and start pathogenesis. Due to
their fast reproduction rate, it is a challenging process as plant pathogens mutate
rapidly with varying impacts on growing varieties. Several sophisticated methods
enable rapid screening of various genotypes for resistance against a particular
pathogen. Plant phenotyping by a rater is done as, after several hybridizations and
generations, a specific genotype could vary in its resistance against a pathogen in
changing environmental conditions (Mahlein et al. 2018). Hence, when
implemented in breeding programs, HSI improves the pace of breeding progress.
Resistance could be qualitative or quantitative with or without observable changes.
In a breeding experiment, a novel hyperspectral microscope evaluated resistance
against powdery mildew for the barley. Gene-based vertical resistance mildew locus
was responsible for hypersensitive response in the host plant, which was possible to
retrospectively analyze hyperspectral features of the hypersensitive response in a
particular space and time. It was possible because, after 5 days of inoculation, the
response was visible as small brownish spots. Additionally, barley resistance
response was detected using hyperspectral imaging 2–3 days before symptoms
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appeared (Fiorani and Schurr 2013; Kuska et al. 2017). Type and amount of spectral
properties along with temporal response are poorly understood for plant–pathogen
resistance reaction. To screen unknown genotypes or new varieties, independent
spectral patterns of particular resistance mechanisms are desirable.
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1.5.8 HSI in Protected Horticulture

The increasing global population demand sustainable agricultural practices to fulfill
its food demands. Protected horticulture by using greenhouses has proved effective
in the judicious use of inputs and higher yields; however, diseases are a significant
concern for growers in greenhouses as these can significantly limit profitability. Due
to controlled and favorable conditions inside the greenhouse, fungal and bacterial
pathogens can proliferate exponentially. Gummy stem blight in cucumber was
automatically and accurately (95%) detected using point spectroscopy and spatial
color imaging (Swinkels 2016). Hyperspectral line scan imaging was evaluated to
assess the spinach growth in greenhouses. For this, induced water and nitrogen stress
identified variables strictly related to plant geometry and leaf area index. Hyper-
spectrogram manages many hyperspectral images by data extraction and compres-
sion while retaining spatial information (Corti et al. 2017). It provides evidence that
noninvasive sensors could significantly improve disease detection and quantification
in controlled environments by regulating environmental factors to comparatively
higher levels. Shortly, horticultural production is expected to have been supported
by innovative digital technologies.

1.6 Challenges in Automated Field Sensing

Generally, diseases can easily be detected and quantified through remote sensing if
they are widely spread throughout the field and if only the top canopy crop layer is
affected by it. Most remote sensing studies have been carried out under controlled
conditions using artificial illumination, regulation of incoming light’s direction, and
sensor placement at a certain angle toward the leaf to absorb desired reflected light.
These conditions are not available in the field, so the application of remote sensing
technologies for large-scale field assessment is limited.

Among all the factors, light illumination is the most disturbing variable in the
field. Leaves in the top most canopy layer appear brighter, in natural illumination
source, compared to leaves in lower crop canopy layers. A threshold is required to
distinguish between healthy and diseased tissue, which could be achieved by
considering the overall image brightness while assessing a specific disease in a
particular location. This threshold setting requires intensive research in crop
phenotyping. Image brightness shows a higher heterogeneity in the natural canopy
when sunny conditions are present, whereas heterogeneities in cloudy weather are
less severe because scattered radiation, compared to direct radiation, reaches abun-
dance in the crop canopy. To avoid these radiation variations under field conditions,



modern plant phenotyping setups allow plant disease assessment/monitoring at the
appropriate time, such as dawn and dusk, when direct radiation on the crop canopy is
limited. Sophisticated machine and deep learning approaches are incorporated into
hyperspectral imaging and expert opinion to define, detect, and refine the traits
extracted from a hyperspectral image.
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1.7 Other Indirect Methods of Plant Disease Detection
in Phytopathometry

Thermography differentiates the plant samples based on surface temperature. Ther-
mographic cameras capture the emitted infrared radiations from the plant surface,
and then color differences are analyzed. It has been reported that pathogenesis
increases the plant surface temperature due to rapid cell activity; hence, thermo-
graphic techniques could prove effective in directly detecting plant diseases under
field conditions. Thermographs have also been reported to monitor the pathogen
heterogeneity in soil-borne diseases. However, thermographic detection is suscepti-
ble and is affected by slight environmental conditions (Stoll et al. 2008; Oerke et al.
2011).

Profiling of the volatile organic compounds, released upon plant–pathogen inter-
action and are highly indicative of stress type, has also proved effective in
phytopathometry. Crown rot fungus of strawberry (Phytophthora cactorum) causes
plants to release characteristic p-ethylguaiacol and p-ethylphenol volatile
compounds. Hence, profiling of volatile compounds could be used to detect the
type and nature of disease infection (Fang et al. 2014).

1.8 Conclusion

Phytopathometry is crucial for plant disease management in the era of precision and
sustainable agriculture. Phytopathometry is not limited to plant pathology. Various
traditional and modern plant disease measurement approaches have been discussed.
Current practices of phytopathometry are complex, require expertise to operate, and
are also time-consuming due to massive data analysis. Additionally, most of the
approaches are not suitable for actual field conditions.

However, advancements and AI and modern nano-fabricated biosensors have
huge potential in phytopathometry.
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Visual Estimation: A Classical Approach
for Plant Disease Estimation 2
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Abstract

Quantifying plant disease in terms of disease severity, prevalence, incidence, or
intensity is very important to make decisions for applying treatments or manage-
ment practices. Quantifying any plant disease is based on the estimation methods
dependent on visual estimation or image analysis of infected portions. Foreseeing
the yield losses, tracking and predicting epidemics, evaluating crop germplasm
for the source of resistance against a specific disease, and comprehending basic
biological processes, such as coevolution, all depend on accurate estimations of
disease severity. Inaccurate or vague disease evaluations may cause wrong
conclusions from the data, which may cause inappropriate actions to be
performed in disease management verdicts. Visual estimation is a highly tradi-
tional technique in phyto-pathometry. In the visual estimation of disease, human
eye and brain play significant roles in analyzing the degree of disease. It is well
established that the number of lesions in proportion to the infected region affects
the accuracy and precision of visual estimations; the more lesions there are
concerning the infected area, the more overestimation there is. Variability in
raters’ disease assessment ability, preferences of disease ratings for severity,
amount of lesions and their size, color blindness, and time spent on estimation
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