Communication and Applied Technologies
Proceedings of ICOMTA 2022
The Smart Innovation, Systems and Technologies book series encompasses the topics of knowledge, intelligence, innovation and sustainability. The aim of the series is to make available a platform for the publication of books on all aspects of single and multi-disciplinary research on these themes in order to make the latest results available in a readily-accessible form. Volumes on interdisciplinary research combining two or more of these areas is particularly sought.

The series covers systems and paradigms that employ knowledge and intelligence in a broad sense. Its scope is systems having embedded knowledge and intelligence, which may be applied to the solution of world problems in industry, the environment and the community. It also focusses on the knowledge-transfer methodologies and innovation strategies employed to make this happen effectively. The combination of intelligent systems tools and a broad range of applications introduces a need for a synergy of disciplines from science, technology, business and the humanities. The series will include conference proceedings, edited collections, monographs, handbooks, reference books, and other relevant types of book in areas of science and technology where smart systems and technologies can offer innovative solutions.

High quality content is an essential feature for all book proposals accepted for the series. It is expected that editors of all accepted volumes will ensure that contributions are subjected to an appropriate level of reviewing process and adhere to KES quality principles.

Indexed by SCOPUS, EI Compendex, INSPEC, WTI Frankfurt eG, zbMATH, Japanese Science and Technology Agency (JST), SCImago, DBLP.

All books published in the series are submitted for consideration in Web of Science.
Organization

Honorary Committee

Daniel Barredo Ibáñez (Universidad del Rosario, Colombia)
Francisco Sánchez (Universidad Politécnica Salesiana, Ecuador)
Iván Puentes Rivera (Universidad de Vigo, España)
José Rúas Araújo (Universidad de Vigo, España)
Juan Cárdenas (Universidad Politécnica Salesiana, Ecuador)

International Scientific Committee President

Nieves Lagares Díez (Universidad de Santiago de Compostela, España)

International Organizing Committee President

Paulo Carlos López-López (Universidad de Santiago de Compostela, España)

Academic Committee President

Angel Torres-Toukoumidis (Universidad Politécnica Salesiana, Ecuador)
Organizational Structure

Academic Committee

Concha Pérez Curiel (Universidad de Sevilla, España)
Efrén Romero Riaño (Observatorio Colombiano de Ciencia y Tecnología OCyT, Colombia)
Jenny Pontón (Flacso, Ecuador)
Lauro Fernando Pesántez Avilés (Universidad Politécnica Salesiana, Ecuador)
Maricarmen Caldeiro Pedreira (Universidad de Santiago de Compostela, España)
Roberto Sánchez Montoya (Universidad Politécnica Salesiana, Ecuador)

Plenary Session Chair (1)

Carlos Toural Bran (Universidad de Santiago de Compostela, España)

Plenary Session Chair (2)

Juan Pablo Salgado (Universidad Politécnica Salesiana, Ecuador)

Plenary Session Chair (3)

Palmira Chavero (FLACSO, Ecuador)

Local Organizing Committee President

Andrea De-Santis (Universidad Politécnica Salesiana, Ecuador)

Organizing Committee

Azahara Cañedo Ramos (Universidad de Castilla la Mancha, España)
Carlos Gustavo Patarroyo Gutiérrez (Universidad del Rosario, Colombia)
Carmen Costa Sánchez (Universidade da Coruña)
José Ángel Fernández Holgado (Universidad de Coruña, España)
Juan Arturo Mila Maldonado (Universidad de Santiago de Compostela, España)
Julia Fontenla Pedreira (Universidad de Vigo, España)
Luis Antonio Araneda (Universidad Politécnica Salesiana, Ecuador)
Luz Marina Castillo González (Universidad Politécnica Salesiana, Ecuador)
Marlene Magaly Mosquera González (Universidad Politécnica Salesiana, Ecuador)
Marta Rodríguez Castro (Universidad de Santiago de Compostela, España)
Mónica López Golán (Universidade da Coruña)
Narcisa Jessenia Medranda Morales (Universidad Politécnica Salesiana, Ecuador)
Palmira Chavero Ramírez (FLACSO, Ecuador)
Paulo Carlos López-López (Universidad de Santiago de Compostela, España)
Raquel Victoria Jara Cobos (Universidad Politécnica Salesiana, Ecuador)
Talia Rodríguez Martelo (Universidad de Vigo, España)

International Scientific Committee

Abel Suing (Universidad Técnica Particular de Loja, Ecuador)
Alba Silva Rodríguez (Universidad de Santiago de Compostela, España)
Alberto Pena Rodríguez (Universidad de Vigo, España)
Alejandro Romero Reche (Universidad de Granada, España)
Alfons González Quesada (Universidad Autónoma de Barcelona, España)
Alfonso López Rodríguez (Universidad de Santiago de Compostela, España)
Ana Belén Fernández Souto (Universidad de Vigo, España)
Ana María González Neira (Universidad de Coruña, España)
Andrea del Carmen Mila Maldonado (Universidad de Santiago de Compostela, España)
Andrea De-Santis (Universidad Politécnica Salesiana, Ecuador)
Andrés Mazaira Castro (Universidad de Vigo, España)
Andrés Tirado (Universidad Yachay Tech, Ecuador)
Andreu Casero Ripollés (Universidad Jaume I, Castellón, España)
Ángel Cazorla (Universidad de Granada, España)
Angel Torres-Toukoumidis (Universidad Politécnica Salesiana, Ecuador)
Anna Amorós Pons (Universidad de Vigo, España)
Antonio Castillo Esparcia (Universidad de Málaga, España)
Antonio Pérez Torres (Universidad Politécnica Salesiana, Ecuador)
Araceli Espinosa Márquez (Benemérita Universidad Autónoma de Puebla)
Azahara Cañedo Ramos (Universidad de Castilla la Mancha, España)
Beatriz Legerén Lago (Universidad de Vigo, España)
Belén Puebla Martínez (Universidad Rey Juan Carlos, España)
Berta García Orosa (Universidad de Santiago de Compostela)
Bismarck Alberto Arana Mite (Universidad Politécnica Salesiana, Ecuador)
Blas Garzón (Universidad Politécnica Salesiana, Ecuador)
Camila Cárdenas Neira (Universidad Católica de Temuco, Chile)
Carla Irene Ríos Calleja (Benemérita Universidad Autónoma de Puebla)
Carlos Toural Bran (Universidad de Santiago de Compostela, España)
Carmen Costa Sánchez (Universidad de Coruña, España)
Clide Rodríguez Vázquez (Universidad de Coruña, España)
Concha Pérez Curiel (Universidad de Sevilla, España)
Daniel de la Garza (Universidad Autónoma de Nuevo León, México)
Daniela Rincón Reyes (Northeastern University of Boston, EE. UU.)
David Cabrera Souto (Universidad de Coruña, España)
David Roca Correa (Universidad Autónoma de Barcelona, España)
Daniel Barredo Ibáñez (Universidad del Rosario, Colombia)
Elba Díaz-Cerveró (Universidad Panamericana, México)
Erika Jaráiz Gulías (Universidad de Santiago de Compostela, España)
Eva Sánchez Amboage (Universidad de Coruña, España)
Félix Bláquez Lozano (Universidad de Coruña, España)
Fernando Casado Gutiérrez (Universidad Técnica de Manabí, Ecuador)
Fernando Pesáñez Avilés (Universidad Politécnica Salesiana, Ecuador)
Fernando Vasco Moreira Ribeiro (Universidad de Oporto, Portugal)
Francisco Campos Freire (Universidad de Santiago de Compostela, España)
Francisco Paniagua, (Universidad de Málaga, España)
Iván Puentes Rivera (Universidad de Coruña, España)
Javier Vega Ramírez (Universidad Austral de Chile, Chile)
Jenny Yaguache Quichimbo (Universidad Técnica Privada de Loja, Ecuador)
Joan Cuenca Fontbona (Universidad Ramón Llull, España)
John Wihbey, Northeastern University of Boston (Estados Unidos de América)
Jorge Eduardo Rodríguez Guerra (Universidad Politécnica Salesiana, Ecuador)
Jorge Vázquez Herrero (Universidad de Santiago de Compostela, España)
José Ángel Fernández Holgado (Universidad de Coruña, España)
José Manuel Rivera Otero (Universidad de Santiago de Compostela, España)
José Miguel Túñez López (Universidad de Santiago de Compostela, España)
José Rúas Araújo (Universidad de Vigo, España)
Juan Cárdenas Tapia (Universidad Politécnica Salesiana, Ecuador)
Juan Manuel Corbacho (Universidad de Vigo, España)
Juan Pablo Salgado (Universidad Politécnica Salesiana, Ecuador)
Julia Fontenla Pedreira (Universidad de Vigo, España)
Julio Torrado Quintela (Universidad de Santiago de Compostela, España)
Karen Tatiana Pinto Garzón (Universidad Del Rosario, Colombia)
Kathy Matilla (Universidad Ramón Llull, España)
Laura Alonso Muñoz (Universidad Jaume I, Castellón, España)
Laura Milagros Castro Souto (Universidad de Coruña, España)
Luis Antonio Araneda (Universidad Politécnica Salesiana, Ecuador)
Luis Bayardo Tobar Pesáñez (Universidad Politécnica Salesiana, Ecuador)
Luis Cárcamo Ulloa (Universidad Austral de Chile, Chile)
Luis Fernando Morales Morante (Universidad Autónoma de Barcelona, España)
Luz Marina Castillo (Universidad Politécnica Salesiana, Ecuador)
Manuel Pérez Cota (Universidad de Vigo, España)
Marco López Paredes (Pontificia Universidad Católica del Ecuador, Ecuador)
María del Carmen Carretón Ballester (Universidad de Alicante, España)
María del Carmen Ramírez Soasti (Universidad Politécnica Salesiana, Ecuador)
María Gabriela Cabral Bernardo Funk (Universidad de las Azores, Portugal)
Preface

This book is composed of the papers written in English and accepted for presentation and discussion at the 2022 International Conference on Communication and Applied Technologies (ICOMTA’22). This conference had the support of the Universidad del Rosario (Bogota, Colombia), Universidad Politécnica Salesiana (Cuenca, Ecuador), Universidade de Vigo (Galicia, Spain), Universidade de Santiago de Compostela- Equipo de Investigaciones Políticas (Galicia, Spain), Red Internacional de Gestión de la Comunicación (XESCOM), Red de Investigadores en Comunicación de Ecuador (RICE), Observatorio Interuniversitario de Medios Ecuatorianos (OIME), Universidad San Francisco de Quito (Ecuador), Universidad Técnica Particular de Loja (Ecuador), Universidad Tecnológica Equinoccial (Ecuador) and Universidad Técnica del Cotopaxi (Ecuador). It will take place at Cuenca, Ecuador, during September 7–9, 2022.

The 2022 International Conference on Communication and Applied Technologies (ICOMTA’22), in its second edition called “Information ecology in the network society,” invites all those within the scientific, academic and professional communities to present and discuss the latest innovations, results, experiences and concerns in the various fields of communication and technologies related to it.

The Program Committee of ICOMTA’22 was composed of a multidisciplinary group of 112 experts and those who are intimately concerned with communication and technologies. They have had the responsibility for evaluating, in a “double-blind review” process, the papers received for each of the main themes proposed for the conference: (A) Digital communication and processes; (B) Communication, health, politics and technology. The other pandemic: disinformation in the age of coronavirus. Automation, bots and algorithms; (C) Fact-checking experiences in Europe and Latin America at the service of journalism: a comparative perspective; (D) Persuasion and emotion: language and content analysis, and artificial intelligence; (E) Freedom of speech, ethics and transparency in digital society; (F) Digital social media; (G) Software, big data, data mining and intelligent systems; (H) Innovation, university and technology; (I) Miscellaneous (journalism, communication, advertising and public relations, political science and other aspects of social and human sciences derived from the information and communication technologies).
ICOMTA’22 received 194 contributions from 14 countries around the world. The papers written in English and accepted for presentation and discussion at the conference will be published by Springer (this book) and will be submitted for indexing by ISI, Ei Compendex, Scopus, DBLP and/or Google Scholar, among others.

Santiago de Compostela, Spain
Bogotá, Colombia
Cuenca, Ecuador
Cuenca, Ecuador
Bogotá, Colombia

Paulo Carlos López-López
Daniel Barredo
Ángel Torres-Toukoumidis
Andrea De-Santis
Óscar Avilés

Acknowledgements This book is part of the research project FAKELOCAL: Map of Disinformation in the Regions and Local Entities of Spain and its Digital Ecosystem (Ref. PID2021-124293OB-I00), financed by the Ministry of Science and Innovation, the State Agency of Research (AEI) of the Government of Spain and the ERDF of the European Union (EU); also, this book is part of the activities of the research project “Public Service Media in the face of the platform ecosystem: public value management and evaluation models relevant for Spain” (RTI2018-096065-B-100), funded by the Spanish Ministry of Science and Innovation, the State Research Agency and the European Regional Development Fund.
Contents

Part I Digital Communication, Systems and Processes

1. **Support System to Predict Student Dropout in Universities**
 D. Rivero-Albarrán, L. Guerra Torrealba, S. Arciniegas Aguirre, and Ortiz Alexander
 Page 3

2. **Classification of Electrooculography Signals Using Convolutional Neural Networks for Interaction with a Manipulator Robot**
 O. I. Pellico-Sánchez, P. A. Niño-Suárez, R. D. Hernández-Beleño, O. F. Avilés-Sánchez, and M. H. Pérez-Bahena
 Page 13

3. **Lower Limb Gait Cycle and Foot Plantar Pressure Data Collection for Assistance and Rehabilitation Systems**
 Page 25

4. **Virtual Reality Serious Game Session for Rehabilitation Through Calculation of the Center of Pressure in a Stabilometric Platform**
 Juan D. Abril, Oswaldo Rivera, Paola Niño-Suárez, Eduardo Castillo-Castañeda, and Oscar F. Aviles
 Page 35

5. **Development of an Energy Management System for a Microgrid Using Neural Networks. Case Study: San Cristobal Island, Galapagos Archipelago**
 G. Ampuño-Avilés, R. López-Marcillo, and D. Andrade-Núñez
 Page 47

6. **Development of Disaster Information System of the State of Oaxaca, Mexico (SIDEOAX)**
 Page 59
7 An Approach to the Bibliometric Analysis for the RFID Chips Implants in Humans ... 69
Jose-Ignacio Castillo-Velazquez, Monica Huerta, Efren Romero-Riaño, and Roger Clotet

8 Co-creation, Co-design, and Co-production: Enablers and Barriers for Implementation and Use of Digital Technologies .. 81
R. S. Contreras-Espinosa, A. Frisiello, J. L. Eguia-Gomez, and A. Blanco

9 Implementation of a Communication and Multimedia Integration Tool to Promote the Birdwatching Tourism Product in the Municipality of Arboledas in Norte de Santander, Colombia .. 91

10 Meta-Heuristic LQI Bio-regulator Benchmark for a Permanent Magnet DC Motor on ARM Platform 105
N. D. Chimborazo-Taipe, E. L. Torres-Hinojosa, and W. M. Montalvo-Lopez

11 Using a Social Robot to Aid Online Learning: Identifying Teachers’ Media and Digital Competencies, Barriers and Opportunities .. 117
Carmina Rodríguez-Hidalgo and Nairbis Sibrian

12 Use of Chatbots for News Verification 133
B. Arias Jiménez, C. Rodríguez-Hidalgo, C. Mier-Sanmartín, and G. Coronel-Salas

13 Cross-Cutting Methodologies in Learning 3D Modeling 145
M. García Betegón, E. Perandones Serrano, and F. J. Gayo Santacecilia

14 A Tool for the Implementation of an Educational Data Mining Model Applied to Universities 157

Part II Political Communication, Marketing, Technology and Applications

15 Content Selection Trace Among Media Platforms 169
Jorge Cruz-Silva and Marco López-Paredes
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Expectation Marketing and Technological, Financial, and Image Risk. The Case of the Release of Cyberpunk 2077 Videogame</td>
<td>M. Escourido-Calvo and V. A. Martínez-Fernández</td>
<td>179</td>
</tr>
<tr>
<td>17</td>
<td>Digital Activism on YouTube. The Representation of Power and Counter-Power Relations in a Video Activism Piece During the Second Round of the 2021 Presidential Elections in Peru</td>
<td>G. M. Rantes-García and V. O. Vite-León</td>
<td>191</td>
</tr>
<tr>
<td>19</td>
<td>Portraying of Latin American Women in Falabella’s Instagram: Stereotypes and Sexual Objectification Theory</td>
<td>Marta Mensa and Lizardo Vargas-Bianchi</td>
<td>213</td>
</tr>
<tr>
<td>22</td>
<td>A Mobile and Web Application for the Registration of Information of Small Water Treatment Plants Using Geolocation Services and Cloud Storage</td>
<td>Pedro Illaisaca, Bryam Barrera, Marcelo Flores, and Angélica Zea</td>
<td>249</td>
</tr>
<tr>
<td>23</td>
<td>Policy and Applied Technologies: Analysis of the Communicative Activities of Peru’s Presidential Candidates on Twitter and TikTok in the First Election Round in 2021</td>
<td>L. Anastacio-Coello and Á. Montúfar-Calle</td>
<td>259</td>
</tr>
<tr>
<td>24</td>
<td>A Low-Cost Device for the Monitoring and Detection of Falls in Older Adults</td>
<td>B. Calva-Bravo, W. Rodas-Pérez, V. Robles-Bykbaev, and P. León-Gómez</td>
<td>269</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>25</td>
<td>Biden’s Counter-Speech to Trump’s Conspiratorial Policy in the US Elections. Between Illegitimacy and the Polarization of the Digital Public Sphere</td>
<td>R. Domínguez-García, R. Rivas-de-Roca, and C. Pérez-Curiel</td>
<td>279</td>
</tr>
<tr>
<td>26</td>
<td>Influence of Technological Factors in Teaching and Communication in Higher Education During the COVID-19 Health Crisis</td>
<td>Jessie Bravo, Giuliana Lecca-Orrego, and Roger Alarcón</td>
<td>289</td>
</tr>
<tr>
<td>27</td>
<td>X-ray of TikTok Accounts on Scientific Dissemination in the Andean Community</td>
<td>S. Cabrera-Espín, A. C. Vaca-Tapia, N. Mendoza-Gavilanez, and L. V. Mora-Torres</td>
<td>301</td>
</tr>
<tr>
<td>28</td>
<td>Transparency of Public Information on the Websites of Municipalities as a Tool for Civic Auditing During COVID-19 of 2020</td>
<td>Narcisa Medranda Morales, Nina Aguiar Mariño, and Victoria Palacios Míeles</td>
<td>313</td>
</tr>
<tr>
<td>29</td>
<td>The Metaverse as a New Space for Political Communication</td>
<td>Rosa María Rico-Casas</td>
<td>325</td>
</tr>
<tr>
<td>30</td>
<td>Politics 2.0 on Twitter. Presidential Campaign in Ecuador</td>
<td>G. Baquerizo-Neira, P. Ruiz Aguirre, V. Altamirano-Benítez, and M. F. Altamirano-Benítez</td>
<td>335</td>
</tr>
<tr>
<td>31</td>
<td>Social Media and Citizen Mobilization: The Case of NGOs in European Union</td>
<td>A. Almansa-Martínez, L. Quintana-Pujalte, and A. Castillo-Esparcia</td>
<td>347</td>
</tr>
<tr>
<td>32</td>
<td>Web Transparency and Open Data on Chinese Mining Projects in Ecuador</td>
<td>N. L. Aguiar Mariño, R. M. Sánchez-Montoya, and E. N. Cárdenas Ortiz</td>
<td>357</td>
</tr>
<tr>
<td>33</td>
<td>Narrative, Interactions, and Insights of Youth Participation in Digital Health Communities</td>
<td>M. J. Meza-Contreras and L. T. Espinoza-Robles</td>
<td>367</td>
</tr>
<tr>
<td>34</td>
<td>Gender Violence in Social Networks. Analysis of the Interaction Generated by the Hashtag #MeGustaLaVidaSocial on Instagram</td>
<td>C. F. R. Revelo-Fernández and V. O. Vite-León</td>
<td>377</td>
</tr>
<tr>
<td>35</td>
<td>Photogrammetry, AR, and 3D as Innovative Tools for the Interpretation of Rock Art with University Students</td>
<td>I. Moreno-Nava</td>
<td>387</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Hijacking Art: Murals as an Interface Toward Augmented Reality</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V. Yepez-Reyes, P. Cevallos, and D. Córdova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Adoption of Virtual Academic Profiles for Knowledge Transfer in Research Communication</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. De-Santis and L. F. Morales Morante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Earth Journalism: Multimedia Coverage of Illegal Fishing in Galapagos</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. Orbe-Martínez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Which Public Relations and Communications Agency Should I Choose? A New Competency Model for a Smarter Supplier Selection</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Cuenca-Fontbona, M. Compte-Pujol, M. Sueldo, and R. Martin-Guart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Trust in Media and Technological Communication Tools During the COVID-19 Pandemic. A Study on Mexican Youth</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daniel Javier de la Garza Montemayor and Daniel Barredo Ibáñez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Big Data in Ecuadorian Universities</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Y. Paucar-Carrión, I. Aguaded-Gómez, and A. Suing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Technology at the Service of Journalism and the Media in Pandemic: The Case of Television in Spain During the Period of Confinement</td>
<td>469</td>
<td></td>
</tr>
<tr>
<td></td>
<td>María Purificación Subires-Mancera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Exploratory Validation of a Scale on the Opinion About Electronic Surveillance in Mexico</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Digital Native Media in the Face of Journalistic Security</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Ordóñez, M. I. Punín, A. Suing, and J. Herrero-Gutiérrez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Presence of Indigenous Populations in Ecuadorian and Peruvian Online Newspapers</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. Alarcón-Llontop and A. Suing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Playful Experience in Health Literacy. Beyond Gamification and Serious Games</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angel Torres-Toukoumidis, Diego Vintimilla-León, Andrea De-Santis, Juan Cárdenas-Tapia, and Mario Máeots</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
47 Computational Analysis of Latin Music Songs Through Tokenization. Case of Female Artists and Reggaeton 527
Angel Torres-Toukoumidis, Cristian Orlando Coronel Quezada, Jenny Pontón, and Isidro Marín-Gutiérrez

48 Mixed Reality: Evaluation of the User Experience to Improve the Interpretation of the Archaeological Heritage 537
R. Campoverde-Durán and B. Garzón-Vera

49 Evaluation of Usability and User Experience in Educational Videogames Related to Heritage 547
J. Galán-Montesdeoca and R. Campoverde-Durán

50 Technological Innovations in the Production of Peruvian Television Newscasts During the Emergence of Covid-19 555
G. Karbaum-Padilla

51 Analysis of Digital Communication Strategies in Community Tourism: Case Study San Pedro of Vilcabamba 567
Johanna Teresa Bermeo Ruilova, Mónica Hinojosa Becerra, and Angel Torres-Toukoumidis

Author Index .. 577
About the Editors

Paulo Carlos López-López is a Ph.D. assistant professor in the Department of Political Science and Sociology at the University of Santiago de Compostela (USC), Ph.D. in Communication, Journalist, and Political Scientist. He is a member of the International Research Network on Communication Management and the Political Research Team of the USC. He has published more than 60 scientific papers on topics such as communication, technologies, social media, and political science. He was the director of the group “Media, Applied Technologies, and Communication” and the director of a postgraduate degree in Political Communication in Ecuador. He was awarded the Drago 2019 research award for his study on transparency and has work experience on electoral campaigns, organizational communication, press office, and parliament management. He has an H Index 10.

Daniel Barredo is an associate professor in the Journalism and Public Opinion Program of the Universidad del Rosario (Colombia) and the director of the Journalism Laboratory of the same institution. He currently works as Coordinator of the Working Group on Digital Communication, Networks, and Processes of the Latin American Association of Communication Researchers. In addition, he is a visiting researcher at the Fudan Development Institute of the Fudan University (China). His interdisciplinary work explores three lines of research: studies on public opinion and the media, studies on violence in Latin America, and international studies in a comparative key. He has a doctorate in Journalism from the University of Malaga, a master’s degree and an expert in Communication, and a degree in Hispanic Philology and Audiovisual Communication from the University of Granada. He has an H index of 17 and is accredited as a senior researcher, the highest qualification granted by the Science Ministry in Colombia.

Ángel Torres-Toukoumidis is a Ph.D. candidate in Communication under the research line Media Literacy at the Universidad de Huelva (2017) and done Master in Communication for social purposes at Universidad de Valladolid. Ángel Torres-Toukoumidis is PI of the first university games laboratory in Ecuador, a member of the Research Group on Missions and Indigenous Peoples (GIMPI), and a winner of
the Jacobs Foundation Presenter Award in 2021 in the 9th Biennial EARLI Conference category Education and Citizenship: learning and Instruction and the Shaping of Futures. Currently, Ángel Torres-Toukoumidis is a lecturer at the Universidad Politécnica Salesiana, Ecuador. Regarding scientific publications, the researcher has more than 100 articles in high and medium impact journals, more than 10 books and multiple conferences on media literacy and gamification.

Andrea De-Santis is Ph.D. candidate in Strategic Communication, Advertising, and Public Relations at the Universidad Autónoma de Barcelona (UAB) and done Master in Business and Institutional Communication Management at the Universidad de Las Américas (2016), and Dottore in Scienze della Comunicazione at La Sapienza di Roma University (2007). Andrea De-Santis is the director of the Degree Programs in Communication and Social Communication and member of the Research Group in Communication, Education, and Environment at the Salesian Polytechnic University (UPS) of Ecuador. His research interests focus on strategic digital communication, scientific communication, social media, digital advertising, webmetrics, and scientometrics.

Óscar Avilés (Professor in the Universidad Militar de Nueva Granada) is Ph.D. candidate in Mechanical Engineering (State University of Campinas), with a project on simulation of systems for use in robotic devices, and done Master’s at the Universidad Tecnológica de Pereira in automatic production systems. Óscar Fernando Avilés Sánchez is specialist in the Antonio Nariño University in electronic instrumentation. He has wide experience in various research topics; he has 80 articles published in Scopus. His relevant publications are: “Anthropomorphic Robotic Hands: A Review”; “Survey of Biometric Pattern Recognition via Machine Learning techniques”; “Analysis of 3 RPS Robotic Platform Motion in Simscape and MATLAB GUI Environment”; and “Machine Vision Algorithms Applied to Dynamic Traffic Light Control”.
Part I

Digital Communication, Systems and Processes
Chapter 1
Support System to Predict Student Dropout in Universities

D. Rivero-Albarrán, L. Guerra Torrealba, S. Arciniegas Aguirre, and Ortiz Alexander

Abstract The objective of this research was to provide a prediction system for the possibility of student dropout at the Pontificia Universidad Católica del Ecuador Sede Ibarra. It is applied research with a mixed approach. It was developed in two phases. In the first phase, the KDD methodology and the Scikit-Learn tool were applied to select the best prediction algorithm (KNN, Decision Tree, Random Forest, SVM, and Neural Network). In the second phase, the information system was built to make use of the model obtained in the first phase, where users will be able to consult the possibility of risks of academic dropout of students. Technologies such as Django, Python, HTML, JavaScript, and MySQL, among others, were used in this study. The results show an information system that allows consultation by the student, by the level of schooling, or by subject, based on neural networks that provide an accuracy of 92%.

1.1 Introduction

Student desertion is understood as the definitive and voluntary abandonment of academic training, and it is a complex problem that affects universities worldwide. [1–3]. This causes economic costs to the country, the educational institution, the
family, low graduation rate, loss of prestige of the institution, and emotional problems of the student, which in some cases, prevent them from returning to studies, increasing the inequality gap in the country [4].

Student desertion is determined by several factors; for Tinto [5], the success of a student is given by their degree of integration in the academic and social environment, which contributes to a higher degree of institutional commitment. This directly affects whether the student stays or drops out of their studies. According to Bean and Metzner [6], external factors such as the family, and stress, among others, are determining elements in the permanence of the student. For Bethencourt et al. [7], the psychological characteristics of the student, the teaching staff, and the efforts made by the student to finish the degree, as well as the study strategies and activities, are the factors that determine the permanence of the student. These elements are not exclusive, but rather complementary. Therefore, they can be grouped into five aspects: psycho-pedagogical, economic, institutional, family, and social.

Student desertion hinders the correct articulation between the educational system of a nation with the development of its society. This coordination seeks to improve the quality of life of its inhabitants through adequate technological and scientific development, which can only be achieved with a quality education. In Latin America, the dropout rate varies between 8 and 26%. In Colombia, for example, studies have shown that university dropout after using strategies to reduce this rate is 9.3% [8]. In Chile, the dropout rate stands at 25% [9]. In Mexico, university student desertion (high school) is located at 14%, while in higher education in 8.2% [10]. In Peru, the rate is 10.2% [4], and in Ecuador, the student dropout rate in the first semesters is 26%, data reported by the Ministry of Higher Education, Science, Technology and Innovation [11].

Quality as a process is measurable, and for this, the organizations responsible for its evaluation, such as the dependencies of the Ministry of Education, define a set of indicators such as the climate of school coexistence, school attendance, gender equity, average schooling age, school retention, and technical–professional qualification. The retention rate assesses the level of permanence of enrolled students and indirectly the rate of student dropout. To improve this indicator, higher education institutes have designed strategies, such as early warning systems for dropouts (EWS for its acronym of English), systems to predict abandonment continuous accompaniment, and academic follow-ups in order to create conditions where students can increase their self-esteem and self-worth, among others. All to ensure that student enrollment is maintained until the successful completion of their studies [9–12].

Warning and predictive systems are used to identify students with the possibility of leaving school early [10]. Statistical or mathematical models are used to identify them, based on a set of characteristics. These systems allow those responsible for student monitoring and well-being to take initial action to reduce the dropout rate.

Currently, higher education institutions have automated systems that support educational processes, such as e-learning, administrative systems, student registration, academic monitoring, and Web-based teaching systems, among others, which generate a great amount of data, which with exponential growth, it can be transformed into new knowledge that can benefit students, teachers, and administrators.
However, for its analysis, it is necessary to have tools that automatically analyze this type of data, to find behavior patterns. Two different trends have been developed in this field: Education Data Mining (EDM), used to respond to issues related to educational processes, and Learning Analytics (LA) focused on understanding and optimizing teaching processes [13].

In the field of EDM, different predictive models have been used to identify the population at risk of desertion. Martínez and Mateus [14] used a set of data of a social, academic, personal, labor type, income to e-learning platforms, etc. To train a Supervised Regression deep learning model, Márquez-Vera et al. [10] used a genetic algorithm based on Grammar-Based Genetic Programming (GBGP), a grammar was defined, and an evolutionary process was developed, where each generated individual had to comply with the rules of the grammar. Data from students from the first semester were used. This is based on the fact that several studies have shown that it is at this stage that there are more cases of abandonment. The program was executed in different stages, before the beginning of the semester, at the beginning of the semester, mid-semester, and at the end of it. The algorithm was compared with some classification methods (C45-CS, SVM-SMOTE, Naive Bayes, among others), obtaining better results in the predictions of the first stages.

Lopez et al. [15] present a list of the data mining methods used for the development of EDW together with the number of works that have used them; in this, it is observed that decision trees (J48), Random Forest, Support Vector Machines, Naive Bayes, and logistic regression are the most used methods. Regarding accuracy, it was obtained that Random Forest had an accuracy of 96.1%, 96.2% accuracy with linear regression, 82% accuracy with decision trees (J48) and 92.6% accuracy with logistic regression.

Under this order of ideas, in this study, the objective was to develop an information system to predict which students are at risk of desertion, at the Pontifical Catholic University of Ecuador, Ibarra (PUCE-SI), so that the institution could make a correct student follow-up and take actions before events of this type occur.

The rest of the work is organized as follows: In Sect. 1.2, the data and methodology used for the development of the system are presented. In Sect. 1.3, the results are presented, and finally, the conclusions derived from this work are given.

1.2 Materials and Methods

The research is of an applied practical type and was divided into two phases: In the first, called the data analytics phase, the data mining method predicted, with greater precision, whether a student was at risk of dropping out; and in the second phase, the functionalities of the system were defined, and the tool was developed.
1.2.1 Data Analytics Phase

For this phase, the methodology Discovery in Databases (KDD) [16] was used. The processes to follow are data selection, data processing and transformation, and data mining. They are selected, and the algorithms of the data mining methods are developed and trained, and finally, the evaluation of the methods. These processes are described below.

1.2.1.1 Data Selection

To identify students who remain or are not within a higher education institution, three factors were defined: personal-cognitive, socioeconomic, and academic-organizational. For each factor, the characteristics that describe it were selected.

Table 1.1 shows the characteristics of the organizational academic profile, Table 1.2 shows the characteristics of the personal-cognitive factors, and Table 1.3 shows the characteristics of socioeconomic factors.

These characteristics are distributed in the databases of the institution’s academic, new entry registration, and student welfare systems. For this reason, a procedure was created to generate the objective table with the data associated with the characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission examination note</td>
<td>University entrance note</td>
<td>Numeric</td>
</tr>
<tr>
<td>Average bachelor</td>
<td>Average high school grade</td>
<td>Numeric</td>
</tr>
<tr>
<td>Semester subjects</td>
<td>Number of semester subjects</td>
<td>Discrete (1–6)</td>
</tr>
<tr>
<td>Unapproved subjects</td>
<td>Number of subjects is unapproved status</td>
<td>Discrete (0–6)</td>
</tr>
<tr>
<td>Average semester grades</td>
<td>Average grade of the semester up to that moment</td>
<td>Numeric</td>
</tr>
<tr>
<td>Attendance</td>
<td>Value according to range of assists</td>
<td>Categorical</td>
</tr>
</tbody>
</table>

Table 1.2 Characteristics selected for the personal-cognitive factors

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Student’s age</td>
<td>Numeric</td>
</tr>
<tr>
<td>Gender</td>
<td>Student’s gender</td>
<td>Categorical</td>
</tr>
<tr>
<td>School of origin</td>
<td>School where he graduated from high school</td>
<td>Discrete</td>
</tr>
<tr>
<td>Migrant</td>
<td>The student is an immigrant</td>
<td>Categorical</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Student’s ethnicity</td>
<td>Categorical</td>
</tr>
<tr>
<td>Disability</td>
<td>Value according to range of assists</td>
<td>Categorical</td>
</tr>
<tr>
<td>Parent studies</td>
<td>Educational level of the parents</td>
<td>Categorical</td>
</tr>
<tr>
<td>Type of housing</td>
<td>The student lives with his family, with classmates, and alone</td>
<td>Categorical</td>
</tr>
</tbody>
</table>
of the three factors. Each row of the table (sample) contains the data of a student plus an additional field (label) called dropout, discreet type, with values 1 to indicate that they dropped out of school and 0 that they remain enrolled.

1.2.1.2 Data Processing and Transformation

The generated table can bring erroneous, missing data, with values in very wide ranges that affect the models; therefore, they must be cleaned and transformed. First, the missing or erroneous data were treated, where the mean technique was used. This technique replaces the data with the mean obtained from all the valid data of these characteristics.

The objective table presented an imbalance of the classes, that is, the majority class. Class with label 0 contains 75% of the data, which caused the mining methods not to recognize the patterns of the minority classes. In this case, the algorithms of classification would tend to classify them within the majority class, ignoring the minority class. Therefore, to reduce the imbalance, a set of fictitious records with label 1 were randomly generated.

In addition, the numerical type characteristics were normalized as family income, since their range of values was very wide. Also, the categorical type characteristics were transformed into number data, since these are used in most data mining methods.

1.2.1.3 Data Mining

Based on previous works [9–11, 15], it was decided to use a supervised classification model and five methods were chosen: KNN, Decision Trees, Random Forest, Support Vector Machines (SVM), and Networks. Neuronal (NN). The predictive analysis library Scikit-Learn [17] was used. For the training of the methods, the objective table was divided into two tables: the training table and the testing table with 60% and 40% of the data, respectively.
Table 1.4 Method results with test data

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Sensitivity</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNN</td>
<td>0.77</td>
<td>0.78</td>
<td>0.95</td>
<td>0.86</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>0.81</td>
<td>0.82</td>
<td>0.95</td>
<td>0.88</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.85</td>
<td>0.83</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>SVM</td>
<td>0.85</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>NN</td>
<td>0.92</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

1.2.1.4 Model Evaluation and Selection

The model to be used in the system was selected after evaluating the behavior of each method with the test data. The confusion matrix of each one was constructed, and several metrics such as precision, accuracy, sensitivity, and F1-score were calculated. Table 1.4 shows the results obtained in each method.

Based on the results obtained in this phase, the model generated by the neural network was selected for the construction of the system.

System development phase

In this phase, the functional requirements to be implemented were specified. These were grouped into data update functions, system services, and query functions. Data updating is a fundamental function, and it is responsible for updating the tables of the system databases with the data that can be modified during the semester, such as average semester grades and the number of subjects not approved, among others.

The queries can be made during the semester. The system users are allowed to make queries about students at risk of desertion in a group form to know the list of students at risk of desertion, or individually form to know the evolution of a certain student. In addition, if the query is a group, the list can be grouped by career, subject, or semester. This query can be done online (on-screen) or on paper. Data can be presented graphically, using pie charts, or by listing each student (Fig. 1.1).

1.3 Results

The system developed to determine the possibility of a student abandoning their university studies involves two roles (user and administrator) and several modules: the user management module, where the permissions for each type of user are established, the student management module to store the data of each student that will be considered in the predictive model; and the career and subject management module, to add, and edit these attributes and the prediction module where the query can be made individually, registering the student’s ID, or in a group, selecting the students of a subject and/or a determined career.
The system services are responsible for the accessibility function and maintenance of the database consistency, that is, of the relationships between the objective table and the data of the student, careers, and subjects.

The dropout component was designed for the prediction module. The public interface contains the query methods (generalSearch, searchBySubject, searchByCourse, SearchByName), and like private method is the model loading and updating method (loadModel, updateModel). The search method is responsible for invoking the UpdateData, the component responsible for creating the objective table. The table contains the characteristics of the students according to the search criteria, Fig. 1.2 presents the system deployment diagram.

The UpdateData component is responsible for creating the objective table with the characteristics of the students according to the type of search based on the search criteria. Figure 1.3 shows the sequence diagram of the generateTable method. The dropout component orchestrates the set of methods to perform the prediction. Figure 1.4 presents the sequence of the general search method.

Finally, the Graphical User Interface (GUI) was designed and three iterations were used to build the system. The interface to carry out a query on student dropout in a group form is shown in Fig. 1.5.

1.4 Conclusions

The student dropout prediction system developed allows users to analyze the possibility of the abandonment of studies using a neural network model and making
the query in different ways such as individually, by subject, and by level; generating graphs and reports that facilitate the visualization of information. This system was validated using functional black box tests to verify its functionality, security, performance, and usability. In this way, it is proven that the use of data analytics in the educational field is relevant because it allows accurate and timely information on academic processes to make decisions that allow the sustainability of the Institutions. The proposed tool can be adapted to any university educational system since the variables can be increased, decreased, or altered depending on the data, its collection method, and the needs of each Institution. However, in subsequent studies, the collinearity of the considered characteristics that impact student dropout should
be studied in-depth to determine whether it is possible to simplify the model by combining characteristics.