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Chapter 1 
Energy Efficient Control of Vehicles 

Yuanjian Zhang and Zhuoran Hou 

Abstract Electric vehicles (EVs) have the advantages of energy saving and envi-
ronmental protection, which are favoured by major vehicle companies nowadays. 
However, the problem of how to effectively improve the economy has been a hot 
spot and difficult research point of the vehicle control strategy. Therefore, this chapter 
introduced the mainstream algorithms currently used as energy management strate-
gies, and analysed the advantages of each method. This chapter begins with an intro-
duction to energy integrated control for electric vehicles. Since the control scheme 
is related to architecture, this chapter then introduces the common architectures 
of EVs. Finally, the rule-based energy management strategy and the optimization-
based energy management strategy are highlighted, and the vehicle architectures to 
which the different strategies are adapted are analyzed. Finally, the development and 
characteristics of the strategies are summarized. 

Keywords Electric vehicle · Energy management strategy · Energy consumption ·
Rule-based · Optimization-based 
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ECMS Equivalent Consumption 
Minimization Strategy 

LQR Linear Quadratic 
Regulator 

HEV Hybrid Electric Vehicle 

1.1 Introduction 

As one of the main travel tools, the technology in the automotive field is also devel-
oping rapidly. In the automotive field, energy management is mainly used as a multi-
energy source distribution management technology, which has been widely studied 
and applied [1]. The traditional internal combustion engine vehicle takes advantage 
of the high energy density of petroleum fuel to power the vehicle for long distances. 
However, the internal combustion engine has the disadvantages of exhaust pollution 
and low fuel economy. The main reasons for the fuel economy shortage of internal 
combustion engine are as follows. 

(1) Internal combustion engine works in a lower efficiency area under some working 
conditions; 

(2) Loss of vehicle energy during braking. 

With the development of vehicles, people further improve the working efficiency 
of the engine through other power sources (such as batteries to provide electric 
energy, motor to provide power output). Batteries and motors are added to the tradi-
tional internal combustion engine to optimize the working area of the engine, and then 
improve the economy. The energy distribution between motor and internal combus-
tion engine becomes the focus and difficulty of the research. In recent years, fuel 
oil, natural gas and fuel cell are used as the power source to drive the automo-
bile. Energy management technology becomes the key technology to improve the 
rational distribution of power source energy. The reasonable distribution of electric 
power (electric energy management) is the key factor to improve the economy of 
electric vehicles. This chapter mainly analyzes and explores energy management of 
multi-power source vehicles for the purpose of improving automobile economy. 

1.2 Architecture 

In petrol-electric hybrid vehicles, the engine and motor are the main power compo-
nents to drive the vehicle, and the rational distribution of engine and motor power 
has become the core technology of energy management [2]. The rationality of energy 
distribution is beneficial to realize the decoupling of engine speed and torque, improve 
the working area of the engine and improve the working efficiency of the engine. At
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present, petrol-electric hybrid electric vehicles are mainly divided into series, parallel 
and hybrid. The series hybrid electric vehicle drives the generator to generate elec-
tricity and provides energy output power to the motor. This structure can achieve the 
decoupling of engine speed and torque. However, this structure is electrically coupled 
and has a large energy loss due to the energy conversion process, as shown in Fig. 1.1. 

Parallel hybrid vehicle also has motor and engine two power components. They are 
mechanically coupled and reduce the loss of energy conversion. However, the simul-
taneous decoupling characteristics of engine speed and torque are limited. According 
to the different structure, it can also achieve the decoupling characteristics of speed 
as shown in Fig. 1.2. The purpose of optimizing engine performance and improving 
automobile economy is realized. 

Engine 
Generator 

DC-DC 

rotoMreifitceR Controller 

Fig. 1.1 The architecture of the series hybrid electric vehicle 

Engine 

DC-DC 

Motor 

Controller 

Clutch 

Transmission 

Fig. 1.2 The architecture of the parallel hybrid electric vehicle
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Engine Clutch 

DC-DC 

MotorController 

Transmission 

Controller 

Fig. 1.3 The architecture of the hybird hybrid electric vehicle 

Hybrid hybrid electric vehicle has more than two power components, combining 
the advantages of series and parallel. The architecture of it is shown in Fig. 1.3. The  
energy distribution of the power shunt type is realized by using the planetary array 
structure, and the working efficiency of the engine is improved. Series and parallel 
uses clutch to realize the switch between series and parallel, which improves the 
economy. However, the structure of hybrid hybrid electric vehicle is complex and 
the control logic is complex, so the energy distribution and output between different 
power components become the key and difficult point. 

1.3 Rule-Based Energy Management Strategy 

At present, energy management is mainly divided into two research methods: energy 
management control strategy based on rules and energy management control strategy 
based on optimization [3]. Rule-based energy management strategy mainly includes 
deterministic rules and fuzzy rules. It makes corresponding control strategy through 
a large number of experiments, experts’ experience, mathematical model and other
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known conditions. It is simple and easy to implement, good reliability and other 
advantages, and is widely used [4, 5]. 

1.3.1 Energy Management Control Based on Deterministic 
Rules 

1.3.1.1 Thermostat Control 

Thermostat control strategy refers to the engine at a constant power output. Ther-
mostat control strategy is most used in series petrol-electric hybrid vehicle energy 
management [6]. The engine of series vehicles can be decoupled (electrically 
coupled) from the speed and torque of the vehicle’s output shaft. The engine works 
at the optimal working point and drive the generator to generate electricity with 
constant power output. Battery state of charge (SOC) is the only threshold for engine 
startup, as shown in Fig. 1.4. 

When the battery SOC drops to a set threshold, the engine starts and outputs 
constant power near the optimal fuel consumption point (single point control), as 
shown in Table 1.1. If the output power of the engine driven generator is higher than 
the power required by the motor to drive the car, part of the power is used for the 
motor to drive the car, and the other part of the power controller controls the generator 
to charge the battery pack.

where is the request power; is the engine power; . PBest . is the most economical 
operating power at current engine speed; Pb is the battery power.

Fig. 1.4 Thermostat control 
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Table 1.1 Thermostat control. SOC  < SOCLow 

. Pr > 0 . .. Pr ≤ 0 .. 
Pe = PBest  
Pb = Pr − PBest  

Pe = 0 
|Pb|=|Pr | − |PBrake|

Table 1.2 Thermostat control. SOC  > SOCHigh  

Pr > 0 Pr ≤ 0 
Pe = 0 
Pb = Pr 

Pe = Pb = 0 
PBrake = Pr 

Table 1.3 Thermostat control. SOCLow < SOC  < SOCHigh  

Pr > 0 Pr ≤ 0 
Pe = PBest  
Pb = Pr − PBest  

Pe = 0 
Pb = Pr 

Pe = 0 
|Pb|=|Pr | − |PBrake| 

When the SOC rises to the set high threshold, the engine shuts off and the battery 
provides all the instantaneous power requirements of the vehicle, as shown in Table 
1.2. The battery provides extra power to the motor when the power generated by the 
engine’s generator is less than what the motor needs to drive the car. 

When the SOC is between the two thresholds, power components remain in the 
previous operating state, as shown in Table 1.3. 

In thermostat control, the battery balances the power output from the engine with 
the power required by the motor. The control system of thermostat control strategy is 
simple and easy to implement. However, there are more energy conversion times and 
the efficiency is not high. Excessive circulation of the battery will have an adverse 
effect on the battery itself. 

1.3.1.2 State Machine Control 

Finite state machine control, referred to as state machine control, is a mathematical 
model consisting of multiple states. The State represents a certain property of an 
object [7]. By triggering the set conditions, the transition between different states 
can be realized. The transfer between states is realized by the logic conditions of 
thresholds triggered by real-time signals. The action after entering each state is to 
execute the corresponding control strategy. Since any two states can be transferred, 
only part of the transition relationship between states is established. 

In the automotive field, according to different optimization purposes, through a 
large number of experiments and experts’ experience, the vehicle is divided into 
different operating states. Different control thresholds are used to transfer the states 
between each operating state. For example, most fuel cell vehicles use state machine



1 Energy Efficient Control of Vehicles 7

control to coordinate the energy distribution between different power sources and 
improve the economy of the vehicle. The control strategy is simple and easy to 
implement and widely used. 

1.3.1.3 Power Following Strategy Control 

The power following control strategy determines the working state of the engine 
according to the SOC of the battery and the load of the vehicle, which is mostly 
used in the series structure of petrol-electric hybrid electric vehicle. It is an opti-
mization of the thermostat control strategy. Different working points of the engine 
can be determined according to the different running states of the vehicle. The power 
of the engine follows the power required by the car to drive. Similar to the tradi-
tional vehicle, the engine speed and torque in the series hybrid electric vehicle are 
decoupled from the vehicle output shaft. Compared with traditional cars, the engine 
speed is not directly determined by the speed, and the engine can work under the 
economic speed. Compared with the thermostat control strategy, the engine with 
power following control strategy generally operates near the optimal economic oper-
ating curve. Therefore, the power following control strategy is more adaptable to 
external power changes, the output power is more reasonable, reduces the number of 
charging and discharging cycles of the battery, and is more conducive to the protec-
tion of the battery [8]. But the output power of the engine should always follow the 
demand power of the vehicle, the power varies widely, and the working area of the 
engine becomes larger. Therefore, it is difficult to ensure that the engine works in 
higher fuel economy areas. 

In the structure of serial-type hybrid electric vehicle, the motor is used as a direct 
power component for power output. The energy source of the motor (power source) 
is obtained by the power from the battery and the power from the generator driven 
by the engine. Energy management mainly distributes engine power and battery 
power for economic energy consumption. The power following strategy controls the 
start/stop working mode of the engine according to the SOC of the battery and the 
power of the vehicle, as shown in Fig. 1.5.

When the SOC of the battery is in low power or the power required by the vehicle is 
large, the engine starts to work. The engine stops working when the SOC of the battery 
is in a high power state and the vehicle needs a large power. In the case of other SOC 
and vehicle power requirements, the engine keeps the working state of the previous 
moment unchanged. If the output power of the engine driven generator cannot meet 
the demand power of the vehicle, the engine can output the maximum power under 
the condition of ensuring relatively economic efficiency, and the insufficient power is 
provided by the battery. If the required power of the vehicle is less than the minimum 
economic power of the engine, the engine outputs the minimum economic power, 
and the excess power charges the battery pack. Under different SOC and power 
requirements, the distribution schemes of engine power and motor power are shown 
in Tables 1.4, 1.5 and 1.6.
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Fig. 1.5 Power following strategy control

Table 1.4 Power following 
strategy control. 
SOC  < SOCLow 

Pr Pe Pb 

0 <Pr < PLow Pe = PLow Pb = Pe − Pr 
PLow ≤ Pr ≤ PHigh Pe = Pr Pb = 0 
PHigh  < Pr Pe = Pr Pb = 0 
Pr ≤ 0 Pe = 0 |Pb| = |Pr | − |PBrake| 

Table 1.5 Power following 
strategy control. SOCLow ≤ 
SOC  ≤ SOCHigh  

Pr Pe Pb 

0 <Pr < PLow Pe = PLow Pb = Pe − Pr 
Pe = 0 Pb = Pr 

PLow ≤ Pr ≤ PHigh Pe = Pr Pb = 0 
Pe = 0 Pb = Pr 

PHigh  < Pr Pe = PHigh Pb = Pr − Pe 
Pr ≤ 0 Pe = 0 |Pb| = |Pr | − |PBrake| 

Table 1.6 Power following 
strategy control. SOCLow ≤ 
SOC  ≤ SOCHigh  

Pr Pe Pb 

0 <Pr < PLow Pe = 0 Pb = Pr 
PLow ≤ Pr ≤ PHigh Pe = Pr Pb = 0 

Pe = 0 Pb = Pr 
PHigh  < Pr Pe = PHigh Pb = Pr − Pe 
Pr ≤ 0 Pe = 0 Pb = 0
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1.3.2 Energy Management Control Based on Fuzzy Rules 

1.3.2.1 Traditional Fuzzy Logic Control 

Fuzzy logic control is a kind of control method based on fuzzy set theory, fuzzy 
language variables and fuzzy reasoning [9]. Different from the control strategy based 
on the deterministic rules, fuzzy logic control strategy does not need to know the 
specific mathematical model of the controlled object, but relies on experience to 
skillfully control a complex process. When the experience is summed up in words, a 
qualitative and imprecise rule of control is generated. Then it is quantified into fuzzy 
control algorithm by fuzzy mathematics. For example, peak power SOC and vehicle 
power demand are described as high, medium and low. The value of the output is 
obtained by definite rules and fuzziness as shown in Fig. 1.6. 

1.3.2.2 Adaptive Fuzzy Logic Control 

Adaptive fuzzy logic control is a fuzzy logic system with adaptive learning algorithm 
added to the traditional fuzzy logic control technology. Its learning algorithm relies 
on data information to adjust the parameters of the fuzzy logic system. For example, 
in a certain driving cycle, the energy management effect is not very ideal, then the 
learning algorithm will adjust the control rules to adapt to the driving cycle. An 
adaptive fuzzy controller can be composed of a single adaptive fuzzy system or 
several adaptive fuzzy systems. Adaptive fuzzy control has two different forms:

(1) Direct adaptive fuzzy control: according to the actual performance of the system 
and the deviation between ideal performance, through a certain method to adjust 
the parameters of the controller directly;

Fig. 1.6 Traditional fuzzy logic control 
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(2) Indirect adaptive fuzzy control: the model of the control object is obtained 
by on-line identification, and the fuzzy controller is designed according to the 
model. 

1.3.2.3 Predictive Fuzzy Logic Control 

Predictive fuzzy logic control strategy is organically combined with fuzzy logic 
control and predictive control, which can better adapt to the needs of complex process 
control. Its algorithm basically revolves around two directions [7]. 

(1) Taking process prediction information as the core, fuzzy identification and 
modeling methods are introduced into conventional predictive control. That 
is, fuzzy technology is introduced into the information processing link of the 
prediction model, so as to constitute the predictive fuzzy logic control. It includes 
using fuzzy modeling method to build object prediction model and using fuzzy 
technology to compensate prediction error and control law. The former uses the 
fuzzy model as the prediction model to improve the accuracy of predicting 
the output of complex objects, which is beneficial to improve the stability 
and robustness of the prediction algorithm. The latter uses fuzzy reasoning 
to compensate the output deviation of the model. And the advantage of fuzzy 
reasoning in uncertain information processing is used to make up the deficiency 
of traditional predictive control algorithm in system information processing. 

(2) Taking fuzzy decision optimization as the core, the membership function and 
control rules of traditional fuzzy controller are optimized by using the corre-
lation principle of predictive control and self-calibration principle, so that a 
certain performance measurement index tends to be optimal. Because the core of 
predictive control is rolling optimization, the whole algorithm can be reduced to 
a performance optimization problem. The traditional predictive control adopts 
the optimization method based on linear quadratic objective function, which 
minimizes the objective function in the control time domain to obtain the optimal 
control law. However, for complex systems, the cost of this method is very large, 
sometimes even impossible to achieve. To some extent, fuzzy logic control is to 
choose a set of controller parameters to make the controller output close to the 
optimal control law. Therefore, fuzzy decision can be introduced into predic-
tive control algorithm, and various predictive fuzzy control algorithms based on 
fuzzy decision optimization can be obtained. 

1.4 Optimization-Based Energy Management Strategy 

Optimization-based energy management strategy is divided into global-optimization-
based energy management strategy and instantaneous-optimization-based energy 
management strategy [10]. The control strategy based on optimization takes into
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account all kinds of operating conditions and needs to consider the transient and fuel 
economy in the whole driving cycle. Compared with the rule-based control strategy, 
it has better economic effect, but the calculation is large, which increases the control 
difficulty. 

1.4.1 Global-Optimization-Based Energy Management 
Strategy 

1.4.1.1 Dynamic Programming 

The basic idea of the dynamic programming (DP) algorithm is to transform a large 
multi-stage problem into multiple sub-problems of the same type. By solving the 
optimal solution of the sub-problem, the recursive optimization of the original 
problem is completed. The algorithm is based on the Bellman’s principle of opti-
mality. As a multi-stage global-optimization-based energy management strategy, 
regardless of its past states and decisions, the remaining decisions must constitute 
an optimal sub-strategy. In short, any part of the sub-strategies in the optimal policy 
must also be optimal [11]. 

The algorithm is widely used for non-aftereffect problems with deterministic 
conditions, where decisions are made according to stages. The term “ non-aftereffect 
“ means that when the state of the system at a certain stage is known, then the 
change of the system state after that stage is only related to the current stage and 
not to all previous stages. Therefore, the solution process of the algorithm starts 
from the termination stage. The algorithm is solved recursively within the boundary 
conditions by finding the optimal sub-problem for each stage. For each stage of the 
sub-problem, the optimal solution of the previous sub-problem is used in the solution 
process. Thereby, the complexity of the algorithm is reduced and the speed of the 
algorithm solution is accelerated. For DP algorithms, the following aspects need to 
be clarified first. 

(1) Determine the stage of the optimization problem. Decompose a global opti-
mization problem into several stages of sub-problems to be solved. The amount 
of stages in the solution process is denoted as k. 

(2) Determine state variables and control variables for the optimization problem. 
The state of the system at each stage is described by the state variables. The 
state variable at stage k is denoted as xk . The decision that acts on the control 
system to change the system state is described by the control variable. The 
control variables when the system state is xk are denoted as uk(xk). In the global 
optimization problem with k stages, there are k + 1 state variables and k control 
variables. 

(3) Determine the constraints of the optimization problem. The state variables 
and control variables of the system often have various constraints, including 
linear and nonlinear constraints, equation constraints and inequality constraints.
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Therefore, in the algorithm solution process, the state and control variables 
must satisfy the constraints of the optimization problem. The optimal control 
sequence under the global is solved within the allowed range to complete the 
optimal control of the system. 

(4) Determine the state transfer equation of the optimization problem. The state 
transfer equation describes the law of the system changing from the state of the 
current stage to the state of the next stage. By determining the state variables 
and control variables of the current stage, the state variables of the next stage 
can be obtained to realize the transfer of the system state. 

(5) Determine the cost function of the optimization problem. The cost function is 
used to measure the impact of the control system on the system performance in 
a certain state. The function depends on the current state variables and control 
variables. At the kth stage, when the system state variable is xk and the control 
variable is uk , the cost function is denoted as J (xk, uk). 

1.4.1.2 Pontryagin Minimum Principle 

Pontriagin minimum principle (PMP), also known as maximum principle, is a method 
to solve optimal control problems under the condition that control vector is limited 
[12]. That is, under finite state or input conditions, an optimal control variable is 
solved to transfer the system from one state to another. The mathematical description 
of PMP is as shown in (1.1). 

H (x(t), u∗(t), λ(t), t) ≤ H (x(t), u, λ(t), t), ∀u ∈ U, t ∈ [t0, t f ] (1.1) 

where U is the control domain; u∗(t) is the optimal control variable; x(t) is the 
system state variable; λ(t) is the coordination state variable. 

The mathematical description of a minimum is as shown in (1.2). 

J = φ(x(t f ), t f ) + 
t f∫

t0 

L(x(t), u(t), t)dt (1.2) 

where L(x(t), u(t), t) is the instantaneous cost value related to the control variable; 
φ(x(t f ), t f ) represents terminal constraint. 

Because the control variable has constraints, the objective function cannot be 
equal to 0 by taking the derivative of the objective function with respect to the control 
variable. To solve the minimum problem, the constraint equation is transformed into 
a non-constraint equation for solution by using Lagrange multiplier method. And 
then the Hamiltonian function in PMP is obtained. The formula is as shown in (1.3). 

H (x(t), u(t), λ(t), t) = λ(t) f (x(t), u(t), t) + L(x(t), u(t), t) (1.3)
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The PMP optimization algorithm aims to find the optimal solution through calcu-
lation, so that the Hamiltonian function can obtain a minimum value in a finite set. 
The formula is as shown in (1.4). 

u∗(t) = argmin H (x(t), u(t), λ(t), t) (1.4) 

When obtaining the optimal control quantity u of the density function, the 
following conditions must be met (1.5)–(1.8). 

λ̇(t) = −∂ H (x(t), u(t), λ(t), t) 
∂ x 

(1.5) 

ẋ(t) = 
∂ H (x(t), u(t), λ(t), t) 

∂λ 
(1.6) 

x∗(t0) = x0 (1.7) 

x∗(t f ) = xt arg et (1.8) 

The necessary conditions given by PMP can be used to search for optimal control 
alternatives, which is called extreme control. The PMP guarantees optimal control. 
If it exists, it must be extreme control. If the optimal control problem has only one 
solution, and only one extreme control quantity, then this is the optimal control 
solution. Even if several extremum controls are found, it is relatively easy to apply 
them all at once. The optimal control is then identified as the extremum that gives 
the lowest total cost. 

In the optimal energy management problem of gasoline-electric hybrid vehicles, 
the state quantity is usually SOC, and the control quantity is the output power of the 
engine or the output power of the motor. The state SOC must be between SOCmax 

and SOCmin. Thus, the set of admissible states is �SOC  (t) = [SOCmin, SOCmax]. 
A control quantity Pbatt (t) exists in a set of permitted control UPbatt (t) =[
Pbatt,min(t), Pbatt,max(t)

]
. The objective function is usually fuel consumption, while 

engine exhaust emissions, battery aging, drivability, thermal dynamics and other 
factors can be included. The formula is shown in (1.9). 

J = ϕ(x(t f )) + 
t f∫

t0 

L(x(t), u(t), t)dt (1.9) 

The Hamiltonian function of energy management problems of gasoline-electric 
hybrid vehicles is shown in (1.10).
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H
(
SOC(t), Pbatt (t), λ(t), Preq  (t)

)

= 
• 
m 
f

(
Pbatt (t), Preq  (t)

) + (λ(t) + w(SOC)) · • 
SOC(t) (1.10) 

The necessary conditions for the objective function to obtain the optimal control 
solution are shown in (1.11)–(1.16). 

P∗ 
batt (t) = arg min 

Pbatt (t)∈UPbatt 

H
(
Pbatt (t), SOC(t), λ(t), Preq  (t)

)
(1.11) 

• 
SOC∗(t) = f

(
SOC∗(t), P∗ 

batt (t)
)

(1.12) 

• 
λ∗(t) = −(

λ∗(t) + w(SOC)
) ∂ f 
∂ SOC  

(SOC∗, P∗ 
batt ) = h(SOC∗(t), P∗ 

batt (t), λ
∗(t)) 

(1.13) 

SOC∗(t0) = SOC0 (1.14) 

SOC∗(t f ) = SOCt arg et (1.15) 

SOCmin ≤ SOC∗(t) ≤ SOCmax (1.16) 

(1.12) and (1.13) represent two first-order differential equations of the variables 
SOC and λ. Although the two-point boundary value problem is completely defined, 
because one of the boundary conditions is defined at the final time, it can only be 
solved numerically using an iterative program. 

1.4.2 Instantaneous-Optimization-Based Energy 
Management Strategy 

1.4.2.1 Equivalent Consumption Minimum Strategy 

The equivalent consumption minimization strategy (ECMS) was first proposed by 
Paganelli (1999) [13]. ECMS is an energy management strategy of instantaneous 
optimization. Its essence is to equivalent the battery power consumption to fuel 
consumption, that is, the fuel consumption of the vehicle into the equivalent fuel 
consumption of the engine and motor. ECMS and PMP algorithms are very similar, 
and their objective functions, too. When the ECMS was initially applied to a gasoline-
electric hybrid vehicle vehicle (HEV), the difference between the initial and final 
charged state of the battery was very small. Negligible relative to the total amount 
of energy used. This means that the power storage system serves only as an energy
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buffer. Eventually all the energy comes from fuel. And the battery can be thought 
of as an auxiliary reversible fuel tank. Any stored electrical energy used during 
the battery discharge phase must be replenished later using fuel from the engine 
or through regenerative braking. With the development of plug-in hybrid electric 
vehicle (PHEV) vehicles, ECMS technology is also gradually applied to PHEV. 

The principle of ECMS is to take the power battery as a virtual engine and convert 
the electric energy consumed into the fuel. The equivalent fuel consumption factor 
determines the fuel-electric conversion efficiency of the vehicle power system and 
plays a controlling role in the fuel economy of the vehicle, as shown in (1.17). 

ṁeqv(x(t), u(t), t) = ṁ f (u(t), t) + λ · ṁm(x(t), u(t), t) (1.17) 

where ṁeqv(x(t), u(t), t) is the instantaneous equivalent fuel consumption; 
ṁ f (u(t), t) is the instantaneous fuel consumption of the engine; ṁm(x(t), u(t), t) 
is the instantaneous electric consumption of the motor equivalent to the fuel 
consumption; λ is the equivalent factor. 

In driving cycles, the fuel consumption of the vehicle should be minimized to 
improve the fuel economy of the vehicle. Thus, the objective function expression of 
ECMS optimized energy control is established as shown in (1.18). 

J (t) = min 

t∫

0 

ṁeqv(t)dt  = min 

t∫

0 

( ṁ f + λ · ṁm)dt (1.18) 

The Hamiltonian function is established as shown in (1.19). 

H(x(t),u(t), λ(t),t) = ṁ f (u(t), t) + λ · f (x(t), u(t), t) (1.19) 

where u(t) is the request torque of the motor; x(t) is SOC of power battery; 
f (x(t), u(t), t) is the instantaneous change value of SOC. 
To find the optimal solution through calculation, so that the Hamiltonian function 

can obtain a minimum value in a finite set, as shown in (1.20). 

u∗(t) = arg min H (x(t), u(t), λ(t), t) (1.20) 

where u∗(t) is the optimal solution. Synergistic state variables and state transition 
variables should meet (1.21)–(1.26). 

λ̇(t) = −  
∂ H 
∂x 

= −  
∂ 
∂x 

ṁ f (u(t), t) − λ(t) 
∂ 
∂x 

f (x(t), u(t), t) (1.21) 

ẋ(t) = 
∂ H 
∂λ 

= f (x(t), u(t), t) (1.22) 

SOC  ∈ [SOCmin, SOCmax] (1.23)
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Pbatt ∈ [Pbatt_min, Pbatt_max] (1.24) 

Tm ∈ [Tm min, Tm max] (1.25) 

Te ∈ [Te min, Te max] (1.26) 

When the demand torque of the vehicle is known, the optimal output torque 
sequence of the motor is calculated according to the relationship between the engine, 
motor and the total demand torque. The optimal output torque of the engine is 
obtained as shown in (1.27). 

T ∗ 
e (t) = Treq  (t) − T ∗ 

m (t) (1.27) 

where Treq  (t) is the torque of the instantaneous demand of the vehicle; T ∗e (t) is the 
optimal allocation torque of the engine; T ∗m (t) is the optimal allocation torque of the 
motor. 

1.4.2.2 Model Predictive Control 

In the late 1970s, the emergence of dynamic matrix control (DMC) and model predic-
tive heuristic control (MPHC) marked the birth of model predictive control (MPC) 
[14]. MPC has been a great success in the process industry since its early development 
and attracted many scientists to apply it to other fields. With the deepening of research 
and application of MPC, some scholars gradually applied MPC to vehicle control 
field. MPC algorithm has three main components: prediction model, rolling opti-
mization and feedback correction. These three parts are also important differences 
between MPC control algorithm and other controls. 

(1) Prediction model 

As MPC is a predictive control algorithm based on predictive model, model plays a 
particularly important role in MPC. However, due to the particularity of predictive 
control algorithm, the requirements on the model are different from other control 
algorithms. Predictive control emphasizes the function of the model rather than the 
structure of the model. Therefore, the range of prediction models available is very 
wide. As long as the model has the power to predict the future input and output 
information of the system according to the past input and output information of the 
system, it can be used as a prediction model. Equation of state and transfer function 
can realize the above functions and can be used as prediction models naturally. 
Nonparametric models are common in practical industrial processes, such as step 
response model and impulse response model. In addition, distributed parametric
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system and nonlinear system models can also be used as prediction models as long 
as they meet the requirements of prediction models. Because of the diversity of 
prediction model forms, the model structure forms in traditional control are greatly 
expanded, and it is more convenient and fast to build models based on information 
in practical engineering applications. 

(2) Rolling optimization 

In predictive control, the output control sequence is determined by the optimiza-
tion of the objective function. In other words, MPC is also an optimal control algo-
rithm. Because the determination of performance indicators is to achieve the expected 
control objectives, the selection of performance indicators according to the actual 
situation needs to be emphasized. If the accuracy of control results is highly required, 
the minimum variance between system output and expected output can be selected 
as the performance indicator. If the demand for control energy is higher, the control 
focus can be placed on the control energy when the output varies within a certain 
range. But the optimization of performance index in predictive control is obviously 
different from the traditional optimal control. Because the traditional optimal control 
is based on a fixed optimization index of the whole bureau. The optimization index in 
predictive control is not invariable. Its manifestation is closely related to the present 
moment, which is a rolling finite time domain performance index. In other words, at 
each sampling moment, the performance indicator only covers a period of time from 
that moment to a certain future. Therefore, the optimization range at each sampling 
point is different. This kind of rolling optimization in finite time domain obviously 
can only obtain global suboptimal solution. However, due to its characteristics of 
repeated online optimization, it is convenient to deal with the uncertainty caused 
by model mismatch, interference and time variation. It actually ends up keeping the 
control optimal. 

When the system model is in the form of state space as shown in (1.28) and (1.29). 

xk+1 = Axk + Buk (1.28) 

yk+1 = Cxk (1.29) 

The objective function is shown in (1.30). 

J = 
N∑
j=0 

{‖y(k + j |k)‖Rzz
+‖u(y(k + j |k))‖Ruu

} +  F(x(k + N |k)) (1.30) 

where N is the length of time of optimization calculation in rolling optimization; 
F(x(k + N |k)) is terminal cost function; ‖u(y(k + j |k))‖Ruu 

is the weighted norm 
of the input term; ‖y(k + j |k)‖Rzz 

is the weighted norm of the output item, and the 
specific expression is shown in (1.31).

‖y(k + j |k)‖Rzz 
= y(k + j |k)T Rzz y(k + j |k) (1.31)
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According to the prediction model, MPC controller predicts the future output 
information of the system within N step length after time k. Then the control sequence 
with length N is calculated by objective function optimization. Then the P step-long 
control sequence is applied to the system. The above problem is simplified to a 
traditional Linear quadratic regulator (LQR) problem. Therefore, the problem can 
be expressed as shown in (1.32)–(1.36). 

min 
u 

J = 
N∑
j=0 

{‖y(k + j |k)‖Rzz
+‖u(y(k + j |k))‖Ruu

} (1.32) 

x(k + j + 1|k) = Ax(k + j |k) + Bu(k + j |k) (1.33) 

x(k|k) ≡ x(k) (1.34) 

y(k + j |k) = Cx(k + j |k) (1.35) 

|u(k + j |k)| ≤ um (1.36) 

Then convert the above problems into common standard optimization problems, 
as shown in (1.37). 

y(k + N |k) = CAN x(k|k) + CAN−1 Bu(k|k) + CBu(k + 1|k) (1.37) 

By combining, extending, and distorting the above equations, the matrix form as 
shown below can be derived by (1.38). 

min 
U (k) 

J = min 
U (k) 

[H T 2 U (k) + 
1 

2 
U (k)T H3U (k)] (1.38) 

And satisfy the constraint conditions as shown in (1.39).

[
IN 

−IN

]
U (k) ≤ um (1.39) 

At k sampling, a control sequence of length Hp is obtained by optimizing compu-
tation based on the current state of the system and the prediction model. Then the 
control sequence is applied to the system in the control interval of length Hp. Usually 
Hp = 1, that is, only the first control in the control sequence is used. At k + 1, repeat 
the above steps. With the advance of sampling time, the rolling optimization and 
control are realized.
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(3) Feedback correction 

In order to improve the control effect, the baseline of MPC rolling optimization at 
each sampling point should be consistent with the actual situation. However, due to 
the complexity and changeability of the actual system, it is impractical to establish 
an accurate mathematical model of the system. And from the practical point of view, 
there is no need to build an extremely accurate model. On the contrary, in practice it 
is easy to obtain a rough model of the system to describe its dynamic characteristics. 
Since when a fixed prediction model is used to describe the system, many factors 
existing in the actual system, such as interference, time variation, nonlinearity and 
model mismatch, will lead to such a fixed model deviating from the real situation 
of the system. So it is necessary to use additional means to correct for differences. 
According to the knowledge of traditional control theory, feedback can effectively 
overcome the influence of interference and obtain closed-loop stability. MPC rolling 
optimization works best when it is based on feedback. MPC obtains the control 
sequence of given length by optimizing the objective function at the current sampling 
point. Then the first term of the control sequence is applied to the system as the actual 
control quantity. At the next sampling time, the output information of the system 
is first used for feedback. Correct or compensate the prediction model. Then a new 
round of optimization begins. This ensures that each optimization and control is based 
on the latest state of the system and helps to reduce the distortion of optimization 
datum due to interference. The important role of output information is to give the 
direction of prediction model correction. Therefore, MPC optimization is not only 
model-based optimization, but also a closed-loop optimization to improve the model. 
Greatly improves the control accuracy of MPC. Enhance the actual adaptability of 
the control object. 

For example, a fairly common prediction error can be described as (1.40). 

e(k + 1) = y(k + 1) − ŷ(k + 1) (1.40) 

By adopting a weighted method to correct the predicted value at the next moment, 
the following results can be obtained as shown in (1.41). 

Ỹp = Yp + he(k + 1) (1.41) 

where Ỹp = [ŷ(k + 1), ŷ(k + 2), ...]T is the system output predicted at the sampling 
point t = (k + 1)T after error correction; h = [h1, h2, ...] is the error weighting 
coefficient. 

After correction, the initial predicted value at the next sampling time is obtained. 
Since the initial predicted value of the moment is used to predict the system output 
value of the moment, the initial predicted value of the ext sampling moment is shown 
in (1.42).
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{
y0(k + i ) = ỹ(k + i + 1) + hi+1e(k + 1) 
y0(k + p) = ỹ(k + p) + h pe(k + 1) 

(1.42) 

The closed-loop negative feedback of the system is constructed by error correc-
tion. The closed-loop negative feedback can improve the stability of the system and 
improve the system performance and control precision. 

1.5 Conclusion 

The energy management strategy of hybrid electric vehicle is a nonlinear and complex 
optimization problem. Researchers began to formulate the rule-based control strategy 
to solve this problem. Rule-based energy management strategy has the characteris-
tics of simple and good implementation. Therefore, it is widely used in the devel-
opment of vehicle control strategy. However, its adaptability to different driving 
cycles varies greatly because of the single control strategy. The logic threshold of 
control strategy should be calibrated repeatedly according to engineering experi-
ence and expert knowledge when making control strategy according to different 
working conditions. It is costly and difficult to achieve optimal control effect of 
energy management. With the development of hybrid electric vehicle technology, 
the rule-based control strategy has been difficult to ensure the optimal system effi-
ciency. Therefore, researchers use the optimal control technology and keep improving 
it. Although good results have been achieved, the design needs to rely on known 
driving cycles, and it cannot be guaranteed to be optimal in other driving cycles. 
With the improvement of microprocessor performance, real-time optimal control 
strategy based on driving cycle prediction has become a research hotspot. However, 
the difficulty of this strategy is to predict driving states. With the development of 
intelligent transportation technology, the prediction of future vehicle state will be 
more and more accurate, which solves the difficulty of model predictive control. 
Therefore, model prediction combined with intelligent transportation technology 
will become a research hotspot. 
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