# Chittaranjan Kole Editor

# Genomic Designing for Biotic Stress Resistant Technical Crops



Genomic Designing for Biotic Stress Resistant Technical Crops Chittaranjan Kole Editor

# Genomic Designing for Biotic Stress Resistant Technical Crops



*Editor* Chittaranjan Kole Raja Ramanna Fellow Department of Atomic Energy, Government of India ICAR-National Institute for Plant Biotechnology New Delhi, India

ISBN 978-3-031-09292-3 ISBN 978-3-031-09293-0 (eBook) https://doi.org/10.1007/978-3-031-09293-0

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

#### Dedicated to



Prof. Roger D. Kornberg Nobel Laureate in Chemistry 2006 Professor of structural biology at Stanford University School of Medicine

With regards and gratitude for his generous appreciations of my scientific contributions and service to the academic community and constant support and encouragement during my professional journey!

### Preface

Crop production is drastically affected due to external or environmental stresses. The biotic stresses cause significant yield losses in the range of 31-42% together with 6-20% loss during the post-harvest stage. The abiotic stresses also aggravate the situation with crop damage in the range of 6-20%. Understanding the mechanisms of interaction of plants with the biotic stresses caused by insects, bacteria, fungi, viruses and oomycetes, etc., and abiotic stresses due to heat, cold, drought, flooding, submergence, salinity, acidity, etc., is critical to develop resilient crop varieties. Global warming and climate change are also causing emergence of new diseases and insects together with newer biotypes and physiological races of the causal agents in one hand and aggravating the abiotic stress problems with additional extremes and unpredictability. Development of crop varieties resistant and/or adaptive to these stresses is highly important. The future mission of crop improvement should, therefore, lay emphasis on the development of crop varieties with optimum genome plasticity by possessing resistance or tolerance to multiple biotic and abiotic stresses simultaneously. A moderate estimation of world population by 2050 is about 9.3 billion that would necessitate an increase of crop production by about 70%. On the other hand, the additional losses due to climate change and global warming somewhere in the range of 10–15% should be minimized. Therefore, increase in the crop yield as well as minimization of its loss should be practiced simultaneously focusing both on 'adaptation' andon 'mitigation.'

Traditional plant breeding practiced in the last century contributed a lot to the science of crop genetic improvement. Classical plant breeding methods including selection, hybridization, polyploidy and mutation effectively catered to the basic  $F^5$  need—food, feed, fiber, fuel and furniture. The advent of molecular breeding and genetic engineering in the latter part of that century complimented classical breeding that addressed the increasing needs of the world. The twenty-first century came with a gift to the geneticists and plant breeders with the strategy of genome sequencing in Arabidopsis and rice followed by the tools of genomics-aided breeding. More recently another revolutionary technique, genome or gene editing, became available for genetic correction of crop genomes! The travel from 'plant breeding' based on visual or perceivable selection to 'molecular breeding' assisted by linked markers to

'transgenic breeding' using genetic transformation with alien genes to 'genomicsaided breeding' facilitated by known gene sequences has now arrived at the age of 'genetic rectification' employing genome or gene editing.

Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerged genome editing for developing resistant, tolerant and/or adaptive crop varieties is useful to students, faculties and scientists in the public and private universities and organizations. Whole genome sequencing of most of the major crop plants followed by genotyping-by-sequencing has facilitated identification of exactly the genes conferring resistance, tolerance or adaptability leading to gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' or 'tailoring' crop genomes with resistance/tolerance to biotic and abiotic stresses.

To my mind, the mission of agriculture in this century is FHNEE security meaning food, health, nutrition, energy and environment security. Hence, genome designing of crops should focus on breeding of varieties with higher yields and improved qualities of the five basic  $F^5$  utilities; nutritional and neutraceutical compounds; and other industrially and aesthetically important products and possibility of multiple utilities. For this purpose of 'precise' breeding, employment of the genetic and genomic techniques individually or in combination as and when required will play a crucial role.

The chapters of the 12 volumes of this twin book series entitled, Genomic Designing for Biotic Stress Resistant Crops and Genomic Designing for Abiotic Stress Resistant Crops will deliberate on different types of biotic and abiotic stresses and their effects on and interaction with crop plants; will enumerate the available genetic diversity with regard to biotic or abiotic stress resistance among cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite crop varieties; will enunciate different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing smart crop varieties with genetic potential to produce F<sup>5</sup> of higher quantity and quality; and also will elaborate the case studies on genome editing focusing on specific genes. Most of these chapters will discuss on the success stories of genetic engineering in the relevant crops specifically for generating crops with resistance and/or adaptability to diseases, insects and abiotic stresses.

There are obviously a number of reviews and books on the individual aspects of plant molecular breeding, genetic engineering and genomics-aided breeding on crops or on agro-economic traits which includes the 100-plus books edited by me. However, there is no comprehensive reviews or books available that have coverage on crop commodity groups including cereals and millets, oilseeds, pulses, fruits and nuts, vegetables and technical or industrial crops and modern strategies in single volumes with precise focuses on biotic and abiotic stresses. The present volumes will fill this gap with deliberations on about 120 important crops or their groups. This volume on *Genomic Designing for Biotic Stress Resistant Technical Crops* includes 11 chapters focused on cassava, cocoa tree, Coconut, coffee, cotton, floricul-tural crops, jute, mulberry, sugarcane, tobacco and yam contributed by 92 scientists from 10 countries including Brazil, China, Costa Rica, D. R. Congo, France, India, Iran, Nigeria, USA, and Venezuela. I remain immensely thankful for their highly useful contributions.

I am indebted to my wife Phullara who as always has assisted me directly in editing these books and indirectly through maintaining an academic ambience to pursue my efforts for science and society pleasantly and peacefully.

New Delhi, India

Chittaranjan Kole

# Contents

| 1 | Genomic Designing for Biotic Stress Resistant Cassava<br>U. N. Ikeogu, I. C. Okwuonu, N. R. Okereke, L. C. Jibuwa,<br>C. Nwadili, S. P. Abah, L. A. Nwachukwu, I. C. Nnaji,<br>C. K. Nkere, J. T. Onyeka, and C. N. Egesi                                                                                                                                                                                                                                                        | 1   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2 | Genomic Designing for Biotic Stress Resistant Cocoa Tree<br>Fredson dos Santos Menezes, Jonathan Javier Mucherino-Muñoz,<br>Cláusio Antônio Ferreira, Saulo Fabrício da Silva Chaves,<br>Ceslaine Barbosa, Livia Santos Lima Lemos, Natalia Jordana,<br>Mariana Carvalho, José Luis Pires, Raner José Santana Silva,<br>Karina Peres Gramacho, Rafael Moysés Alves,<br>Ronan Xavier Corrêa, and Fabienne Micheli                                                                 | 49  |
| 3 | Genomic Designing for Biotic Stress Resistance in Coconut<br>S. V. Ramesh, A. Josephrajkumar, Merin Babu, V. H. Prathibha,<br>V. Aparna, K. S. Muralikrishna, Vinayaka Hegde, and M. K. Rajesh                                                                                                                                                                                                                                                                                   | 115 |
| 4 | Current Challenges and Genomic Advances Toward<br>the Development of Coffee Genotypes Resistant to Biotic Stress<br>Caroline Ariyoshi, Fernanda Freitas de Oliveira,<br>Luciana Harumi Shigueoka, Angelita Garbossi da Silva,<br>Andres Gatica Arias, Jimmy Villalta-Villalobos,<br>Suzana Tiemi Ivamoto-Suzuki, Gustavo Hiroshi Sera,<br>Eveline Teixeira Caixeta, Matheus Ricardo da Rocha,<br>Willian Bucker Moraes, Fábio Luiz Partelli,<br>and Luiz Filipe Protasio Pereira | 159 |
| 5 | Disease Resistance in Cotton<br>Jinfa Zhang and N. Manikanda Boopathi                                                                                                                                                                                                                                                                                                                                                                                                            | 191 |

| 6  | Conventional and Molecular Interventions for Biotic Stress<br>Resistance in Floricultural Crops<br>Vipasha Verma, Akhil Kumar, Jyoti Verma, Priti,<br>and Bhavya Bhargava                                                                                                                                            | 227 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7  | Genomics for Biotic Stress Tolerance in Jute<br>Pratik Satya, Soham Ray, B. S. Gotyal, Kunal Mandal,<br>and Suman Roy                                                                                                                                                                                                | 247 |
| 8  | Genomic Designing for Biotic Stress Resistance in Mulberry<br>K. Vijayan, G. S. Arunakumar, B. N. Gnanesh,<br>Prashanth A. Sangannavar, A. Ramesha, and W. Zhao                                                                                                                                                      | 285 |
| 9  | Genomic Designing for Biotic Stress Resistance in Sugarcane<br>R. Viswanathan, N. Geetha, A. Anna Durai, P. T. Prathima,<br>C. Appunu, B. Parameswari, K. Nithya, T. Ramasubramanian,<br>and A. Selvi                                                                                                                | 337 |
| 10 | <b>Designing Tobacco Genomes for Resistance to Biotic Stresses</b><br>K. Sarala, C. Nanda, K. Baghyalakshmi, Reza Darvishzadeh,<br>K. Prabhakara Rao, U. Sreedhar, and K. Gangadhara                                                                                                                                 | 441 |
| 11 | Biotechnology Approaches in Breeding for Biotic Stress<br>Resistance in Yam ( <i>Dioscorea</i> spp.)<br>Paterne A. Agre, Jean M. Mondo, Alex Edemodu,<br>Ryo Matsumoto, Olufisayo Kolade, Lava P. Kumar,<br>Robert Asiedu, Malachy Akoroda, Ranjana Bhattacharjee,<br>Melaku Gedil, Patrick Adebola, and Asrat Asfaw | 583 |

## Contributors

**Abah S. P.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

Adebola Patrick International Institute of Tropical Agriculture (IITA), Abuja, Nigeria

Agre Paterne A. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

Akoroda Malachy Department of Agronomy, University of Ibadan, Ibadan, Nigeria

Alves Rafael Moysés Embrapa Amazônia Oriental, Belém, Pará, Brazil

**Anna Durai A.** Plant Breeding Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India

Aparna V. ICAR-CPCRI, Kasaragod, Kerala, India

**Appunu C.** Plant Breeding Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India

Arias Andres Gatica School of Biology, University of Costa Rica, San José, Costa Rica

**Ariyoshi Caroline** Biological Science Center, State University of Londrina, Londrina, Paraná, 86057-970 Brazil;

Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, 86047-902 Brazil

Arunakumar G. S. Central Sericultural Research and Training Institute, Srirampura, Mysuru, Karnataka, India

Asfaw Asrat International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

Asiedu Robert International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

Babu Merin ICAR-CPCRI, Regional Station, Kayamkulam, Kerala, India

**Baghyalakshmi K.** ICAR-Central Institute for Cotton Research, Research Station, Coimbatore, India

Barbosa Ceslaine Cocoa Research Center (CEPEC), CEPLAC, Ilhéus, Bahia, Brazil

**Bhargava Bhavya** CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

**Bhattacharjee Ranjana** International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

**Caixeta Eveline Teixeira** Institute of Applied Biotechnology to Agriculture, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900 Brazil;

Empresa Brasileira de Pesquisa Agropecuária (Embrapa Café), Brasília, Distrito Federal, 70770-901 Brazil

Carvalho Mariana Cocoa Research Center (CEPEC), CEPLAC, Ilhéus, Bahia, Brazil

**Corrêa Ronan Xavier** Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil

**Darvishzadeh Reza** Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran

**Egesi C. N.** School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA;

Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

Edemodu Alex International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

**Ferreira Cláusio Antônio** Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil

Gangadhara K. ICAR-Central Tobacco Research Institute, Research Station, Kandukur, Andhra Pradesh, India

Gedil Melaku International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

**Geetha N.** Entomology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, India

**Gnanesh B. N.** Central Sericultural Research and Training Institute, Srirampura, Mysuru, Karnataka, India

**Gotyal B. S.** ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India Gramacho Karina Peres Cocoa Research Center (CEPEC), CEPLAC, Ilhéus, Bahia, Brazil

Hegde Vinayaka ICAR-CPCRI, Kasaragod, Kerala, India

**Ikeogu U. N.** School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA

**Ivamoto-Suzuki Suzana Tiemi** Biological Science Center, State University of Londrina, Londrina, Paraná, 86057-970 Brazil;

Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, 86047-902 Brazil

Manikanda Boopathi N. Department of Plant Biotechnology, CPMB&B, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

**Micheli Fabienne** Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna Km 16, Ilhéus, Bahia, 45662-900 Brazil; CIRAD, UMR AGAP, 34398 Montpellier, France

Mondo Jean M. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria;

Institute of Life and Earth Sciences, Pan African University, University of Ibadan, Ibadan, Nigeria;

Université Evangéliqueen Afrique (UEA), Bukavu, Democratic Republic of Congo

**Mucherino-Muñoz Jonathan Javier** Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna Km 16, Ilhéus, Bahia, 45662-900 Brazil;

Department of Forest Management, Facultad de Ciencias Forestales y Ambientales, Universidad de Los Andes, Mérida, 5101 Venezuela

**de Oliveira Fernanda Freitas** Biological Science Center, State University of Londrina, Londrina, Paraná, 86057-970 Brazil;

Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, 86047-902 Brazil

**da Rocha Matheus Ricardo** Department of Agronomy, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil

dos Santos Menezes Fredson Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna Km 16, Ilhéus, Bahia, 45662-900 Brazil

da Silva Angelita Garbossi Biological Science Center, State University of Londrina, Londrina, Paraná, 86057-970 Brazil;

Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, 86047-902 Brazil **da Silva Chaves Saulo Fabrício** Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil

**Jibuwa L. C.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

Jordana Natalia Cocoa Research Center (CEPEC), CEPLAC, Ilhéus, Bahia, Brazil

Josephrajkumar A. ICAR-CPCRI, Regional Station, Kayamkulam, Kerala, India

Kolade Olufisayo International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

**Kumar Akhil** CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

Kumar Lava P. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

**Lemos Livia Santos Lima** Universidade Federal Do Sul da Bahia, Teixeiras de Freitas, Bahia, Brazil

Mandal Kunal ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India

Matsumoto Ryo International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

**Moraes Willian Bucker** Department of Agronomy, Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil

Muralikrishna K. S. ICAR-CPCRI, Kasaragod, Kerala, India

Nanda C. ICAR-Central Tobacco Research Institute, Research Station, Hunsur, Karnataka, India

**Nithya K.** Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, India

Nkere C. K. Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

**Nnaji I. C.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

**Nwachukwu L. A.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

**Nwadili C.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

**Okereke N. R.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

#### Contributors

**Okwuonu I. C.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

**Onyeka J. T.** Department of Biotechnology and Product Development, National Root Crops Research Institute, Umuahia, Abia State, Nigeria

**Parameswari B.** ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, India

**Pereira Luiz Filipe Protasio** Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, 86047-902 Brazil; Empresa Brasileira de Pesquisa Agropecuária (Embrapa Café), Brasília, Distrito Federal, 70770-901 Brazil

**Partelli Fábio Luiz** Center of North of Espírito Santo, Federal University of Espírito Santo, São Mateus, Espírito Santo, Brazil

Pires José Luis Cocoa Research Center (CEPEC), CEPLAC, Ilhéus, Bahia, Brazil

Prabhakara Rao K. ICAR-Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh, India

Prathibha V. H. ICAR-CPCRI, Kasaragod, Kerala, India

**Prathima P. T.** Plant Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India

**Priti** CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

Rajesh M. K. ICAR-CPCRI, Kasaragod, Kerala, India

**Ramasubramanian T.** Entomology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, India

Ramesh S. V. ICAR-CPCRI, Kasaragod, Kerala, India

Ramesha A. Seribiotech Research Laboratory, Bengaluru, Karnataka, India

**Ray Soham** ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India

**Roy Suman** ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India

Sangannavar Prashanth A. Central Silk Board, BTM Layout, Madiwala, Bengaluru, Karnataka, India

Sarala K. ICAR-Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh, India

Satya Pratik ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India **Selvi A.** Plant Biotechnology Section, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India

**Sera Gustavo Hiroshi** Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, Brazil

**Shigueoka Luciana Harumi** Area of Genetic Improvement and Plant Propagation, Paraná Rural Development Institute, Londrina, Paraná, Brazil

Silva Raner José Santana Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil

Sreedhar U. ICAR-Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh, India

**Verma Jyoti** CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

**Verma Vipasha** CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

Vijayan K. Central Silk Board, BTM Layout, Madiwala, Bengaluru, Karnataka, India

**Villalta-Villalobos Jimmy** School of Biology, University of Costa Rica, San José, Costa Rica

**Viswanathan R.** Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, India

**Zhang Jinfa** Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA

**Zhao W.** Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China

# Abbreviations

| 2D gel   | Two-dimension gel                                   |
|----------|-----------------------------------------------------|
| Aaa      | Acidovorax avenae subsp. avenae                     |
| ABA      | Abscisic acid                                       |
| ABS      | Access-benefit sharing                              |
| ACAC     | Agro-Chemical Advisory Committee                    |
| ACGC     | Arabica Coffee Genome Consortium                    |
| ACMV     | African cassava mosaic virus                        |
| ACT      | Artemis comparison tool                             |
| AE       | Array express                                       |
| AFLP     | Amplified fragment length polymorphism              |
| AGBs     | Active Germplasm Banks                              |
| AgNPs    | Silver nanoparticles                                |
| AGO      | Argonaute                                           |
| Ai       | Active ingredient                                   |
| AICEM    | All India Coordinated Experiment on Mulberry        |
| AICRP(S) | All India Coordinated Research Project on Sugarcane |
| AM       | Association mapping                                 |
| AMP1     | Antimicrobial protein 1                             |
| AMT      | Agrobacterium-mediated transformation               |
| AS       | Alternative splicing                                |
| Avr      | Avirulence gene                                     |
| AVT      | Advanced varietal trial                             |
| AYT      | Advanced yield trial                                |
| BAC      | Bacterial artificial chromosome                     |
| BB       | Bacterial blight                                    |
| BC       | Backcross                                           |
| BG       | Bollgard                                            |
| BHB      | Bacterial halo blight                               |
| bHLH     | Basic helix-loop-helix                              |
| BILs     | Backcross inbred lines                              |
| BLS      | Brown leaf spot                                     |

| BSA            | Bulk segregant analysis                                        |
|----------------|----------------------------------------------------------------|
| Bt             | Bacillus thuringiensis                                         |
| BTH            | Benzothiadiazole                                               |
| Bti <i>B</i> . | Thuringiensis serovar israelensis                              |
| bZIP           | Basic Leucine Zipper Domain                                    |
| CAB            | Cocoa from the Brazilian Amazon                                |
| CABI           | Centre for Agriculture and Bioscience International            |
| CAD            | Cassava anthracnose disease                                    |
| CaMXMT1        | Chrysanthemum methylxanthinemethyltransferase 1                |
| CAPS           | Cleaved amplified polymorphic sequence                         |
| Cas            | CRISPR-associated protein                                      |
| Cas 9          | CRISPR-associated protein 9                                    |
| CaXMT1         | Chrysanthemum xanthosinemethyltransferase 1                    |
| CBB            | Cassava bacteria blight                                        |
| CBB            | Coffee berry borer                                             |
| CBD            | Convention on biological diversity                             |
| CBSD           | Cassava brown streak disease                                   |
| CCCVd          | Coconut cadang-cadang viroid                                   |
| CcPDS          | Phytoene desaturase                                            |
| CDB            | Coffee berry disease                                           |
| cDNA           | Complementary DNA                                              |
| CE             | Carboxylesterase family                                        |
| CFDV           | Coconut foliar decay virus                                     |
| CGIAR          | Consultative Group for International Agricultural Research     |
| CGM            | Cassava green mite                                             |
| CGRD           | Coconut Genetic Resources Database                             |
| CICF           | Centro de investigação das ferrugens do cafeeiro               |
| CIM            | Composite interval mapping                                     |
| CIPO           | Canadian Intellectual Property Office                          |
| CIRAD          | Centre de Coopération Internationale en Recherche Agronomique  |
|                | pour le Développement                                          |
| CLM            | Coffee leaf miner                                              |
| CLR            | Coffee leaf rust                                               |
| cM             | Centimorgan                                                    |
| CMD            | Cassava mosaic disease                                         |
| CMGV           | Cassava mosaic geminivirus                                     |
| CMS            | Cytoplasmic male sterility                                     |
| CMV            | Cucumber mosaic virus                                          |
| CNRA           | Center National de Recherche Agronomique                       |
| CNTs           | Carbon nanotubes                                               |
| CNV            | Cacao necrosis virus                                           |
| COGENT         | International Coconut Genetic Resources Network                |
| CORESTA        | Cooperation Centre for Scientific Research Relative to Tobacco |
| COS            | Conserved ortholog sequences                                   |
| COS-II         | Conserved ortholog set II                                      |

| COSTREL | Combinatorial super transformation of transplastomic recipient lines |
|---------|----------------------------------------------------------------------|
| СР      | Coat protein                                                         |
| CPs     | Cuticular proteins                                                   |
| CpYGFP  | Chiridius poppei yellow-green fluorescent protein                    |
| CRIN    | Cocoa Research Institute of Nigeria                                  |
| CRIP    | Coffee gRNA Identification Program                                   |
| CRISPR  | Clustered regularly interspaced short palindromic repeats            |
| cry1Ab  | Crystal protein 1 Ab                                                 |
| CSR&TI  | Central Sericultural Research and Training Institute                 |
| CSSLs   | Chromosome Segment Substitution Lines                                |
| CSSV    | Cacao swollen shoot virus                                            |
| CTRI    | Central Tobacco Research Institute                                   |
| CVB     | Chrysanthemum virus B                                                |
| CVRC    | Central Varietal Release Committee                                   |
| CWR     | Crop wild relatives                                                  |
| CYD     | Coconut yellow decline                                               |
| CYMV    | Cacao yellow mosaic virus                                            |
| dai     | Days after inoculation                                               |
| DArT    | Diversity array technology                                           |
| DAS     | Days after sowing                                                    |
| DAVID   | Database for annotation, visualization and integrated discovery      |
| dCAPS   | Derived CAPS                                                         |
| DDBJ    | DNA Databank of Japan                                                |
| DDVP    | Dichlorvos                                                           |
| DGA     | Defence gene analog                                                  |
| DH      | Doubled haploid                                                      |
| DPMA    | German Patent and Trademark Office                                   |
| DRs     | Disclosure requirements                                              |
| DSBs    | Double-strand breaks                                                 |
| dsRNA   | Double-stranded RNA                                                  |
| DUS     | Distinctness, uniformity and stability                               |
| EACMV   | East African cassava mosaic virus                                    |
| EBI     | European Bioinformatics Institute                                    |
| EC      | Effective concentration                                              |
| EC      | Emulsified concentrate                                               |
| EFSA    | European Food Safety Authority                                       |
| eIF4E   | Eukaryotic translation initiation factor 4E                          |
| EIL     | Economic injury level                                                |
| ELISA   | Enzyme-linked immunosorbent assay                                    |
| EMBL    | European Molecular Biology Laboratory                                |
| EMS     | Ethyl methanesulfonate                                               |
| EPO     | European Patent Office                                               |
| ERF     | Ethylene-responsive factor                                           |
| ERF     | ETS2 repressor factor                                                |
| ERF1    | Ethylene-responsive factor 1                                         |

| ERIC-PCR | Enterobacterial repetitive intergenic consensus-PCR              |
|----------|------------------------------------------------------------------|
| EST      | Expressed sequence tag                                           |
| EST-SSR  | EST-derived SSR                                                  |
| ET       | Ethylene                                                         |
| ETI      | Activating effector-triggered immunity                           |
| ETR      | Electron transport rate                                          |
| F1       | First filial generation                                          |
| FaNES1   | Frankellianerolidol synthase 1                                   |
| FAO      | Food and Agriculture Organization                                |
| FAOSTAT  | Food and Agriculture Organization Corporate Statistical Database |
| FCF      | Fungus culture filtrate                                          |
| FCTC     | Framework Convention on Tobacco Control                          |
| FCV      | Flue cured virginia                                              |
| FDV      | Fiji disease virus                                               |
| FEC      | Friable embryogenic calli                                        |
| FISH     | Fluorescence in situ hybridization                               |
| FOV      | Fusarium oxysporum f. sp. Vasinfectum                            |
| FPO      | Free Patents Online                                              |
| FW       | Fusarium wilt                                                    |
| FYM      | Farm yard manure                                                 |
| GA3      | Gibberellic acid                                                 |
| GAB      | Genomics-assisted breeding                                       |
| GAP      | Good agricultural practice                                       |
| GBLUP    | Genomic best linear unbiased prediction                          |
| GBS      | Genotyping-by-sequencing                                         |
| GE       | Genome engineering                                               |
| GEA      | Genomic Expression Archive                                       |
| GEBVs    | Genomic-estimated breeding values                                |
| GEO      | Gene Expression Omnibus                                          |
| GhAAT    | Gerbera hybrida aspartate aminotransferase                       |
| GhFAH    | Gerbera hybrida fumarylacetoacetate hydrolase                    |
| GhHGD    | Gerbera hybrida homogentisate 1,2-dioxygenase                    |
| GhHPD    | Gerbera hybrida 4-hydroxyphenylpyruvate dioxygenase              |
| GhTAT    | Gerbera hybrida tyrosine aminotransferase                        |
| GLM      | General linear models                                            |
| GM       | Genetically modified                                             |
| GMD      | Golm Metabolome Database                                         |
| GMO      | Genetically modified organism                                    |
| GO       | Gene ontology                                                    |
| GRLs     | Guidance residue levels                                          |
| gRNA     | Guide RNA                                                        |
| GRs      | Genetic resources                                                |
| GS       | Genomic selection                                                |
| GSRs     | Genome space sequence reads                                      |
| GSS      | Genomic survey sequences                                         |

| GTE      | GATA transcription factor                                          |
|----------|--------------------------------------------------------------------|
| GUS      | $\beta$ -glucuronidase                                             |
| GWAS     | Genome-wide association study/studies                              |
| $H_2O_2$ | Hydrogen peroxide                                                  |
| hai      | Hours after inoculation                                            |
| HdT      | Timor hybrid                                                       |
| HESP     | Haustorial-expressed secreted protein                              |
| HG       | Homologous groups                                                  |
| hpaGXoo  | HarpinXoo                                                          |
| hpRNA    | Hairpin RNA                                                        |
| HR       | Hypersensitive response                                            |
| HSF      | Heat shock factor                                                  |
| HSP      | Heat shock protein                                                 |
| ICAR     | Indian Council of Agricultural Research                            |
| ICAR-SBI | ICAR—Sugarcane Breeding Institute                                  |
| ICG      | International Coconut Gene Bank                                    |
| ICGD     | International Cocoa Germplasm Database                             |
| ICGT     | International Cocoa Genbank, Trinidad                              |
| ICMV     | Indian cassava mosaic virus                                        |
| ICO      | International Coffee Organization                                  |
| ICS      | Imperial College Selection                                         |
| ICTV     | International Committee on Taxonomy of Viruses                     |
| IDM      | Integrated disease management                                      |
| IGH      | Intergeneric hybrids                                               |
| IGS      | Intergenic spacer                                                  |
| IITA     | International Institute of Tropical Agriculture                    |
| IM       | Interval mapping                                                   |
| Indels   | Insertion or deletion mutations                                    |
| INM      | Integrated nutrient management                                     |
| INSDC    | The International Nucleotide Sequence Database Collaboration       |
| IPM      | Integrated pest management                                         |
| IPM/IDM  | Integrated management of pests and disease                         |
| IPR      | Intellectual Property Rights                                       |
| IRAD     | Institute of Agricultural Research for Development                 |
| IRD      | Institut de Recherche pour le Développement                        |
| ISAAA    | International Service for the Acquisition of Agri-biotech Applica- |
|          | tions                                                              |
| ISH      | Interspecific hybrids                                              |
| ISSCT    | International Society of Sugarcane Technologists                   |
| ISSR     | Inter-simple sequence repeat                                       |
| ISTR     | Inverse sequence tagged repeat                                     |
| ITPGRFA  | International Treaty for Plant Genetic Resources for Food and      |
|          | Agriculture                                                        |
| ITS      | Internal transcribed spacer                                        |
| JA       | Jasmonic acid                                                      |
|          |                                                                    |

| JPO      | Japan Patent Office                                          |
|----------|--------------------------------------------------------------|
| KASP     | Kompetitive allele-specific PCR                              |
| KEGG     | Kyoto Encyclopedia of Genes and Genomes                      |
| LD       | Linkage disequilibrium                                       |
| LD50     | Lethal dose 50                                               |
| LG       | Linkage group                                                |
| LIWRKY   | Lilium W-box binding transcription factor                    |
| LIWRKY10 | Lilium W-box binding transcription factor 10                 |
| LIWRKY12 | Lilium W-box binding transcription factor 12                 |
| LIWRKY3  | Lilium W-box binding transcription factor 3                  |
| LIWRKY4  | Lilium W-box binding transcription factor 4                  |
| LIWRKY5  | Lilium W-box binding transcription factor 5                  |
| LMOs     | Living modified organisms                                    |
| LMoV     | Lily mottle virus                                            |
| LOD      | Logarithm of odds                                            |
| LrPR10-2 | Lilium regale pathogenesis-related gene—2                    |
| LrPR10-4 | Lilium regale pathogenesis-related gene—4                    |
| LrPR10-5 | Lilium regale pathogenesis-related gene—5                    |
| LrPR10-6 | Lilium regale pathogenesis-related gene—6                    |
| LrPR10-7 | Lilium regale pathogenesis-related gene—7                    |
| LrPR10-9 | Lilium regale pathogenesis-related gene—9                    |
| LRR      | Lucien-rich repeat                                           |
| LRR-RLK  | Llr-like kinase                                              |
| LSA      | Locus-specific amplification                                 |
| LSD      | Leaf scald disease                                           |
| Lxx      | Leifsoniaxyli subsp. xyli                                    |
| LY       | Lethal yellowing                                             |
| MAB      | Marker-assisted breeding                                     |
| MABC     | Marker-assisted backcrossing                                 |
| MACC     | Marker-assisted complex or convergent crossing               |
| MAGIC    | Multiparent advanced generation intercross                   |
| MAPK     | Mitogen-activated protein kinase                             |
| MARB     | Marker-assisted resistance breeding                          |
| MAS      | Marker-assisted selection                                    |
| mcbt     | Modified <i>cry1Ab</i> gene of <i>Bacillus thuringiensis</i> |
| MegaN    | Meganuclease                                                 |
| MeJA     | Methyl jasmonate                                             |
| miRNA    | Micro-RNA                                                    |
| MLO      | Mildew resistance locus O                                    |
| MLT      | Multi-location trial                                         |
| MMS      | Methyl methane sulfonate                                     |
| MNPs     | Magnetic nanoparticles                                       |
| MNs      | Meganucleases                                                |
| MoNA     | Massbank of North America                                    |
| MRL      | Maximum residue level                                        |

| MSNs    | Mesoporous silica NPs                         |
|---------|-----------------------------------------------|
| MTD     | Mannitol dehydrogenase                        |
| MTI     | Mite tolerability index                       |
| MYB     | Myeloblastosis                                |
| MYC     | Master regulator of cell                      |
| NACN    | Acetylcysteine                                |
| NaDH    | Nicotiana attenuata data hub                  |
| NattCyc | N. attenuata                                  |
| NBS     | National Bureau of Standards                  |
| NBS     | Nucleotide-binding site                       |
| NCBI    | National Center for Biotechnology Information |
| nCBP    | Novel cap-binding protein                     |
| NDR1    | Non-race-specific disease resistance          |
| NFYC    | Nuclear transcription factor Y                |
| NGS     | Next-generation sequencing                    |
| NHEJ    | Non-homologous end-joining                    |
| NIH     | National Human Genome Research Institute      |
| NILs    | Near-isogenic lines                           |
| NIX     | Nicotiana multiple (X) genome                 |
| NMR     | Nuclear magnetic resonance                    |
| NPBTs   | New plant breeding technologies               |
| NPL     | Non-patent literature                         |
| NPR     | Non-expressor or pathogenicity related        |
| NPs     | Nanoparticles                                 |
| NPV     | Nuclear polyhedrosis virus                    |
| NSKS    | Neem seed kernel suspension                   |
| OPR3    | Oxoplytodienotae reductase 1-like             |
| ORF     | Open reading frame                            |
| OXO     | Oxalate oxidase                               |
| PAM     | Proto spacer adjacent motif                   |
| PAMPs   | Pathogen-associated molecular patterns        |
| PB      | Pokkahboeng                                   |
| PBR     | Plant Breeders' Rights                        |
| PCA     | Principal coordinate analysis                 |
| PCT     | Patent Cooperation Treaty                     |
| PCV     | Peanut clump virus                            |
| PDB     | Protein Data Bank                             |
| PDR     | Pathogen-derived resistance                   |
| PGDBs   | Pathway-genome databases                      |
| PI      | Proteinase inhibitor                          |
| PIB     | Population of improved S. barberi             |
| PIO     | Population of improved S. officinarum         |
| PIR     | Population of improved S. robustum            |
| PIR     | Protein Information Resource                  |
| PIS     | Population of improved S. spontaneum          |

| POGs      | Peroxidase genes                                            |
|-----------|-------------------------------------------------------------|
| PPB       | Participatory plant breeding                                |
| PPVFRA    | Protection of Plant Varieties and Farmers' Rights Authority |
| PR        | Pathogenesis related                                        |
| PR10      | Pathogenesis-related 10                                     |
| PRR       | Pachymetra root rot                                         |
| PRRs      | Pattern recognition receptors                               |
| PRT       | Progeny row trial                                           |
| PTGS      | Post-transcriptional gene silencing                         |
| PTIPAMP   | Triggered immunity                                          |
| PVP       | Plant variety protection                                    |
| PVY       | Potato virus Y                                              |
| PYT       | Preliminary/primary yield trial                             |
| QTA       | Quantitative trait allele                                   |
| QTL       | Quantitative trait locus                                    |
| QTLs      | Quantitative trait loci                                     |
| R         | Resistance                                                  |
| RAD sqe   | Restriction site-associated DNA sequencing                  |
| RAMP      | Random amplified microsatellite polymorphism                |
| RAPD      | Random amplified polymorphic DNA                            |
| REP-PCR   | Repetitive element sequence-based PCR                       |
| RFLP      | Restricted fragment length polymorphism                     |
| RFS       | Rainfed selection                                           |
| RGA       | Resistance gene analog                                      |
| RGAP      | Resistance gene analog polymorphism                         |
| R-gene    | Resistance gene                                             |
| RhMLO     | Rhodopsin mildew resistance locus O                         |
| RhMLO1    | Rhodopsin mildew resistance locus O 1                       |
| RhMLO2    | Rhodopsin mildew resistance locus O 2                       |
| RhMLO3    | Rhodopsin mildew resistance locus O 3                       |
| RILs      | Recombinant inbred lines                                    |
| RISC      | RNA-induced silencing complex                               |
| RKHS      | Reproducing Kernel Hilbert space                            |
| RKN       | Root-knot nematode                                          |
| RLK       | Receptor-like kinase                                        |
| RLKs-LRRs | Receptor-like kinases LRR                                   |
| RNAi      | RNA interference                                            |
| RNA-seq   | RNA sequencing                                              |
| ROS       | Reactive oxygen species                                     |
| RP        | Recurrent parent                                            |
| Rpp1      | Recognition of Peronospora Parasitica                       |
| RR        | Roundup Ready                                               |
| RSD       | Ratoon stunting disease                                     |
| RTP1      | Rust transferred protein 1                                  |
| RT-qPCR   | Quantitative reverse transcription PCR                      |
| -         | =                                                           |

| RWD        | Root (wilt) disease                             |
|------------|-------------------------------------------------|
| SA         | Salicylic acid                                  |
| SACMV      | South African cassava mosaic virus              |
| SAGE       | Serial analysis of gene expression              |
| SAH        | Semi-autotrophic hydroponic                     |
| SAR        | Systemic acquired resistance                    |
| SCAR       | Sequence-characterized amplified region         |
| SCBV       | Sugarcane bacilliform virus                     |
| SCGS       | Sugarcane grassy shoot disease                  |
| SCMMV      | Sugarcane mild mosaic virus                     |
| SCMV       | Sugarcane mosaic virus                          |
| SCSMaV     | Sugarcane striate mosaic associated virus       |
| SCSMV      | Sugarcane steak mosaic virus                    |
| SCW        | Silicon carbide whiskers                        |
| SCWL       | Sugarcane white leaf disease                    |
| ScYLV      | Sugarcane yellow leaf virus                     |
| SD         | Single dose                                     |
| SES        | Standard evaluation system                      |
| SFP        | Single feature polymorphism                     |
| SGN        | Sol Genomics Networks                           |
| sgRNA      | Single guide RNA                                |
| shRNA      | Short hairpin RNA                               |
| SIB        | Swiss Institute of Bioinformatics               |
| siRNA      | Small interfering RNA                           |
| SLCMV      | Sri Lankan cassava mosaic virus                 |
| SNP        | Single nucleotide polymorphism                  |
| Solana Cyc | Solanaceae database                             |
| SRA        | Sequence Read Archive                           |
| SRAP       | Sequence-related amplified polymorphism         |
| SrMV       | Sorghum mosaic virus                            |
| SSA        | Sub-Saharan Africa                              |
| SSAP       | Sequence-specific amplification polymorphism    |
| SSH        | Suppression subtractive hybridization           |
| SSLP       | Simple sequence length polymorphism             |
| SSNs       | Sequence-specific nucleases                     |
| SSR        | Simple sequence repeat                          |
| ssRNA      | Single-stranded RNA                             |
| STR        | Short tandem repeat                             |
| STRs       | Short repetitions in tandem                     |
| STS        | Sequence tagged site                            |
| SUCEST     | Sugarcane expressed sequence tags               |
| SV1        | Somaclonal variant-1                            |
| TAC        | Transformation-competent artificial chromosome  |
| TAL        | Transcription activator-like                    |
| TALENs     | Transcription activator-like effector nucleases |

| TRIA        | Tissue-blot immunoassay                               |  |  |  |
|-------------|-------------------------------------------------------|--|--|--|
| TDFs        | Transcript-derived fragments                          |  |  |  |
| T-DNA       | Transfer DNA                                          |  |  |  |
| TEV         | Tobacco etch virus                                    |  |  |  |
| TF          | Transcription factor                                  |  |  |  |
| TGATGACG    | Binding (TGA) transcription factors                   |  |  |  |
| TGI         | Tobacco Genome Initiative                             |  |  |  |
| TIGR        | The Institute of Genome Research                      |  |  |  |
| TK          | Traditional knowledge                                 |  |  |  |
| TICV        | Tobacco leaf curl virus                               |  |  |  |
| TMV         | Tobacco mosaic virus                                  |  |  |  |
| TobE A      | Tobacco Expression Atlas                              |  |  |  |
| TOREAC      | Tobacco transcription factors                         |  |  |  |
| TUDFAC      | Third party appotntion                                |  |  |  |
|             | Turbalass 6 phosphota synthese                        |  |  |  |
|             | Torrat racion amplifaction nolymorphism               |  |  |  |
|             | Target region amplification polymorphism              |  |  |  |
| TRIPS       | Trade-Related Aspects of Intellectual Property Rights |  |  |  |
| 1SH<br>TOWN | Irinidad selected hybrids                             |  |  |  |
| TSWV        | Tomato spotted wilt virus                             |  |  |  |
| TVMV        | Tobacco vein mottling virus                           |  |  |  |
| UC          | Davis University of California, Davis                 |  |  |  |
| UNICAMP     | Universidade estadual de Campinas                     |  |  |  |
| UniParc     | UniProt Archive                                       |  |  |  |
| UPOV        | Union for the Protection of New Varieties of Plants   |  |  |  |
| USDA        | United States Department of Agriculture               |  |  |  |
| USDA-ARS    | USDA—Agricultural Research Service                    |  |  |  |
| UV          | Ultraviolet                                           |  |  |  |
| UYT         | Uniform yield trial                                   |  |  |  |
| VIGS        | Virus-induced gene silencing                          |  |  |  |
| VPg         | Viral genome-linked protein                           |  |  |  |
| VW          | Verticillium wilt                                     |  |  |  |
| WCSRG       | World Collection of Sugarcane and Related Grasses     |  |  |  |
| WFT         | Western flower thrips                                 |  |  |  |
| WGP         | Whole genome profile                                  |  |  |  |
| WHO         | World Health Organization                             |  |  |  |
| WIPO        | World Intellectual Property Organization              |  |  |  |
| WLS         | White leaf spot                                       |  |  |  |
| WNTD        | World No Tobacco Day                                  |  |  |  |
| WRKY        | W-box binding transcription factor                    |  |  |  |
| WTO         | World Trade Organization                              |  |  |  |
| WUE         | Water use efficiency                                  |  |  |  |
| Xam         | Xanthomonas axonopodis pv. manihotis                  |  |  |  |
| Xcm         | Xanthomonas citri py. malvacearum                     |  |  |  |
| YAC         | Yeast artificial chromosome                           |  |  |  |
| YAD         | Yam anthracnose disease                               |  |  |  |

| YLD   | Yellow leaf disease     |
|-------|-------------------------|
| YLS   | Yellow leaf syndrome    |
| YMV   | Yam mosaic virus        |
| ZFN   | Zinc finger nuclease    |
| ZnONP | Zinc oxide nanoparticle |
|       |                         |

# Chapter 1 Genomic Designing for Biotic Stress Resistant Cassava



U. N. Ikeogu, I. C. Okwuonu, N. R. Okereke, L. C. Jibuwa, C. Nwadili, S. P. Abah, L. A. Nwachukwu, I. C. Nnaji, C. K. Nkere, J. T. Onyeka, and C. N. Egesi

Abstract Cassava is essential food security, mostly in Africa, South America, and other major regions of the world where cassava is cultivated. It is very high in caloric value and resilient to climate change, drought, and low fertility. Biotic stress limits cassava cultivation and utilization with an impact that could range from 20 to 90% loss in yield and food quality. Diseases including viral, fungal, bacterial, and nematodes as well as diverse kinds of pests such as cassava whitefly and cassava green mites (CGM) are considered important biotic factors that impact cassava towards genomic designing for biotic stress resistance. These techniques range from traditional breeding to genomic selections and other new breeding technologies such as genetic engineering and genome editing. This chapter outlines the most significant biotic stresses in cassava, their prevalence, and impact on yield as well as different technologies being utilized towards the development of biotic stress-resistant cassava.

Keywords Cassava  $\cdot$  Biotic stresses  $\cdot$  Genomic selection  $\cdot$  Genetic engineering  $\cdot$  Genome editing

#### 1.1 Biotic Stress in Cassava

Cassava, *Manihot esculenta* Crantz, (Family Euphorbiaceae) is an essential staple crop cultivated across the tropics and subtropics primarily for its starchy roots, which for over a billion serves as a source of calories and for industrial purposes (Lyons et al.

U. N. Ikeogu (🖂) · C. N. Egesi

e-mail: uni3@cornell.edu

C. N. Egesi e-mail: cne22@cornell.edu

School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA

I. C. Okwuonu · N. R. Okereke · L. C. Jibuwa · C. Nwadili · S. P. Abah · L. A. Nwachukwu · I. C. Nnaji · C. K. Nkere · J. T. Onyeka · C. N. Egesi

Department of Biotechnology and Product Development, National Root Crops Research Institute, Km 8 Ikot Ekpene Road, Umuahia, Abia State, Nigeria

<sup>©</sup> The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 C. Kole (ed.), *Genomic Designing for Biotic Stress Resistant Technical Crops*, https://doi.org/10.1007/978-3-031-09293-0\_1

2021; Rabbi et al. 2014a). Cassava leaves also have considerable nutritional qualities and serve as food for humans and animals alike (El-Sharkawy 2004; Wasonga et al. 2020). Cassava is an ideal food security crop with the ability to produce optimal vields and can be stored in the ground for long periods allowing harvest flexibility while adapting to the effects of drought and marginal soils (Ceballos et al. 2020). Despite its many strengths, cassava production is hindered by a myriad of abiotic and biotic stresses. Across cassava growing regions, diverse pathogens (including viruses, phytoplasma, bacteria, or fungi) have been implicated in several cassava diseases, and approximately 200 pests (insects and mites) are known to feed off the crop inadvertently causing severe damages and enabling the spread of diseases (Herren and Neuenschwander 1991; Lozano and Booth 1974). Over the years, pests and disease management strategies have seen some successes in mitigating the spread of cassava pests in regions where they are alien, however, mitigation or elimination efforts for diseases caused by viruses or pests native to a region had been challenging (Herren and Neuenschwander 1991; Legg et al. 2015). Current efforts to combat cassava diseases include the development of early phenotyping and detection tools (Okereke et al. 2017; Ramcharan et al. 2017; Sambasivam and Opiyo 2021), cleaning infected planting materials (Maruthi et al. 2019), and genetic improvement for disease resistance through conventional and molecular breeding techniques (Ezenwaka et al. 2018; Rabbi et al. 2014b; Tembo et al. 2017; Wolfe et al. 2015), genetic engineering (Vanderschuren et al. 2012), and genome editing (Gomez et al. 2019; Mehta et al. 2019). This book chapter will focus on the most economically important biotic factors that impede cassava production and we will be reviewing the current biotechnological strategies to develop disease-resistant cassava varieties. In so doing, we identify challenges from these approaches, highlight avenues for further research and conclude with an outlook for pest and disease management in cassava.

#### 1.1.1 Prevalent Cassava Biotic Factors

#### 1.1.1.1 Cassava Diseases

Like most root and tuber crops, cassava is propagated vegetatively to ensure crop uniformity from one planting season to the next. This, unfortunately, contributes to the proliferation and spread of diseases throughout cassava-producing regions. With increasing globalization and urbanization in cassava growing regions, as well as the variability and pervasiveness of climate change, native and emerging cassava disease outbreaks are on the rise in Africa, the Asia–Pacific, and Latin America. Both foreign or alien and native pests and disease pathogens that negatively impact cassava production are not so easy to mitigate (Legg et al. 2015). In sub-Saharan Africa (SSA), viral diseases including cassava mosaic disease (CMD) and cassava brown streak diseases (CBSD) cause devastating losses, affecting the food and income of, especially limited-resource farmers. Many economically important diseases significantly contribute to yield losses of the host crop, attacking the roots, stems, or leaves. The pathogen, *Xanthomonas axonopodis* pv. *manihotis* which causes cassava bacterial blight (CBB) disease ranks as the 6th most relevant bacterial pathogen in the world (Mansfield et al. 2012). For some of these diseases, their transmission to a cassava host plant is carried out by destructive pests, which feed off the crop, including its succulent green leaves and stems.

#### 1.1.1.2 Cassava Pests

By damaging the leaves, cassava pests affect the photosynthetic capacity of the crop. Several pests damage cassava while feeding, but only a few are considered to be economically important (Table 1.1). There is a significant variation among pests that attack cassava by continent, and foreign pests that are inadvertently introduced in a region where they are not common, cause devastating losses. For example, arthropods such as the cassava mealybug (*Phenacoccusmanihoti* Mat.-Ferr.) and CGM (*Mononychellus tanajoa* Bondar), introduced into Africa and South-East Asia in the 1970s and early 2000s, respectively, potentially cause up to 50% yield losses in local cassava crops (Graziosi et al. 2016). Also, prevailing seasons impact the activities of pests. Arthropod pest complexes for instance, mostly occur in the dry season and not so much in humid regions of heavier rains (Lebot 2008).

| <b>5</b> 1       |                              |         | 6            | 6 6           |  |
|------------------|------------------------------|---------|--------------|---------------|--|
| Type of pathogen | Disease                      | Regions | Regions      |               |  |
|                  |                              | Africa  | Asia–Pacific | Latin-America |  |
| Virus            | Cassava mosaic disease       | x       | x            |               |  |
|                  | Cassava brown streak disease | x       |              |               |  |
|                  | Cassava frogskin disease     |         | X            | x             |  |
| Bacteria         | Cassava bacterial blight     | x       | X            | x             |  |
| Fungi            | Cassava brown leaf spot      | x       | X            | x             |  |
|                  | Cassava white leaf spot      | x       | X            | x             |  |
|                  | Cassava root rot disease     | x       | x            | x             |  |
|                  | Cassava anthracnose disease  | x       | x            | x             |  |
| Pests            | Cassava mealybug disease     | x       | X            | x             |  |
|                  | Cassava green mite disease   | x       | x            | x             |  |

 Table 1.1
 Some economically important biotic stresses across cassava growing regions

Source Lebot (2008)