
Springer Proceedings in Mathematics & Statistics

Alma L. Albujer · Magdalena Caballero · 
Alfonso García-Parrado · 
Jónatan Herrera · Rafael Rubio   Editors

Developments 
in Lorentzian 
Geometry
GeLoCor 2021, Cordoba, Spain, 
February 1–5



Springer Proceedings in Mathematics &
Statistics

Volume 389



This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including data science, operations research and optimization. In addition
to an overall evaluation of the interest, scientific quality, and timeliness of each
proposal at the hands of the publisher, individual contributions are all refereed to the
high quality standards of leading journals in the field. Thus, this series provides the
research community with well-edited, authoritative reports on developments in the
most exciting areas of mathematical and statistical research today.



Alma L. Albujer ·Magdalena Caballero ·
Alfonso García-Parrado · Jónatan Herrera ·
Rafael Rubio
Editors

Developments in Lorentzian
Geometry
GeLoCor 2021, Cordoba, Spain, February 1–5



Editors
Alma L. Albujer
Departamento de Matemáticas
University of Córdoba
Córdoba, Spain

Alfonso García-Parrado
Departamento de Matemáticas
University of Córdoba
Córdoba, Spain

Rafael Rubio
Departamento de Matemáticas
University of Córdoba
Córdoba, Spain

Magdalena Caballero
Departamento de Matemáticas
University of Córdoba
Córdoba, Spain

Jónatan Herrera
Departamento de Matemáticas
University of Córdoba
Córdoba, Spain

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-3-031-05378-8 ISBN 978-3-031-05379-5 (eBook)
https://doi.org/10.1007/978-3-031-05379-5

Mathematics Subject Classification: 53B30, 53B35, 83C05, 83C40, 83C60, 83C75, 83C57, 58B20,
14J70, 58A30

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2384-9061
https://orcid.org/0000-0002-3278-9531
https://orcid.org/0000-0003-3038-5514
https://doi.org/10.1007/978-3-031-05379-5


Organization

GELOCOR 2021 was organized by the Department of Mathematics, Univeristy of
Córdoba. The conference was funded by the research group PAIDI FQM398 of
Córdoba University, by the Regional Government of Andalusia, the Spanish national
projects MTM2016-78807-C2-1-P andMTM2016-78807-C2-2-P, and the European
Union with FEDER funds.

Scientific Commitee

Luis J. Alías, University of Murcia, Spain
Anna María Candela, University of Bari Aldo Moro, Italy
Eduardo García-Río, University of Santiago de Compostela, Spain
Jónatan Herrera, University of Córdoba, Spain
Paolo Piccione, University of São Paulo, Brazil
Miguel Sánchez, University of Granada, Spain
Didier Solis, Autonomous University of Yucatán, Mexico
Roland Steinbauer, University of Vienna, Austria
Abdelghani Zeghib, École Normale Supérieure de Lyon, France

Local Organizing Commitee

Alma L. Albujer, University of Córdoba, Spain
Magdalena Caballero, University of Córdoba, Spain
Alfonso García-Parrado, University of Córdoba, Spain
Jónatan Herrera, University of Córdoba, Spain
Miguel Ortega, University of Granada, Spain
Rafael M. Rubio, University of Córdoba, Spain

v



vi Organization

Sponsoring Institutions

Departamento de Matemáticas, Universidad de Córdoba
The Regional Government of Andalusia
The Spanish Ministry of Economy and Competitiveness
The European Union



Preface

In 2001, researchers from several universities with a common interest in Lorentz
Geometry met on Benalmádena in what was called “Meeting on Lorentzian Geom-
etry”. After this first and successful meeting, the organizers decided to make this
one the first of a biennial series of conferences devoted to presenting and discussing
the latest advances on Lorentzian Geometry. Since then, what ended up being called
International Meeting on Lorentzian Geometry has grown at an impressive pace.
Currently, ten regular meetings have been held: Benalmádena 2001 (Spain), Murcia
2003 (Spain), Castelldefels 2005 (Spain), Santiago de Compostela 2007 (Spain),
Martina Franca 2009 (Italy), Granada 2011 (Spain), São Paulo 2013 (Brazil), Málaga
2016 (Spain),Warsaw 2018 (Poland) and Córdoba 2021 (Spain). Moreover, a special
edition on Lorentzian and conformal Geometry was held in Greifswald (Germany)
in 2014 in honour of Prof. Helga Baum.

The Department of Mathematics of the University of Córdoba had the pleasure to
organize in 2021 the X International Meeting on Lorentzian Geometry (GeLoCor).
Despite the new challenge presented by the COVID-19 pandemic, the meeting was
a complete success from the point of view of the organization and the participation.
Full information about GeLoCor meeting can be found at http://www.uco.es/gel
ocor/.1

Talks presented at the GeLoCor conference dealt with assorted topics in
Lorentzian and Differential Geometry, Mathematical Relativity and Theoretical
Physics. This assortment has been carried over to this Proceedings Book where
the interested reader will be able to find contributions representing the subjects just
mentioned.

In the realm of Lorentzian Geometry, the contribution of Amir B. Aazami clas-
sifies the Lorentzian metrics in dimension 3 admitting a timelike Killing vector field
using a 3-dimensional version of the Newman-Penrose formalism. He also considers
the global existence of 3-dimensional Lorentzian manifolds whose Ricci tensor has
a prescribed algebraic structure.

1 A YouTube channel with a selection of the presentations is available at https://www.youtube.com/
channel/UCrSEpDE_tgfZ-dqUsJ5d9Tw.
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viii Preface

Also in the context of Lorentzian geometry, Manuel Gutiérrez and Benjamín
Olea obtain conditions for a totally umbilic null hypersurface of a Lorentzian mani-
fold to be contained in a generalized null cone. In addition, it is proven when a
co-dimension 2 submanifold of a null hypersurface of a Lorentzian manifold is a leaf
of a integrable screen distribution constructed from a rigging vector related to the
null hypersurface.

Continuing with the study of null hypersurfaces of Lorentzian manifolds, the
contribution of Matias Navarro, Oscar Palmas and Didier A. Solis considers
the geometry of null hypersurfaces assuming the screen conformal, screen quasi-
conformal, null screen isoparametric and null Einstein hypotheses applied to the
generalized Robertson-Walker spacetimes.

In the field of Differential Geometry, Dmitri Alekseevsky, Vicente Cortés, and
ThomasLeistner study semi-Riemannian cones admitting a parallel totally isotropic
distribution of rank two. They establish the existence of two canonical vector fields on
the basemanifold of the cones satisfying a prescribed systemof differential equations.
They use the existence conditions of these canonical vector fields to obtain a local
characterization of the afore-said cones.

Naoya Ando proves that an almost nilpotent structure of an oriented neutral 4-
dimensional manifold is parallel if and only if its corresponding section is horizontal
with respect to the connection induced by the Levi-Civita connection of the neutral
manifold.

Also within Differential Geometry, María Ferreiro-Subrido presents a number
of results about Bochner-flat para-Kähler surfaces. She computes the covariant
derivative of the associated almost paracomplex structure, constructs Bochner-flat
para-Kähler surfaces with non-constant scalar curvature and gives a characterization
of a restricted family of Bochner-flat para Kähler surfaces.

Miguel A. Javaloyes and Enrique Pendás-Recondo explain how the notion of
null hypersurface used in Lorentzian Geometry can be extended to the framework
of cone structures and Lorentz-Finsler spaces. They pay close attention to properties
like smoothness, foliations by cone geodesics and time minimization.

Miguel A. Javaloyes, Miguel Sánchez and Fidel Villaseñor study the rela-
tion between anisotropic connections, the metric non-linear connection and Finsler
connections for pseudo-Finsler spaces.

Adela Latorre and Luis Ugarte provide a condition guaranteeing that any
small deformation of a compact pseudo-Kähler manifold is cohomologically
pseudo-Kähler.

To close the contributions devoted to Differential Geometry, Andrea Seppi and
Enrico Trebeschi perform a very detailed study of the half-space model of the
pseudo-hyperbolic space defined in a general pseudo-Riemannian manifold. Their
study include the analysis of the geodesic equations, the classification of the totally
geodesic submanifolds and the description of the isometry group.
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In the field of Mathematical Relativity, Gregory J. Galloway and Eric Ling
obtain new existence results for constant mean curvature Cauchy hypersurfaces in
spacetimes of arbitrary dimension in the context of Dilts and Holst conjecture.

Melanie Graf and Christina Sormani show how to construct area and volume
estimates for spacetimes with only mild assumptions on energy conditions. The
estimates are very general and provide an important tool for the analysis of the
convergence of data developments obtained from a converging sequence of initial
data sets.

Still within the realm of Mathematical Relativity, Stacey G. Harris presents
a detailed description of his project to characterize the future causal boundary of
spacetimes whose main property is the existence of a reasonable class of observers.
In particular she provides a set of observable conditions which should guarantee that
the future causal boundary is spacelike.

To finish with the contributions dealing with Mathematical Relativity, Philippe
G. LeFloch presents techniques developed by him and his collaborators to study
the global properties of solutions of Einstein-matter systems. These techniques have
applications to the study of solutions of the Einstein field equations representing
cyclic cosmologies.

InTheoretical Physics,RodrigoÁvalospresentsworkof himandhis collaborators
about the definition of energy for certain fourth-order gravity theories, its positivity
properties and its relation to Q-curvature in the conformally invariant case.

Martín de la Rosa presents some new results regarding curves which are critical
points of the action determined either by the curvature or by the torsion in certain
3-dimensional spacetimes (namely, generalized FLRW and static spacetimes).

Finally Ángel Murcia introduces the concept of ε-contact metric structures,
investigates some of their properties and uses them to construct solutions of six-
dimensional supergravity. Special attention is paid to a particular class of ε-contact
structures, referred to as null contact structures, which have not been considered
in the preceding literature. This contribution combines topics of both differential
geometry and Theoretical Physics.

We believe that the contributions just described provide a timely snapshot of
important current research topics, thus, making the present volume of interest to
researchers and students.

We thank all those who made possible this volume: first of all the contributors
whoseworkwas already summarized in the previous paragraphs andwhose complete
scientific results are to be unveiled in the pages lying ahead. In addition, the anony-
mous referees have played an important role behind the scenes to shape the final
form of all the contributions and render a volume of high scientific rigour. Finally,
Springer Nature has given us the chance to publish the contents of this volume in
their Springer Proceedings in Mathematics and Statistics book series. It has been for
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us a honour and a pleasure to put together all the pieces that make this volume and
we hope it will aid future scientific research.

Córdoba, Spain
January 2022

Alma L. Albujer
Magdalena Caballero

Alfonso García-Parrado
Jónatan Herrera

Rafael Rubio
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Semi-Riemannian Cones with Parallel
Null Planes

Dmitri Alekseevsky, Vicente Cortés, and Thomas Leistner

Abstract We study semi-Riemannian cones admitting a parallel totally isotropic
distribution of rank two. We give a local classification of the base manifolds of such
holonomy.

Keywords Pseudo-Riemannian manifolds · Metric cones · Special holonomy

1 Introduction

By Gallot’s theorem [9] the cone over any complete Riemannian manifold is either
flat or irreducible. Moreover, the irreducible cones are Ricci-flat and the possible
holonomy groups can be easily read off from Berger’s classification [4].

In the semi-Riemannian setting, the systematic study of this circle of ideas was
initiated in [1] and the situation turned out to be considerably more involved. First
of all, for indefinite metrics one needs to replace the notion of irreducibility by
indecomposability. A semi-Riemannian manifold is called indecomposable if its
holonomy representation does not admit any proper non-degenerate invariant sub-
space. In the Riemannian setting the notions of indecomposability and irreducibility
coincide. By the splitting theorems of de Rham [5] and Wu [14], indecomposable
semi-Riemannian manifolds do not admit a decomposition as a semi-Riemannian
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2 D. Alekseevsky et al.

product. A classification of indecomposable holonomy groups is only known in the
Lorentzian case [3, 10] and for small index under extra assumptions such as a parallel
Kähler structure of index 2 [6, 7]. Gallot’s theorem can then be generalized to the
statement that the cone over a compact semi-Riemannian manifold is either flat or
indecomposable, compare [1, Theorem 6.1] and [11, Proposition 4.1]. However the
cone over a non-compact complete semi-Riemannianmanifold can be decomposable
and the geometry of the base manifolds of decomposable cones was described in [1]
and [12].

More recently, the holonomy and geometric structure of indecomposable cones
was studied in detail in [2]. Any such cone is either irreducible or admits a parallel
totally isotropic distribution. Note that the rank of the distribution is bounded by the
index of the cone metric. The irreducible case and the case when the distribution
is of rank one were covered in [2]. In this paper we consider the situation in which
the parallel totally isotropic distribution is of rank two. Our main result is a local
classification of the most general form of the metric of the base manifold of the cone.

2 The Induced Structure on the Base

Let (M, g) be a semi-Riemannnian manifold, where we assume dim M > 1 to
exclude trivial cases. The time-like cone over the base (M, g) or just the cone over
(M, g) is the manifold ̂M := R+ × M with the metric

ĝ := −dr2 + r2g. (1)

We denote by
ξ = r ∂

∂r

the Euler vector field. The Levi-Civita connection ̂∇ of ĝ reduces to the Levi-Civita
connection ∇ of g in the following way

̂∇ξ = Id, ̂∇XY = ∇XY + g(X,Y )ξ, (2)

where here and in the following formulas X,Y, Z ∈ X(M).
Since we do not make any assumption about the signature of the base manifold,

the following also applies to spacelike cones by multiplying a spacelike cone metric
by −1 to obtain a time-like cone.

If a semi-Riemannian manifold ( ̂M, ĝ) admits a a parallel totally null 2-plane
bundlêP, then locally there are two null vector fields χ and ζ that are orthogonal to
each other and such that

̂∇χ = α ⊗ χ + μ ⊗ ζ, ̂∇ζ = β ⊗ χ + ν ⊗ ζ, (3)

for 1-forms α, β, μ and ν.
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If ( ̂M, ĝ) is a timelike cone with a parallel null 2-plane bundlêP, we can intersect
̂Pwith ξ⊥, where ξ is the Euler vector field. A subset of ̂M = R

>0 × M will be called
conical if it is of the form ̂M0 = R

>0 × M0 for some subset M0 ⊂ M .

Lemma 1 On a conical open dense subset in ̂M the intersection ̂P ∩ ξ⊥ is a null-
line bundle L invariant under the flow of ξ. In particular, L admits local sections,
defined on conical open sets, invariant under the flow of ξ and descends to a null
line distribution on an open dense subset of M.

Proof For this and the following proofs, we note that

[

ξ, Γ (ξ⊥)
] ⊂ Γ (ξ⊥) and

[

ξ, Γ (̂P)
] ⊂ Γ (̂P).

This implies that the dimension of the fibres of ̂P ∩ ξ⊥ is constant on the integral
curves of ξ. At each point p ∈ ̂M , ξ⊥|p is a hyperplane and ̂P|p a 2-plane in Tp ̂M .
Hence their intersection has dimension one or two. Now let us assume that, over an
open set U ⊂ ̂M ,̂P ∩ ξ⊥ is of rank 2, i.e. that̂P ⊂ ξ⊥. HencêP ∩ ξ⊥ a distribution
of 2-planes spanned by vector fields V1 and V2 on U that are tangential to M . Then
formulae (2) and (3) give us

T M � ̂∇XVi = ∇XVi + g(X, Vi )ξ,

for all X ∈ T M . Hence, on U it is g(X, Vi ) = 0 for all X ∈ T M which is impos-
sible. Consequently, the conical open set over which the fibres of ̂P ∩ ξ⊥ are one-
dimensional is dense and̂P ∩ ξ⊥ restricts to a line bundle L over that set. �

Now we project̂P to ξ⊥.

Lemma 2 The projection prξ⊥(̂P) ⊂ ξ⊥ is an involutive 2-plane distribution P on
̂M and descends to an involutive 2-plane distribution on M0.

Proof First note that the fibres of prξ⊥(̂P) have dimension 2 becausêP ∩ R · ξ = {0}.
Hence, P := prξ⊥(̂P) ⊂ ξ⊥ is a 2-plane distribution.

Clearly the projection of a vector field V on ̂M to ξ⊥ is given as

prξ⊥(V ) = V + r−2ĝ(V, ξ)ξ.

By a calculation using ̂∇ξ = Id we obtain for all V1, V2 ∈ X( ̂M):

[

prξ⊥(V1), prξ⊥(V2)
] = prξ⊥

([V1, V2] + r−2ĝ(V2, ξ)[V1, ξ] − r−2ĝ(V1, ξ)[V2, ξ]
)

.

Since the distribution̂P is invariant under ξ, parallel and hence involutive, the right-
hand side is a section of P for all sections V1, V2 of ̂P. This proves the involutivity
of P. The distribution P descends to M due to the invariance under ξ. �

Moreover we obtain:
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Lemma 3 There exist local sections V of L and Z of P, defined on a conical open
set, such that V and

ζ = ξ + Z

locally span̂P and satisfy

[ξ, V ] = 0 and [ξ, Z ] = 0.

The vector fields V and Z descend to local vector fields on M.

Proof We have already seen that there exists a non-vanishing section V of L over
a conical open set such that [ξ, V ] = 0. In the following we always work locally
over conical open sets. Every section of ̂P that is nowhere a multiple of V is of the
form f ξ + Z for Z a (possibly vanishing) local section of P and f a non-vanishing
local function on ̂M . Hence, by multiplying with 1/ f we can assume that we have a
section

ζ̂ = ξ + Ẑ

of̂P. We will now use the freedom to add multiples of V to Ẑ without leavinĝP, in
order to find a Z = Ẑ + ϕV for which we have [ξ, Z ] = 0. Indeed, writing

∇ξ ζ̂ = f V + hζ̂

with functions f and h, we compute

[ξ, Ẑ ] = [ξ, ζ̂] = f V + (h − 1)ζ̂.

Since [ξ, Ẑ ] belongs to ξ⊥, we must have that h ≡ 1 and

[ξ, Ẑ ] = f V .

Now if we fix a solution ϕ of
dϕ(ξ) + f = 0,

and set Z = Ẑ + ϕV we get
[ξ, Z ] = 0.

Clearly, since V is a section of̂P, the vector field

ζ := ξ + Z = ζ̂ + ϕV,

is also a section in̂P that is still linearly independent of V and therefore Z is a section
of P that locally descends to M . �
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Theorem 1 Let ( ̂M, ĝ) be a timelike cone over a semi-Riemannianmanifold (M, g).
If the cone admits a parallel distribution of totally null 2-planes field, then the base
(M, g) admits locally two vector fields V and Z such that

g(V, V ) = 0, g(Z , Z) = 1, g(V, Z) = 0, (4)

and

∇XV = α(X)V + g(X, V )Z , (5)

∇X Z = −X + β(X)V + g(X, Z)Z , (6)

for all X ∈ T M, with 1-forms α and β on M.
Conversely, each pair of vector fields V and Z on M satisfying relations (4), (5)

and (6) defines a parallel distribution of totally null 2-planes on the cone.

Proof First assume that the cone admits a parallel totally null 2-plane ̂P which is
spanned by V and ζ = ξ + Z as in Lemma 3. Equation (4) are implied by ̂P being
totally null. Moreover, Eq. (3) with χ = V and X ∈ T M become

̂∇XV = ∇XV + g(X, V )ξ = α(X)V + μ(X)(ξ + Z), (7)
̂∇Xζ = X + ∇X Z + g(X, Z)ξ = β(X)V + ν(X)(ξ + Z), (8)

and imply

μ(X) = g(X, V ),

ν(X) = g(X, Z),

as well as Eqs. (5) and (6), but still with r -dependent 1-forms α and β. Hence, it
remains to show that α and β, when restricted to ξ⊥, are invariant under the flow of
ξ and therefore descend to 1-forms on M , i.e., that

Lξα|ξ⊥ = Lξβ|ξ⊥ = 0.

But from of Eq. (7) we get

0 = R̂(ξ, X)V

= (Lξα)(X)V + α(X)V + g(X, V )(ξ + Z) − (∇XV + g(X, V )ξ)

= (Lξα)(X)V .

This proves that Lξα|ξ⊥ = 0. Analogously we get

0 = R̂(ξ, X)ζ = (Lξβ)(X)V

and again Lξβ|ξ⊥ = 0.
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Conversely, if we start with a manifold (M, g) and vector fields satisfying condi-
tions (4)–(6), a straightforward computations shows that the cone admits a parallel
null plane spanned by V and ξ + Z . �

Corollary 1 If the cone (1) admits a distribution of parallel totally null 2-planes,
then the base (M, g) admits locally a geodesic, shearfree null vector field V .

Proof Since V is null, Eq. (5) implies that V is geodesic. Recall that a geodesic null
vector field is called shearfree if

LV g = λg + θ · V �,

with a function λ and a 1-form θ and where the dot stands for the symmetric product.
From (5) and the formula

LXg = 2(∇X �)sym, (9)

where ‘sym’ denotes the projection onto the symmetric part, we compute

LV g = 2(α + Z �) · V �,

i.e., the shear free condition is satisfied with λ = 0. �

Remark 1 We can change the basis of span(V, Z) to V ′, Z ′ such that V ′ is still null
and orthogonal to Z ′ and such that Z ′ is a unit vector field,

(V, Z) �−→ (V ′ = e f V, Z ′ = Z + hV ).

Then the 1-forms α and β transform as

α �−→ α′ = α + d f − hV �,

β �−→ β′ = e− f (β + hα + dh − hZ � − h2V �).

3 Consequences of the Fundamental Equations

Let (M, g) be a semi-Riemannian manifold endowed with two pointwise linearly
independent vector fields V , Z which satisfy (4)–(6).

Proposition 1 The fundamental equations (4)–(6) imply

dV � = (α − Z �) ∧ V �, (10)

dZ � = β ∧ V �, (11)

[Z , V ] = (α(Z) − β(V ) + 1)V , (12)

LV g = 2(α + Z �)V �, (13)
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LZg = −2g + 2(Z �)2 + 2βV �, (14)

where we are using the symmetric product of 1-forms in the last two formulas.

Proof Since ∇ is torsion-free, the differential of any 1-form ϕ is given by

dϕ(X,Y ) = (∇Xϕ)Y − (∇Yϕ)X, X,Y ∈ X(M).

Now (10) and (11) follow immediately from (5) and (6). Using again that∇ is torsion-
free, the fundamental equations easily imply (12). Similarly, the last two formulas
follow from (9). �

Corollary 2 We have

LV V
� = α(V )V �, (15)

LZ V
� = (α(Z) − 1) V �, (16)

LV Z
� = β(V )V �. (17)

The vector fields Z and V commute if and only if

β(V ) = α(Z) + 1. (18)

Proof The first three formulas are obtained fromCartan’s formula for the Lie deriva-
tive to the Eqs. (10) and (11). Alternatively one can use (12)–(14). The last assertion
follows from Eq. (12). �

Corollary 3 By multiplying V with a function we can locally assume that

dV � = 0, (19)

that is

α = Z � + fαV
�

for some function fα. The latter equation implies

α(Z) = 1, α(V ) = 0, LV V
� = 0, LZ V

� = 0.

By adding a functional multiple of V to Z we can further locally assume that

β(V ) = 2,

which implies LV Z � = 2V � and is equivalent to [Z , V ] = 0.

Proof By Eq. (10) and the Frobenius theorem, the hyperplane distribution V⊥ is
integrable, which locally implies that a functional multiple of V � is closed. The
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equations and the second statement follow from the transformation formulae for α
and β in Remark 1 and Corollary 2. �

Corollary 4 With the normalisation that dV � = 0, the leaves of the integrable dis-
tribution V⊥ are totally geodesic and the vector field V preserves the tensor field
g|V⊥×V⊥ .

Proof For X,Y ∈ V⊥ we have

g(∇XY, V ) = −g(Y,∇XV ),

and because of dV � = 0,

g(Y,∇XV ) = 1

2
(LV g)(X,Y ).

Using Eq. (13) for X,Y ∈ V⊥ we get (LV g)(X,Y ) = 0 and hence g(∇XY, V ) = 0,
which means that the leaves of V⊥ are totally geodesic. �

4 The Local Form of the Metric on the Base

In the following we will assume all of the above equations. By (19), locally, there
exists a function u such that du = V �. The function u is constant on each leaf L of
the distribution V⊥. Locally, we can decompose M as M = L × R, such that u cor-
responds to the coordinate on theR-factor and the leafs of V⊥ are the hypersurfaces
Lu = L × {u}. Since the vector fields V and Z commute and are tangent to V⊥,
we can further decompose each leaf of V⊥ locally as Lu

∼= L = M0 × R × R, such
that V = ∂t , Z = ∂s are the coordinate vector fields tangent to the first and second
R-factor, respectively.

Let us denote by P the integrable distribution spanned by V and Z . Notice that
by (11) the distribution P⊥ = Z⊥ ∩ V⊥ is also integrable, in virtue of the Frobenius
theorem. So we can assume that the level sets of s are tangent to P⊥. Finally, the
decomposition M = L × R can be chosen such that the decomposition Lu = M0 ×
R × R is independent of u, that is the vector field ∂u commutes with V , Z and with
the canonical lift of vector fields of M0.

Theorem 2 Let (M, g) be a semi-Riemannian manifold such that the cone ( ̂M, ĝ)

admits a parallel totally null distribution of 2-planes. In terms of the above local
decomposition M = M0 × R3 we have

g = ds2 + e−2sg0(u) + 2 du η, (20)

for some 1-form η on M such that η(∂t) is nowhere vanishing and a family of metrics
g0(u) on M0 depending on u.
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Proof The restriction of the metric to a leaf N = M0 × R × {(s, u)} of P⊥ is degen-
erate with kernel V = ∂t ∈ P⊥ and invariant under the flow of V , see (13). Since
M0 is transversal to V , we see that g|N = g0(u, s) for some family of metrics on M0

depending on u and s. The flow of Z = ∂s is a 1-parameter family of homotheties
of weight −2, see (14). This shows that g0(u, s) = e−2sg0(u) for some 1-parameter
family of metrics g0(u). It follows that on the leafs Lu = M0 × R × R × {u} of V⊥
the metric is of the form ds2 + e−2sg0(u). Finally, on M we obtain the general form
(20) with η(∂t) �= 0, in view of the non-degeneracy of g. �

It remains to determine the necessary and sufficient conditions for the data g0(u) and η
ensuring that the cone over (M, g) as in (20) admits a parallel totally null distribution
of 2-planes. Let M0 be a manifold and let us denote the standard coordinates on R3

by (t, s, u).

Theorem 3 For any 1-form η on M := M0 × R3 such that ηt := η(∂t) �= 0 and any
family of semi-Riemannian metrics g0(u) on M0 the tensor field

g = ds2 + e−2sg0(u) + 2 du η,

cf. (20), is a semi-Riemannian metric on M such that the vector fields V = ∂t and
Z = ∂s satisfy (4). The covariant derivatives of V and Z are given by (5) and (6) for
some 1-forms α = Z � + fαV � and β such that fα is a function on M and β(V ) = 2,
if and only if the coefficients of η solve the following system of first order partial
differential equations:

∂tηt = ∂sηt = Xηt = ∂tη(X) = 0, ∂tηs = 2ηt , ∂sη(X) − Xηs = −2η(X)

(21)
for all X ∈ X(M0). Then α and β are determined by

fα = 1

η2
t
∂tηu − 2

ηt
ηs, β(Z) = 1

ηt
∂sηs, β(X) = 1

2ηt
(Xηs + ∂sη(X) + 2η(X)),

β(∂u) = 1

ηt
(∂sηu − η2

s + 2ηu).

Proof We denote by X the canonical lift of a vector field on M0. Then X, V, Z and
∂u commute and using the Koszul formula we obtain
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g(∇V V, X) = g(∇V V, V ) = g(∇V V, Z) = 0, g(∇V V, ∂u) = ∂tηt ,

g(∇Z V, X) = g(∇Z V, V ) = g(∇Z V, Z) = 0, 2g(∇Z V, ∂u) = ∂sηt + ∂tηs,

g(∇XV, X) = g(∇XV, V ) = g(∇XV, Z) = 0, 2g(∇XV, ∂u) = Xηt + ∂tη(X),

2g(∇∂u V, X) = ∂tη(X) − Xηt , g(∇∂u V, V ) = 0, 2g(∇∂u V, Z) = ∂tηs − ∂sηt ,

g(∇∂u V, ∂u) = ∂tηu,

g(∇V Z , X) = g(∇V Z , V ) = g(∇V Z , Z) = 0, 2g(∇V Z , ∂u) = ∂tηs + ∂sηt ,

g(∇Z Z , X) = g(∇Z Z , V ) = g(∇Z Z , Z) = 0, g(∇Z Z , ∂u) = ∂sηs,

g(∇X Z , X) = −g(X, X), g(∇X Z , V ) = g(∇X Z , Z) = 0,

2g(∇X Z , ∂u) = Xηs + ∂sη(X),

2g(∇∂u Z , X) = ∂sη(X) − Xηs, 2g(∇∂u Z , V ) = ∂sηt − ∂tηs, g(∇∂u Z , Z) = 0,

g(∇∂u Z , ∂u) = ∂sηu .

Comparing with (5), (6) we obtain the above formulas for α and β and the following
system for η:

∂tηt = 0, ∂sηt + ∂tηs = 2ηt , Xηt + ∂tη(X) = 0, ∂tη(X) − Xηt = 0,

∂tηs − ∂sηt = 2ηt ,

∂sη(X) − Xηs = −2η(X)

for all X ∈ X(M0). This system can be brought to the form (21). �

For convenience we denote a system of local coordinates on M0 by (xi )i=1,...,n0 and
denote by x the corresponding coordinate vector, where n0 = dim M0. The general
solution of (21) is obtained as follows.

Proposition 2 Let f1 = f1(u) be an arbitrary nowhere vanishing smooth function
on the real line equipped with the coordinate u and f2 = f2(x, s, u) an arbitrary
smooth function on M which does not depend on t. Let hi = hi (x, s, u) be a (t-
independent) solution of the ordinary differential equation

∂shi + 2hi = ∂i f2

for all i = 1, . . . , n0, where ∂i = ∂/∂xi . Then

ηt := f1(u), ηs := 2t f1(u) + f2(x, s, u), η(∂i ) := hi (x, s, u)

solves (21) and every solution is of this form.

Remark 2 Finally we comment on the relation to the Lorentzian metrics that were
considered in [2] and arose from the case where the cone ( ̂M, ĝ) admits a parallel null
line: in this case the conemetric ĝwas isometric to themetric g̃ = 2dudv + u2g0 with
a Lorentzian metric g0 and g was isometric to g = ds2 + e2sg0. Then [2, Theorem
1.3] states that if the holonomy of the cone is not equal to hol(g0) � R1,n−1, then
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g0 admits a parallel null vector field. It is well known (see for example [8, 13]) that
locally g0 is of the form g0 = 2dxdz + h(z), where h(z) is a z-dependent family of
Riemannian metrics. Hence, g is of the form

g = ds2 + e2sh(z) + 2e2sdxdz.

This corresponds to the local form in Theorem3,where x corresponds to t and 2e2sdx
to η, z to u and h(z) to g0(u).
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Nilpotent Structures of Neutral
4-Manifolds and Light-Like Surfaces

Naoya Ando

Abstract Nilpotent structures of neutral 4-manifolds are analogues of complex
structures and paracomplex structures. Nilpotent structures give two-dimensional
involutive distributions and the integral surfaces are light-like and analogues of com-
plex curves and paracomplex curves. Light-like surfaces in neutral 4-manifolds with
local horizontal lifts are characterized in terms of the curvature tensors and such
surfaces are analogues of isotropic minimal surfaces in Riemannian 4-manifolds.

Keywords Nilpotent structure · Neutral 4-manifold · Light-like surface

1 Introduction

Thepurpose of this paper is to study almost nilpotent structures of neutral 4-manifolds
and light-like surfaces in neutral 4-manifolds.

Almost nilpotent structures of neutral 4-manifolds are analogues of almost com-
plex structures of Riemannian 4-manifolds. Almost complex structures on an ori-
ented Riemannian 4-manifold (M, h) which are h-preserving and compatible with
the orientation of M correspond to sections of a suitable one of the twistor spaces
associated with M . Such an almost complex structure I is parallel with respect to the
Levi-Civita connection∇ of h if and only if the corresponding sectionΘ is horizontal
with respect to the connection ∇̂ of the 2-fold exterior power of the tangent bundle
TM induced by∇. It is known that∇ I = 0 just means that (M, h, I ) is a Kähler sur-
face and then I is its complex structure. If (M, h, I ) is a Kähler surface, then integral
surfaces of involutive I -invariant 2-dimensional distributions are complex curves of
(M, I ). A complex curve of a Kähler surface is just an isotropic minimal surface
compatible with the orientation of the space and equipped with at least one complex
point and notice that there exist totally geodesic surfaces inCP2,CH 2,CP1 × CP1,
CH 1 × CH 1 with no complex points ([1]). In general, an isotropic minimal surface
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in an oriented Riemannian 4-manifold compatible with the orientation of the space
is characterized by horizontality of a suitable one of the twistor lifts ([12]). See [7]
for the case where the space is S4. We can refer to [11] for the twistor spaces and
isotropic minimal surfaces.

On oriented neutral 4-manifolds, we can consider not only almost complex struc-
tures but also almost paracomplex structures. On such a 4-manifold (M, h), almost
complex (resp. paracomplex) structures which are h-preserving (resp.h-reversing)
and compatible with the orientation of M correspond to sections of a suitable one of
the space-like (resp. time-like) twistor spaces associated with M . See [3, 6] for the
space-like twistor spaces and [3, 13, 14] for the time-like twistor spaces. For almost
complex structures and almost paracomplex structures, we can find analogues of
results on almost complex structures of oriented Riemannian 4-manifolds ([3]). In
addition, for complex curves of neutral Kähler surfaces and paracomplex curves of
paraKähler surfaces, we can find analogues of results on complex curves of Kähler
surfaces; for space-like or time-like surfaces in oriented neutral 4-manifolds with
zero mean curvature vector which are isotropic and compatible with the orienta-
tions of the spaces, we can find analogues of results on isotropic minimal surfaces
in oriented Riemannian 4-manifolds compatible with the orientations of the spaces
([3]).

The space-like (resp. time-like) twistor spaces associated with an oriented neutral
4-manifold (M, h) are fiber bundles such that fibers are hyperboloids of two sheets
(resp. one sheet). They are contained in subbundles

∧2
±TM of rank 3 in the 2-fold

exterior power
∧2TM of TM . We can find fiber bundles U0(

∧2
±TM) in

∧2
±TM

respectively such that fibers are light-like cones. Our main objects of study in the
present paper are almost nilpotent structures and they correspond to sections of
either U0(

∧2
+TM) or U0(

∧2
−TM). We will see that an almost nilpotent structure N

is parallel with respect to ∇ if and only if the corresponding section Θ is horizontal
with respect to ∇̂. If ∇N = 0, then (h, N ) is called a nilpotent Kähler structure of
M , and M equipped with (h, N ) is called a nilpotent Kähler 4-manifold. Neutral
hyperKähler 4-manifolds have almost nilpotent structures parallel with respect to
∇ and we can refer to [10, 15] for neutral hyperKähler 4-manifolds. An almost
nilpotent structure N of M gives a light-like 2-plane of the tangent space at each
point of M . Therefore we have a light-like two-dimensional distribution D . We will
see that D is involutive if and only if for the section Θ corresponding to N and
each tangent vector V of M contained in D , the covariant derivative ∇̂V Θ is given
by Θ up to a constant. In particular, if ∇N = 0, then D is involutive. In the case
where ∇N = 0, we can consider integral surfaces of D to be analogues of complex
curves and paracomplex curves. Since D is light-like, we naturally have interest in
light-like surfaces of M . Referring to the discussions on whetherD is involutive, we
will study a light-like surface in M with a nonzero horizontal section of a suitable
one of the pull-back bundles of U0(

∧2
±TM) on a neighborhood of each point and

we will see that a light-like surface in M has such a section if and only if ∇ induces
a connection of the surface such that the curvature tensor of ∇̂ vanishes. We can
consider light-like surfaces in M with local nonzero horizontal sections as above



Nilpotent Structures of Neutral 4-Manifolds and Light-Like Surfaces 15

to be analogues of isotropic minimal surfaces in oriented Riemannian 4-manifolds
compatible with the orientations of the spaces.

Remark 1 In [5], nilpotent Kähler structures of an oriented vector bundle E of rank
4 over S1 = R/2πZ or T 2 = S1 × S1 were studied. Let h be a neutral metric of
E . Let ∇ be an h-connection of E , which means ∇h = 0. Suppose that E is over
S1. Then we can find a nowhere zero, horizontal section Θ of

∧2
+E ([5]). If Θ is

light-like, then Θ gives a nilpotent structure N of E and therefore (h,∇, N ) is a
nilpotent Kähler structure of E . Suppose that E is over T 2. Then for a light-like,
partially horizontal section Θ of

∧2
+E , there exists an h-connection ∇′ related to ∇

such that h, ∇′ and Θ give a nilpotent Kähler structure of E ([5]).

2 Complex Structures and Paracomplex Structures of
4-Dimensional Neutral Vector Spaces

Let X be an oriented 4-dimensional vector space and hX a neutral metric of X , i.e.,
an indefinite metric of X with signature (2, 2). Let

∧2X be the 2-fold exterior power
of X and ĥ X the metric of

∧2X induced by hX :

ĥ X (x1 ∧ x2, x3 ∧ x4)

= hX (x1, x3)hX (x2, x4) − hX (x1, x4)hX (x2, x3)

(xi ∈ X ). Let BX be the set of ordered pseudo-orthonormal bases of X giving the
orientation of X . Then (e1, e2, e3, e4) ∈ BX satisfies

hX (ei , e j ) =
⎧
⎨

⎩

1 (i = j = 1 or 2),
−1 (i = j = 3 or 4),
0 (otherwise).

For (e1, e2, e3, e4) ∈ BX , we set

θi j := ei ∧ e j (i, j ∈ {1, 2, 3, 4}, i �= j)

and

Θ±,1 := 1√
2
(θ12 ± θ34),

Θ±,2 := 1√
2
(θ13 ± θ42),

Θ±,3 := 1√
2
(θ14 ± θ23).
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Then Θ±,1, Θ±,2, Θ±,3 form a pseudo-orthonormal basis of
∧2X and therefore we

see that ĥ X has signature (2, 4). Let
∧2

+ X ,
∧2

− X be subspaces of
∧2X generated

by Θ−,1, Θ+,2, Θ+,3 and Θ+,1, Θ−,2, Θ−,3, respectively. Then by the definitions of∧2
± X , we have

∧2X = ∧2
+ X ⊕ ∧2

− X

and we see that
∧2

+ X ,
∧2

− X are orthogonal to each other and that the restriction of

ĥ X on each of them has signature (1, 2). In addition, noticing the double covering

SO0(2, 2) −→ SO0(1, 2) × SO0(1, 2),

we see that
∧2

± X do not depend on the choice of (e1, e2, e3, e4) ∈ BX .
We set

U+
(∧2

± X
)

:=
{
Θ ∈ ∧2

± X
∣
∣
∣ ĥ X (Θ,Θ) = 1

}
.

Then each Θ ∈ U+
(∧2

+ X
)
corresponds to a unique hX -preserving complex struc-

ture I of X satisfying

Θ = 1√
2
(e ∧ I (e) − e⊥ ∧ I (e⊥)), (1)

where e is a space-like and unit vector of X and e⊥ is a time-like vector of X satisfying

hX (e⊥, e⊥) = −1, hX (e, e⊥) = hX (I (e), e⊥) = 0.

Then we have (e, I (e), e⊥, I (e⊥)) ∈ BX , which means that I is compatible with the
orientation of X . Conversely, each hX -preserving complex structure I of X com-

patible with the orientation corresponds to a unique element of U+
(∧2

+ X
)
by (1).

Hence we have a one-to-one correspondence between U+
(∧2

+ X
)
and the set of hX -

preserving complex structures of X compatible with the orientation. Similarly, we

have a one-to-one correspondence betweenU+
(∧2

− X
)
and the set of hX -preserving

complex structures of X which are not compatible with the orientation.
We set

U−
(∧2

± X
)

:=
{

Θ ∈ ∧2
± X

∣
∣
∣ ĥ X (Θ,Θ) = −1

}
.

Then each Θ ∈ U−
(∧2

+ X
)
corresponds to a unique hX -reversing paracomplex

structure J of X satisfying

Θ = 1√
2
(e ∧ J (e) − e⊥ ∧ J (e⊥)), (2)
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where e, e⊥ are as above. Thenwehave (e, J (e⊥), J (e), e⊥) /∈ BX , whichmeans that
J is not compatible with the orientation of X . Conversely, each hX -reversing para-
complex structure J of X which is not compatible with the orientation corresponds to

a unique element ofU−
(∧2

+ X
)
by (2). Hence we have a one-to-one correspondence

between U−
(∧2

+ X
)
and the set of hX -reversing paracomplex structures of X which

are not compatible with the orientation. Similarly, we have a one-to-one correspon-

dence between U−
(∧2

− X
)
and the set of hX -reversing paracomplex structures of X

compatible with the orientation.

3 Nilpotent Structures of 4-Dimensional Neutral Vector
Spaces

In the present paper, our main objects of study are closely related to the light-like
cones of

∧2
± X :

U0

(∧2
± X

)
:=

{
Θ ∈ ∧2

± X \ {0}
∣
∣
∣ ĥ X (Θ,Θ) = 0

}
.

For eachΘ ∈ U0

(∧2
+ X

)
, there exists an element (e1, e2, e3, e4) ofBX satisfying

Θ = Θ−,1 + Θ+,3. (3)

We call such a basis as (e1, e2, e3, e4) an admissible basis ofΘ . Let G be a subgroup
of SO(2, 2) defined by

G :=

⎧
⎪⎪⎨

⎪⎪⎩

B =

⎡

⎢
⎢
⎣

b1 −b2 b3 b4
b2 b1 −b4 b3
b3 −b4 b1 b2
b4 b3 −b2 b1

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

b1, b2, b3, b4 ∈ R,

b2
1 + b2

2 − b2
3 − b2

4 = 1

⎫
⎪⎪⎬

⎪⎪⎭

.

This is isomorphic to SU (1, 1). Let H be a subset of SO(2, 2) defined by

H :=

⎧
⎪⎪⎨

⎪⎪⎩

C(h) =

⎡

⎢
⎢
⎣

1 0 0 0
0 h2+2

2 h − h2

2
0 h 1 −h
0 h2

2 h − h2−2
2

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

h ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

.

We see that H is a subgroup of SO(2, 2). Let (e′
1, e′

2, e′
3, e′

4) be another admissible
basis of Θ than (e1, e2, e3, e4). Then there exist B ∈ G, h ∈ R satisfying

(e′
1, e′

2, e′
3, e′

4) = (e1, e2, e3, e4)BC(h). (4)
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We set

Λ :=

⎡

⎢
⎢
⎣

0 −1 0 1
1 0 1 0
0 1 0 −1
1 0 1 0

⎤

⎥
⎥
⎦ .

Thenwe haveΛB = BΛ for any B ∈ G andΛC(h) = C(h)Λ for any h ∈ R. There-
fore we see that a linear transformation N of X can be defined by

(N (e1), N (e2), N (e3), N (e4)) = (e1, e2, e3, e4)Λ (5)

for an admissible basis (e1, e2, e3, e4) of Θ and that N is determined by Θ and does
not depend on the choice of an admissible basis (e1, e2, e3, e4) of Θ . We call N a

nilpotent structure of X corresponding to Θ ∈ U0

(∧2
+ X

)
. We denote byNX,+ the

set of nilpotent structures of X corresponding to the elements of U0

(∧2
+ X

)
. We

have

Θ = 1√
2
(e1 ∧ N (e1) − e3 ∧ N (e3))

= 1√
2
(e2 ∧ N (e2) − e4 ∧ N (e4)).

(6)

We set
V1 := e1 − e3, V2 := e2 + e4.

Then we have Θ = (1/
√
2)V1 ∧ V2. We see that Im N is generated by light-

like vectors V1, V2 and that it coincides with Ker N . We have hX (N (x), x) = 0
for any x ∈ X .

For eachΘ ∈ U0

(∧2
− X

)
, there exists an element (e1, e2, e3, e4) ofBX satisfying

Θ = Θ+,1 + Θ−,3.

We call such a basis as (e1, e2, e3, e4) an admissible basis of Θ . Let (e′
1, e′

2, e′
3, e′

4)

be another admissible basis ofΘ than (e1, e2, e3, e4). Then there exist B ∈ G, h ∈ R

satisfying
(e′

1, e′
2,−e′

3, e′
4) = (e1, e2,−e3, e4)BC(h).

Therefore we see that a linear transformation N of X can be defined by

(N (e1), N (e2),−N (e3), N (e4)) = (e1, e2,−e3, e4)Λ

for an admissible basis (e1, e2, e3, e4) of Θ and that N is determined by Θ and does
not depend on the choice of an admissible basis (e1, e2, e3, e4) of Θ . We call N a

nilpotent structure of X corresponding to Θ ∈ U0

(∧2
− X

)
. We denote byNX,− the


