
Advances in Computer Vision and Pattern Recognition

Ke Gu
Hongyan Liu
Chengxu Zhou

Quality 
Assessment 
of Visual 
Content



Advances in Computer Vision and Pattern 
Recognition 
Founding Editor 

Sameer Singh 

Series Editor 

Sing Bing Kang, Zillow, Inc., Seattle, WA, USA 

Advisory Editors 

Horst Bischof, Graz University of Technology, Graz, Austria 

Richard Bowden, University of Surrey, Guildford, Surrey, UK 

Sven Dickinson, University of Toronto, Toronto, ON, Canada 

Jiaya Jia, The Chinese University of Hong Kong, Shatin, New Territories, Hong 
Kong 

Kyoung Mu Lee, Seoul National University, Seoul, Korea (Republic of) 

Zhouchen Lin , Peking University, Beijing, Beijing, China 

Yoichi Sato, University of Tokyo, Tokyo, Japan 

Bernt Schiele, Max Planck Institute for Informatics, Saarbrücken, Saarland, 
Germany 

Stan Sclaroff, Boston University, Boston, MA, USA

https://orcid.org/0000-0003-1493-7569


Titles in this series now included in the Thomson Reuters Book Citation Index! 
Advances in Computer Vision and Pattern Recognition is a series of books which 

brings together current developments in this multi-disciplinary area. It covers both 
theoretical and applied aspects of computer vision, and provides texts for students 
and senior researchers in topics including, but not limited to:

• Deep learning for vision applications
• Computational photography
• Biological vision
• Image and video processing
• Document analysis and character recognition
• Biometrics
• Multimedia
• Virtual and augmented reality
• Vision for graphics
• Vision and language
• Robotics



Ke Gu · Hongyan Liu · Chengxu Zhou 

Quality Assessment of Visual 
Content



Ke Gu 
Faculty of Information Technology 
Beijing University of Technology 
Beijing, China 

Chengxu Zhou 
Faculty of Information Technology 
Beijing University of Technology 
Beijing, China 

Hongyan Liu 
Faculty of Information Technology 
Beijing University of Technology 
Beijing, China 

ISSN 2191-6586 ISSN 2191-6594 (electronic) 
Advances in Computer Vision and Pattern Recognition 
ISBN 978-981-19-3346-2 ISBN 978-981-19-3347-9 (eBook) 
https://doi.org/10.1007/978-981-19-3347-9 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Singapore Pte Ltd. 2022 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

https://orcid.org/0000-0001-5540-3235
https://orcid.org/0000-0002-6348-9910
https://orcid.org/0000-0002-3990-9639
https://doi.org/10.1007/978-981-19-3347-9


Preface 

Nowadays, the visual signals collected nationwide exceed 500,000 TB per day, 
accounting for 85% of the total Internet traffic. How to make full use of and deep 
mine the massive visual signals via advanced image processing techniques is the 
key to promote the rapid development of industries such as security surveillance, 
medical applications, distance education, social networking, and so on. During the 
past two decades, important image processing techniques, such as image quality 
assessment (QA) and enhancement, and object detection and recognition, have 
attracted extensive and in-depth studies from researchers in the fields of multimedia 
signal processing, computer image processing, pattern recognition and intelligent 
systems, automatic detection technology, etc., and have obtained a series of impor-
tant research accomplishments. The acquisition equipment, storage media, transmis-
sion system, and processing algorithm inevitably have an impact on visual signals 
during the processes from collecting and generating to receiving visual signals, which 
causes the degradation of image quality and further inhibits the accuracy of subse-
quent object detection and recognition algorithms. Therefore, image QA is usually 
considered as the basis of the above-mentioned important image processing tech-
niques, possessing two significant capabilities: One is that image QA can be used 
to monitor the whole procedure of visual signal processing and the other is that it 
can be employed to optimize the model structure and parameters of visual signal 
processing techniques. Based on the aforesaid analyses, this book mainly reviews 
the representative research on image QA during the past decade and analyzes their 
applications, performance, and prospects in various important fields, such as screen 
content images, 3D-synthesized images, sonar images, enhanced images, light-field 
images, virtual reality images, and super-resolution images, expecting to provide 
guidance and reference for engineering applications in various types of fields. 

The main audiences of this book are graduate students, engineers, specialists, 
and scholars who are interested in image QA techniques in varied subject areas, e.g., 
optics, electronics, mathematics, photographic techniques, and computer technology. 
The authors anticipate that a systematic review of the current state of the technologies, 
key challenges, and future trends in QA of visual signals will enable the readers 
to obtain a deeper, more comprehensive, and more systematic understanding and
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appreciation of image QA and ideally will offer a positive impetus to the work and 
research. 

In Chap. 1, the authors first outline the basic theories from the classification of 
image QA, namely subjective assessment and objective assessment, to the classifi-
cation of objective image QA, namely full-reference assessment, reduced-reference 
assessment, and no-reference assessment according to the presence of distortion-free 
reference images or not. The authors then briefly analyze the research background, 
image characteristics, and cutting-edge technologies of different types of image QA 
in hot fields, such as screen content images, 3D-synthesized images, sonar images, 
enhanced images, light-field images, virtual reality images, and super-resolution 
images. 

Screen content images are generated by computers, covering massive Internet 
information. Screen content images are composed of three kinds of complicated 
contents, namely texts, graphics, and illustrations, in each of which distortion causes 
various degrees of degradation. For the QA of screen content images, Chap. 2 first 
introduces the full-reference QA method based on structural similarity, in order to 
estimate structural changes and different statistical properties of regions. Second, 
it presents the reduced-reference QA method based on the fusion of macroscopic 
and microscopic features, in order to solve the problem of unsatisfactory predic-
tion monotonicity. Third, it introduces the no-reference QA method based on adap-
tive multi-scale weighting and big data learning, in order to address the issues of 
monotonous color and simple shape in screen content images. Finally, the authors 
discuss the future research trend of QA of screen content image and point out that it is 
necessary to construct accurate and efficient objective QA models of screen content 
images. 

3D-synthesized images possess the significant function of generating new view-
points based on rendering technique, but tend to introduce specific geometric distor-
tions that cause the quality degradation. For the QA of 3D-synthesized images, 
Chap. 3 first presents the no-reference QA method based on autoregressive modeling 
and multi-scale natural scene statistical analysis, in order to capture geometric distor-
tion. Then, it introduces the no-reference QA method based on pixel-based changes 
in transform domains, in order to measure color and depth distortion. Finally, it 
presents the no-reference QA method on account of structural variations caused by 
geometric, sharpness, and color distortions, in order to assess the quality of blurred, 
discontinuous, and stretched 3D-synthesized images. 

Sonar images contain important underwater information like submarine geomor-
phology, marine organism, and wreck remains in dim light and are prone to typical 
underwater distortion due to the poor underwater acoustic channel condition. For the 
QA of sonar images, Chap. 4 first introduces the sonar image quality database and the 
full-reference QA methods based on local entropy and statistical and structural infor-
mation, in order to measure underwater distortion in sonar images. Second, it presents 
the task- and perception-oriented reduced-reference QA methods based on the human 
visual system, in order to assess the poor-quality sonar images in the complicated 
underwater environment. Finally, it describes the no-reference QA method based on
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contour degradation measurement, in order to overcome the difficulty of failure to 
acquire reference sonar images in the dynamic underwater environment. 

Image enhancement has the function of changing the visual perceptual quality 
of images. How to optimize the model structures and parameters to achieve proper 
enhancement based on the QA of enhanced images has been a hot issue in recent years. 
For the QA of enhanced images, Chap. 5 first establishes the contrast-changed image 
QA database and presents the reduced-reference QA methods based on phase congru-
ency and histogram statistics. Then, it introduces the no-reference QA methods 
that fuse non-structural information, sharpness, and naturalness and are based on 
feature extraction and regression. Finally, it shows evaluation criteria guidance-based 
automatic contrast enhancement technique. 

Light-field images record the light intensity in different directions of the sensor, 
which is important for the research of next generation imaging technology. However, 
they tend to lose visual details in the processes of acquisition and transmission. For the 
QA of light-field images, Chap. 6 first introduces the full-reference QA method based 
on single- and multi-scale Gabor feature extraction, in order to address the problem of 
ignoring the perceived characteristic of the human visual system. Second, it illustrates 
the reduced-reference QA method based on depth map distortion measurement, in 
order to deal with different sizes of light-field images. Third, it presents the tensor-
oriented no-reference QA methods based on spatial-angular measurement, in order 
to capture the high-dimensional characteristics of light-field images. In the end, the 
above-mentioned QA methods are validated on relevant databases, and the necessity 
of establishing efficient light-field image QA methods is pointed out. 

Virtual reality images have attracted an amount of attention for providing 
an immersive experience. They have the characteristics of omnidirectional view, 
massive data, and so on, which are so vulnerable to external interference that their 
quality deteriorates. For the QA of virtual reality images, Chap. 7 first describes the 
databases that contain projection format, stitching, and double fisheye images, in 
order to fill the blank of lack of a virtual reality image database. Then, it presents 
the no-reference QA method based on the 3D convolutional neural network, in order 
to tackle the issue that the reference virtual reality images are inaccessible. Finally, 
it shows the no-reference QA method based on a multi-channel neural network, in 
order to overcome the problem of the full range of compression distortion in video 
coding technology. 

It is important to generate a high-resolution image from a low-resolution image 
by super-resolution technique, but there often exist artifacts and blurring distortions 
during the process. For the QA of super-resolved images, Chap. 8 first introduces 
the super-resolution image database based on interpolation and image enhancement. 
Second, it presents the full-reference QA methods based on quality loss function and 
L2 Norm. Finally, it introduces the QA approaches based on two-stage regression 
model, pixel similarity between image blocks, and natural scene statistical model. 

This book collects the work programs of several research groups from all over 
the world. It introduces the image QA algorithms in various hot fields from different 
perspectives, which has scientific research value and engineering application value. 
This book is written by Ke Gu, Hongyan Liu, and Chengxu Zhou. We have received
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great help from Jing Liu, Shuang Shi, and Shuangyi Xie, so we would like to express 
our sincere thanks to the experts, authors, teachers, and friends who have guided and 
supported us. 

Beijing, China Ke Gu 
Hongyan Liu 

Chengxu Zhou
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Chapter 1 
Introduction 

1.1 Quality Assessment of Traditional Images 

Image quality assessment (QA) is one of the basic techniques of image processing. 
It can evaluate the degree of image distortion by analyzing and studying the char-
acteristics of images. In an image processing system, image QA plays an important 
role in system performance evaluation, algorithm analysis, and comparison. 

For many decades, there has been a lot of research on image QA. These image QA 
approaches can be classified as subjective image QA and objective image QA based 
on whether a human is involved in quality evaluation. Subjective QA is expensive and 
time-consuming. In contrast, objective image QA uses the computational model to 
automatically evaluate the perceived quality of images, which is convenient and fast. 
Because of its advantages of high precision and strong robustness, objective image 
QA has been favored by a wide range of researchers. Objective image QA can be 
further classified into three types according to the utilization of the reference image 
information. They are, respectively, full-reference (FR) image QA, reduced-reference 
(RR) image QA, and no-reference (NR) image QA. The FR image QA utilizes 
complete pristine image information in the processing. The RR image QA only adopts 
part of the pristine image information to assess image quality. The NR image QA 
is totally different from the two models above-mentioned, due to its implementation 
of quality inferring without using any reference information. Several QA methods 
of traditional images are listed below, such as noise quality measure (NQM) [1], 
visual information fidelity in pixel domain (VIFP) [2], visual signal-to-noise ratio 
(VSNR) [3], the structural similarity (SSIM)-based QA method [4], the natural scene 
statistics (NSS)-based QA method, the information weighted structural similarity 
(IW-SSIM)-based QA method [5], peak signal-to-noise ratio (PSNR) [6], spherical 
PSNR (S-PSNR) [7], Craster parabolic projection-based PSNR (CPP-PSNR) [8], the 
VSNR based on the near-threshold and supra-threshold properties of human vision 
[3], the most apparent distortion based on the Fourier transformation and the Log-
Gabor filtering [9], and so on. Most of these methods fail to effectively evaluate the 
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quality of new types of visual signals such as screen content images, 3D-synthesized 
images, sonar images, enhanced images, light-field images, virtual reality images, 
and super-resolution images, so it is urgent to establish efficient QA methods that 
are specific to particular images. 

1.2 Quality Assessment of Screen Content Images 

With the rapid development of computer technology and the popularity of electronic 
devices, screen content images (SCIs) have received much attention from researchers 
as the main computer-generated signals. The visual quality of SCIs, which is the basis 
for image processing techniques, is inevitably subject to external interference during 
image compression, transmission, display, and so on, further resulting in poor image 
quality. Therefore, it is necessary to first evaluate the quality of SCIs in order to ensure 
the efficiency and accuracy of image processing systems. Most of the existing image 
QA metrics were designed based on the assumption that the human visual system 
(HVS) is highly adapted to deriving the scene’s structural information. Besides, 
various QA methods of natural scene images (NSIs) have been proposed recently, 
most of which can effectively evaluate the quality of NSIs rather than SCIs. There 
are few studies on SCIs which contain complicated content like texts, graphics, and 
illustrations, and the distortion causes varying degrees of degradation in different 
areas. 

This book elaborately introduces two FR QA, a RR QA and two NR QA methods 
of SCIs proposed in recent years, and the details are illustrated in Chap. 2. One of the 
FR QA models of SCIs is named structural variation-based quality index (SVQI) on 
account of the association between the perceived quality and the structural variation 
[10]. The other FR QA model of SCIs incorporates both visual field adaptation and 
information content weighting into structural similarity-based local QA [11]. The 
RR QA method of SCIs extracts the macroscopic and microscopic structures in the 
original and distorted SCIs separately and compares the differences between them 
in order to obtain the overall quality score [12]. One of the NR QA models of SCIs 
named unified content-type adaptive (UCA) is applicable across content types [13]. 
The other NR QA model of SCIs is based on big data learning and uses four types 
of features including the picture complexity, the screen content statistics, the global 
brightness quality, and the sharpness of details to predict the perceived quality of 
SCIs [14]. In addition, there are some methods that can be learned by any interested 
readers, such as screen content perceptual quality assessment (SPQA) [15], reduced-
reference wavelet-domain quality measure of screen content pictures (RWQMS) 
[16], blind quality measure for screen content images (BQMS) [17], and so on.
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1.3 Quality Assessment of 3D-Synthesized Images 

Technological advances in 3D visual signals continue to make 3D imaging and 
display techniques draw a large amount of attention in several different fields, such as 
remote education, security monitoring, entertainment, and so on. The depth image-
based rendering (DIBR) technique is utilized to synthesize new viewpoint images 
of the same scene from a limited number of reference-free multiple views, solving 
the problems of high cost and complexity [18]. The introduction of DIBR causes 
geometric distortion in 3D-synthesized images, which results in a decrease in the 
perceived quality of 3D-synthesized images. With this concern, it is imperative to 
design efficient perceptual QA methods for 3D-synthesized images before processing 
these images to avoid operating on low-quality images and reducing the efficiency 
of the whole process. The DIBR technologies introduce particular distortions when 
utilizing depth information to transfer occluded regions on the outlines of foreground 
objects, which are more likely to destroy the semantic structure of images. Several 
image QA approaches are tailored to particular scenes or common distortions (i.e., 
blur and noise) and, thus, are not applicable to evaluate the perceived quality of 
3D-synthesized images. 

To solve the problems mentioned above, the researchers have been concerned 
about 3D-synthesized image QA approaches based on DIBR. This book elaborately 
introduces six NR 3D-synthesized image QA approaches, and the details are illus-
trated in Chap. 3. These methods are mainly classified into three categories, namely 
the models based on NSS, domain transformation, and structural transformation. 
The first type includes two blind image QA models based on the autoregression 
(AR) with local image description [19] and the multi-scale natural scene statistical 
analysis (MNSS) using two new NSS models [20]. One of the second-type methods 
is the high-efficiency view synthesis quality prediction (HEVSQP) QA model that 
quantifies the effects of color and depth distortion in 3D-synthesized images [21]. The 
other one is the new QA model which combines local and global models to evaluate 
geometric distortion and sharpness changes in wavelet domain [22]. The third type 
includes two image quality prediction models based on local changes in structure and 
color and global changes in brightness [23] as well as the image complexity [24]. In 
addition, there are some methods that can be learned by any interested readers. For 
example, the 3D-synthesized view image quality metric (3DSWIM) [25] measures 
local geometric distortion and global sharpness changes [26]. The view synthesis 
quality assessment (VSQA) modifies the distorted view or similarity view from the 
reference view and the composite view [27]. The reduced version of morphologi-
cal pyramid peak signal-to-noise ratio (MP-PSNR-RR) image QA can evaluate the 
geometric distortion in 3D-synthesized images influence generated by DIBR [28].



4 1 Introduction

1.4 Quality Assessment of Sonar Images 

It is possible to obtain important information by observing sonar images, such as 
submarine geomorphology, marine organism, and wreck remains, so the sonar imag-
ing technique is widely utilized in the field of ocean exploration, underwater rescue 
[29, 30], etc. The sonar imaging technique can acquire clearer images in a dim envi-
ronment based on the temporal distribution of echo received by sonar equipment. 
However, the sonar images are inevitably distorted due to the influence of the com-
plex underwater environment in the formation and propagation processes, resulting 
in poor sonar image quality. Therefore, the QA prior to the analysis of sonar images 
can exclude low-quality sonar images with information loss, further increasing the 
efficiency of performing underwater tasks. Generally speaking, images obtained in 
different scenes possess various characteristics. For example, NSIs have rich color 
changes, complex textures, and coarse lines. Sonar images are gray and simple due 
to the unavailability of natural light, which differ dramatically from NSIs [31]. In 
addition, more attention has been paid to the structural features of sonar images con-
taining task information in underwater detection and scene rendering. Most of the 
previous QA studies focus on camera-captured natural scene images (CC-NSIs) and 
are not suitable for effectively assessing the visual quality of sonar images. 

In order to fill the gap in the study of sonar image QA, this book introduces an 
FR image QA, two RR image QA, and an NR image QA methods of sonar images 
presented in recent years, and the details are illustrated in Chap. 4. The FR image QA 
approach named the sonar image quality predictor (SIQP) combines the statistical 
and structural information [32]. One of the RR image QA approaches is the task- and 
perception-oriented sonar image quality assessment (TPSIQA), which considers the 
underwater tasks and better estimates the perceptual quality of sonar images [33]. 
The other RR image QA approach is the partial-reference sonar image quality predic-
tor (PSIQP) that can predict the image quality by using image information, comfort 
index, and SSIM index [34]. The NR image QA approach is the no-reference contour 
degradation measurement (NRCDM), which can evaluate the sonar image quality 
on the basis of the degree of contour degradation [35]. In addition, there are some 
classical QA methods of sonar images, namely the QA method of synthetic aperture 
sonar (SAS) based on navigation error degree [36]; the method based on sonar plat-
form motion, navigation error level, and environmental characteristics [37]; and the 
method called no-reference sonar image quality metric (NSIQM) that measures the 
contour degradation degree of the test and the filtered images [38]. 

1.5 Quality Assessment of Enhanced Images 

In many real-world applications, such as object detection and recognition, origi-
nal images require to be enhanced appropriately to improve the perceptual quality 
[39]. Image enhancement is the frequently used technique for improving the visual 
quality of images. Among, contrast enhancement is a popular type of image enhance-
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ment method that can improve the perceived quality of most images. Its goal is to 
create more aesthetically beautiful or visually instructive images or both. The con-
trast of an image can be dramatically increased by reassigning pixel values. Due to 
its ease of use and speed, histogram equalization is commonly employed in many 
image post-processing systems. However, the problem in these methods such as 
over-enhancement still requires attention. Therefore, it has been a hot issue in recent 
years to optimize the model structures and parameters in order to realize appropriate 
enhancement using enhanced image QA. The classic image QA methods may be 
separated into subjective and objective evaluation. For current image enhancement 
studies, the quality of enhanced images is mostly determined by subjective tests, 
which are time-consuming and costly. To overcome the limitations of subjective 
assessment, researchers have turned their research priorities to the design of objec-
tive assessment. Despite the emergence of hundreds of objective image QA models, 
very few efforts have been made for the issue of contrast-changed image QA. 

This book elaborately introduces two enhanced image databases, two NR QA 
approaches of enhanced images, and two contrast enhancement methods, and the 
details are illustrated in Chap. 5. One enhanced image database is based on five 
image enhancement algorithms and three image processing software [40]. The other 
database includes 655 images which are created by five categories of contrast-
oriented transfer functions [41]. One of NR QA approaches of enhanced images 
is the first opinion-unaware (OU) blind image QA metric named blind image quality 
measure of enhanced images (BIQME), which can effectively obtain the prediction 
quality of enhanced image [39]. The other NR QA approach is based on the theory of 
information maximization to realize the judgment of images having better contrast 
and quality [42]. One of the contrast enhancement methods is an automatic robust 
image contrast enhancement (RICE) model based on saliency preservation [43]. The 
other image contrast enhancement framework is based on cloud images, solving the 
difficulty of multi-criteria optimization [44]. 

1.6 Quality Assessment of Light-Field Images 

In recent years, the light-field (LF) imaging technology has attracted wide attention 
in many practical applications, such as underwater imaging, 3D object recognition, 
super-resolution (SR) imaging, and so on. Yet, the LF images will inevitably dam-
age visual details in the acquisition, coding, denoising, transmission, rendering, and 
display, which will affect the perceived quality of low-frequency images. 

In order to better assess the quality of LF images, a large number of researchers 
have done work to design different LF image QA approaches. This book elaborately 
introduces an FR LF image QA, a RR LF image QA, and two NR LF image QA 
methods proposed in recent years, and the details are illustrated in Chap. 6. The FR 
LF image QA methods measure the LF coherence between the pristine LF image and 
the corrupted LF image to evaluate the image quality [45]. The RR LF image QA 
methods investigate the association between the perceptual quality of LF images and
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the distortion of the estimated depth map [46]. One of the NR LF image QA methods 
named no-reference light-field image quality assessment (NR-LFQA) evaluates the 
quality degradation of LF images on the basis of the spatial information and the 
angular consistency [47]. The other NR LF image QA method is a novel tensor-
oriented no-reference light-field image quality evaluator named Tensor-NLFQ that 
is based on tensor theory. In addition, there are some methods that can be learned by 
any interested readers. For example, [48] came up with an FR image QA model called 
the multi-order derivative feature-based model to explore the multi-order derivative 
features. Huang et al. [49] presented an FR LF image QA algorithm that is based on 
dense distortion curve analysis and scene information statistics. 

1.7 Quality Assessment of Virtual Reality Images 

With the development of multimedia techniques, virtual reality (VR) technologies, 
such as 3D real-time image display and 3D positioning tracking, have attracted a lot 
of attention. The images generated by VR technologies can provide observers with 
an immersive and realistic viewing experience and further improve the efficiency 
of human-machine interaction. However, the omnidirectional view characteristics 
lead to high resolution and massive data of 360-degree images, which in turn make 
images so sensitive to external interference that their quality deteriorates. Based on 
this consideration, it is significant to design efficient image QA methods for VR 
images to prevent low-quality images from causing undesirable user experience. 
Traditional image QA methods have poor performance due to the limitation of VR 
image databases and cannot effectively assess the perceptual quality of VR images 
with high-dimensional characteristics. 

In order to fill the gap in the research of QA methods of VR images, this book 
elaborately introduces four different QA methods of VR images proposed in recent 
years, and the details are illustrated in Chap. 7. These VR image QA approaches are 
classified into four categories according to the different observing subjects, namely 
subjective QA, objective QA, subjective-objective QA, and cross-reference stitching 
QA, respectively. The subjective QA method is based on the database named com-
pression VR image quality database (CVIQD) [50] that consists of raw images and 
images with JPEG compression to evaluate the VR image quality. The objective QA 
approach named weighted-to-spherically uniform peak signal-to-noise ratio (WS-
PSNR) assesses the visual quality of VR images in terms of the reweighting of pixels 
according to their position in space [51]. For subjective-objective QA, deep learning is 
employed to assess the omnidirectional images quality. Two typical image QA meth-
odsnamedvectoreddifferentialmeanopinionscore(V-DMOS)andoveralldifferential 
meanopinionscore(O-DMOS)arepresentedtoeffectivelyassessthepanoramicimage 
quality[52].Forcross-referencestitchingQAmethod,whichfocusesonevaluatingthe 
area of stitched omnidirectional images, [53] designed a typically used method. The 
method concentrates on the stitching regions by convolutional sparse coding and com-
pound feature selection to quantify ghosting and structure.
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1.8 Quality Assessment of Super-Resolution Images 

With the increasing demand for image or video resolution, the SR technique is 
widely utilized in medical image processing, infrared imaging, security monitor-
ing, and other fields. The high-resolution images can be generated from the given 
low-resolution images via the image SR techniques like bilinear interpolation, bicu-
bic interpolation, and the Lanczos resampling. However, these pixel integration 
operations cause serious mixed artifacts and fuzzy distortion in the edge and high-
frequency regions, resulting in poor image perception quality. Therefore, it is essen-
tial to effectively assess the SR image perceptual quality before further analysis of 
SR images, in order to improve the accuracy of processing systems. The commonly 
used image QA methods do not systematically consider the artifacts and distortions 
that appear in SR images, so they are not applicable to assess the SR image quality. 

Deep learning, especially convolutional neural networks (CNNs), has been broadly 
applied to image processing tasks [54]. Therefore, this book elaborately introduces 
two QA methods based on deep learning and a QA method based on NSS of SR 
images presented recently, and the details are illustrated in Chap. 8. One of the deep 
learning-based QA methods of SR images is the method based on a cascade regres-
sion, which establishes the mapping relationship between multiple natural statistical 
features and visual perception scores by learning a two-layer regression model [55]. 
The other deep learning-based QA method of SR images is the method based on 
the combination of SR image QA loss function and L2 Norm, which can effectively 
assess the visual perceptual quality of SR images [56]. The NSS-based QA method 
of SR images is the method that quantifies the degradation of image quality using 
deviations from statistical models of frequency energy falloff and spatial continuity 
of high-quality natural images [57]. In addition, there are also some approaches, such 
as the metric named the deep similarity (DeepSim) [58], the dual-stream siamese net-
work used to assess the distorted image perceptual quality score [59], and the model 
called the deep image quality assessment (DeepQA) [60]. The interested readers can 
learn these above-mentioned methods on their own. 
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