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Preface

The successful co-design and verification of secure multi-disciplinary heteroge-
neous systems-on-chips (SOCs) with tight interactions between hardware/software
(HW/SW) systems and their analog physical environment is an increasingly daunt-
ing task. In this regard, the emergence of virtual prototypes (VPs) at the abstraction
of electronic system level (ESL) has modernized the design and verification of
heterogeneous SOCs. A VP is essentially an executable abstract model of the
entire HW platform and pre-dominantly created in C++-based system modeling
language SystemC together with transaction level modeling (TLM) techniques and
its mixed-signal extension SystemC AMS. The much earlier availability as well
as the significantly faster simulation speed in comparison to the register transfer
level (RTL) models and SPICE-level models are among the main benefits of VPs.
Thus, virtual prototyping enables HW/SW co-design and verification very early
in the design flow. Serving as reference for (early) embedded SW development
and HW verification, the functional correctness and security validation of VPs
are very important. Hence, a VP is subjected to rigorous functional verification.
However, the modern VP-based verification flow still has weaknesses, in particular
due to lack of methodologies to capture the complex interactions between digital
and analog designs as well as unavailability of security validation techniques. This
book proposes several novel approaches that cover varying verification aspects
to strongly enhance the modern VP-based verification flow. The chapters of the
book are essentially divided into four parts: The first part introduces a new
verification perspective for VPs by using metamorphic testing (MT) as no reference
models/value are needed for verification, unlike in modern VP-based verification
flow. The second part enhances the code coverage closure methodologies in modern
VP-based verification flow by considering mutation analysis and stronger coverage
metrics like data flow coverage. The third part covers a set of novel, systematic, and
lightweight functional coverage-driven verification methodologies to improve the
coverage closure. The fourth and final part of the book showcases novel approaches
to enable early security validation of VPs. All approaches are presented in detail and
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are extensively evaluated with several experiments that clearly demonstrate their
effectiveness in strongly enhancing the modern VP-based verification flow.

Bremen, Germany Muhammad Hassan
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Bremen, Germany Rolf Drechsler
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Chapter 1
Introduction

Internet-of-Things (10T) and 5G (fifth generation technology standard for broad-
band cellular networks) have enabled a plethora of possibilities which were once
unimaginable. While 5G provides the high-speed connectivity and ubiquitous
coverage, it is the smart IOT devices that gather and transport the data that fuel
the promise and potential of IOT. These smart devices are a prime example of het-
erogeneous System-On-Chips (SOCs), which comprise two parts: (1) Mixed-Signal
Hardware (HW) where analog world meets the digital world, (2) and Software
(SW), the invisible layer that connects us to the physical reality. Heterogeneous
SOCs are among the fastest growing market segments in the electronics and semi-
conductor industry. Driven by growth opportunities in various application domains,
many semiconductor vendors are adapting and shifting their focus from separate
Integrated Circuits (ICs) performing one functionality, toward a more integrated
solution of Radio Frequency (RF) and high-performance Analog/Mixed-Signal
(AMS) designs. Due to this industry shift, most SOCs today are heterogeneous
containing analog sensors, mixed-signal converters, digital processors running SW
on top, and RF transceivers, tightly integrated on a single die. While this shift
has resulted in high-performance, efficient, and low-area devices, e.g., Apple M1
SOC [6], it has significantly increased the efforts required to develop and verify
these highly complex devices and achieving the required Time-To-Market (TTM)
simultaneously.

The first challenge in this regard is the HW and SW dependency. Conventionally,
HW and SW were developed in isolation and only met each other at the late
integration and testing stages. As a consequence, a sequential dependency between
HW and SW development phases always existed as shown in Fig. 1.1a. Hence, SW
could only be tested properly once the first silicon prototypes of the SOC were
available. In particular, HW dependent SW such as device drivers and low-level
kernel code could only be written after the silicon design had been completed.
One solution to lessen the TTM widely adopted by industry is to move away
from complete in-house HW development and instead use larger amounts of pre-
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Fig. 1.1 Early SW development leveraging shift left concept

verified third-party Intellectual Property (IP). It allows them to focus more on the
Unique Selling Point (USP) of their HW and SW. With the increased SW feature-
rich functionality and complex interactions between different HW components,
the design complexity has increased manyfold making the design verification of
heterogeneous SOCs an increasingly daunting task.

The second challenge in verification of heterogeneous SOCs is the slow joint
simulation speed of Register Transfer Level (RTL) and SPICE (Simulation Program
with Integrated Circuit Emphasis) models for the digital and analog/RF part of the
SOC [9]. Traditionally, analog/RF verification methodology was ad hoc by nature
and these IPs were always verified by separate teams. It was driven by directed
tests run over sweeps, corners, and Monte Carlo analysis. Unfortunately, it has not
changed much until now and creates a bottleneck in the design and verification
process. On the other hand, digital IPs had formalized verification methodologies
used by separate teams. This included executable verification plans, constrained-
random stimulus generation [119], testbench automation, assertions, and coverage
metrics. These pre-verified analog, RF, and digital IPs were later on integrated
together in a mostly digital SOC design and SW was executed on top to test
if everything works as expected. However, due to multi-functional nature of the
heterogeneous SOCs, the analog and RF IPs in particular have become very complex
with significant digital control logic. Furthermore, the interaction of analog/RF and
digital IPs has increased significantly, in particular when SW running on top is
considered as well [77]. Hence, the traditional verification approaches are no longer
adequate. The joint simulation, while slow, is still considered a golden standard
because of high accuracy and cannot be ignored. However, it is too slow for chip-
level simulations, unless it is used extremely selectively.

Third, design space and architectural exploration is restricted. Given the system
requirements, finding the optimal system configuration is a tiring task. Each



