

Reaktive Partikel aus Nickel und Aluminium als innovative Wärmequelle für die Fügetechnik

Sandra Grohmann

Sandra Grohmann

Reaktive Partikel aus Nickel und Aluminium als innovative Wärmequelle für die Fügetechnik

utzverlag · München 2022

Forschungsberichte iwb Band 374

Ebook (PDF)-Ausgabe: ISBN 978-3-8316-7717-7 Version: 1 vom 22.07.2022 Copyright© utzverlag 2022

Alternative Ausgabe: Softcover ISBN 978-3-8316-4961-7 Copyright© utzverlag 2022

TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Engineering and Design

Reaktive Partikel aus Nickel und Aluminium als innovative Wärmequelle für die Fügetechnik

Sandra Grohmann

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität München zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:

Prof. Dr.-Ing. Veit St. Senner

Prüfer der Dissertation:

Prof. Dr.-Ing. Michael Fr. Zäh Prof. Dr.-Ing. Kai-Olaf Hinrichsen

Die Dissertation wurde am 18.03.2021 bei der Technischen Universität München eingereicht und durch die TUM School of Engineering and Design am 19.08.2021 angenommen.

Sandra Grohmann

Reaktive Partikel aus Nickel und Aluminium als innovative Wärmequelle für die Fügetechnik

Forschungsberichte iwb

Band 374

Zugl.: Diss., München, Techn. Univ., 2021

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Das Werk ist urheberrechtlich geschützt. Sämtliche, auch auszugsweise Verwertungen bleiben vorbehalten.

Copyright © utzverlag GmbH · 2022

ISBN 978-3-8316-4961-7

Printed in Germany utzverlag GmbH, München 089-277791-00 · www.utzverlag.de

Geleitwort der Herausgeber

Die Produktionstechnik ist für die Weiterentwicklung unserer Industriegesellschaft von zentraler Bedeutung, denn die Leistungsfähigkeit eines Industriebetriebes und damit die Sicherheit der Arbeitsplätze hängen entscheidend von den eingesetzten Produktionsmitteln, den angewandten Produktionsverfahren und der eingeführten Produktionsorganisation ab. Erst das optimale Zusammenspiel von Mensch, Organisation und Technik erlaubt es, alle Potenziale für den Unternehmenserfolg auszuschöpfen.

Um in dem Spannungsfeld Kosten, Zeit und Qualität bestehen zu können, müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt werden. Dabei ist es notwendig, die Komplexität von Produkten, Produktionsabläufen und -systemen einerseits zu verringern und andererseits besser zu beherrschen.

Ziel der Forschungsarbeiten des *iwb* ist die ständige Verbesserung von Produktentwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produktionsanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie Systeme zur Auftragsabwicklung werden unter besonderer Berücksichtigung mitarbeiterorientierter Anforderungen sowie von Nachhaltigkeitsaspekten entwickelt. Die dabei notwendige Steigerung des Automatisierungsgrades darf jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. Fragen der optimalen Einbindung des Menschen in alle Planungs- und Entwicklungsprozesse spielen deshalb eine sehr wichtige Rolle.

Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch aus den Forschungsbereichen des *iwb*. Diese reichen von der Entwicklung von Produktionssystemen über deren Planung bis hin zu den eingesetzten Technologien in den Bereichen Fertigung und Montage. Die Steuerung und der Betrieb von Produktionssystemen, die Qualitätssicherung, die Verfügbarkeit und die Autonomie sind Querschnittsthemen hierfür. In den Forschungsberichten des *iwb* werden neue Ergebnisse und Erkenntnisse aus der praxisnahen Forschung des Institutes veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissenstransfer zwischen dem Hochschulbereich und den Anwendenden zu verbessern.

Gunther Reinhart

Michael Friedrich Zäh

Wer immer tut, was er schon kann, bleibt immer das, was er schon ist.

HENRY FORD

Vorwort

Während meiner Zeit als wissenschaftliche Mitarbeiterin am Institut für Werkzeugmaschinen und Betriebswissenschaften (*iwb*) der Technischen Universität München haben mich viele Menschen unterstützt. Diesen möchte ich aufrichtig danken.

Mein ausdrücklicher Dank gilt meinem Doktorvater Herrn Prof. Dr.-Ing. Michael Friedrich Zäh, der mich mit großem Vertrauen förderte und forderte und mir stets eine wertvolle Unterstützung war. Herrn Prof. Dr.-Ing. Gunther Reinhart möchte ich für die wohlwollende Zusammenarbeit am *iwb* danken. Für die Übernahme des Koreferats bin ich Herrn Prof. Dr.-Ing. Kai-Olaf Hinrichsen sehr verbunden und Herrn Prof. Dr.-Ing. Veit Stefan Senner danke ich für den Vorsitz der Prüfungskommission.

Auch danke ich meinen Kolleginnen und Kollegen, die meine Zeit am *iwb* so sehr bereicherten. Besonders hervorheben möchte ich Herrn Alexander Fuchs, Herrn Stefan Liebl und Herrn Markus Krutzlinger, die mir fachlich und persönlich eine große Unterstützung waren. Meinen Studierenden, darunter vor allem Gottfried, Vanessa, Alexander, Yiwen und Andreas, danke ich für ihre hohe Leistungsbereitschaft, die wertvollen und kreativen Beiträge sowie dafür, dass auch ich von ihnen lernen dürfte. Frau Dr.-Ing. Susanne Vernim und Frau Dr.-Ing. Corinna Liebl, denen ich freundschaftlich sehr verbunden bin, danke ich für die gewissenhafte Durchsicht meiner Arbeit und ihre konstruktiven Hinweise zu deren Finalisierung. Herrn Herbert Eicker, als Lektor meines Vertrauens, danke ich für die spannenden Gespräche über die deutsche Sprache. Überaus dankbar bin ich zudem Herrn Dr.-Ing. Markus Reichmann dafür, dass er seine große Expertise im Bereich der Mikrowellentechnik stets mit mir teilte und mich bis zur Fertigstellung dieser Arbeit damit unterstützte.

Mein bisheriger Weg und die vorliegende Arbeit wären ohne die Unterstützung meiner Familie nicht möglich gewesen. Für ihre bedingungslose Unterstützung und liebevolle Geduld von klein auf danke ich meinen Eltern Ulrike und Horst von Herzen. Meinen Schwiegereltern, Sigrid und Andreas, bin ich für das Aufzeigen neuer Wege sehr dankbar.

Meinem Ehemann Lukas bin ich für seinen immerwährenden Glauben an mich und an meine Fähigkeiten, seine einzigartig positive Art und die Bereitschaft, auch diesen Weg gemeinsam zu gehen, in tiefster Liebe verbunden.

Inhalt

Abkürzungsverzeichnis V				
Ve	erzeic	hnis de	er Formelzeichen	VII
1	Einl	eitung		1
	1.1	Reakti	ive Partikel als innovative Wärmequelle	1
	1.2	Allger	neine Zielsetzung und Betrachtungsbereich	3
	1.3	Einord	lnung und Aufbau der Arbeit	3
2	Gru	ndlage	n	5
	2.1	Allger	neines	5
	2.2	Klassi	fizierung reaktiver Stoffsysteme	5
		2.2.1	Einführung und Begriffsdefinition	5
		2.2.2	Edukte und synthetisierte Werkstoffgruppen	8
		2.2.3	Reaktionstypen und Aggregatzustände	10
		2.2.4	Reaktives Stoffsystem aus Nickel und Aluminium	13
	2.3	Chem	ische Thermodynamik	17
		2.3.1	Freie Enthalpie und Reaktionsenthalpie	17
		2.3.2	Kriterien der Selbsterhaltung	19
	2.4	Reakti	ionsaktivierung und -verlauf	21
		2.4.1	Reaktionsmodi reaktiver Stoffsysteme	21
		2.4.2	Temperaturprofil der Reaktion	22
		2.4.3	Unterscheidung von Reaktionszonen	25
	2.5	Elektr	omagnetische Felder und Wellen	27
		2.5.1	Ausbreitung elektromagnetischer Wellen	27
		2.5.2	Materialgleichungen und Werkstoffeigenschaften	30
		2.5.3	Verhalten von Mikrowellen an Grenzflächen	32
		2.5.4	Erwärmung mittels Mikrowellen	36
	2.6	Mikro	wellenerzeugung und -leitung	38
		2.6.1	Funktionsweise und Schutz eines Magnetrons	38

Inhalt

		2.6.2	Eigenschaften von Wellenleitern	41
		2.6.3	Eigenschaften von Hohlraumresonatoren	44
	2.7	Zusam	nmenfassung	45
3	Star	nd der l	Forschung und Technik	47
	3.1	Allger	neines	47
	3.2	Herste	llung reaktiver Partikel aus Nickel und Aluminium	48
		3.2.1	Partikel mit einer lamellaren Struktur	48
		3.2.2	Partikel mit einer Kern-Hülle-Struktur	49
	3.3	Reakti	onen reaktiver Partikel aus Nickel und Aluminium	55
		3.3.1	Einflussgrößen der Reaktion	55
		3.3.2	Postulierte Reaktionsmechanismen	58
		3.3.3	Anwendungsbeispiele in der Fügetechnik	64
	3.4	Wirku	ng von Mikrowellen auf Partikel aus Nickel und Aluminium	67
		3.4.1	Wirkung von Mikrowellen auf metallische Partikel	67
		3.4.2	Wirkung von Mikrowellen auf reaktive Stoffsysteme	71
		3.4.3	Fügen mittels Mikrowellen und reaktiver Stoffsysteme	73
	3.5	Zusam	nmenfassung	75
4	Fors	schung	sansatz	77
	4.1	Allger	neines	77
	4.2	Ableit	ung des Handlungsbedarfs	77
	4.3	Spezif	izierte Zielsetzung	79
	4.4	Vorgel	hensweise und Forschungsmethodik	79
5	Che	mische	e Synthese reaktiver Kern-Hülle-Partikel	83
	5.1	Allger	neines	83
	5.2	Grund	legendes zur chemischen Vernickelung von Aluminium	83
		5.2.1	Vorbehandlung von Aluminiumwerkstoffen	83
		5.2.2	Elektrolyt-Bestandteile und Prozessgrößen zur Vernickelung .	84
	5.3	Entwi	cklung einer Syntheseroute	87
		5.3.1	Vorbehandlung von Aluminiumpartikeln	87
		5.3.2	Vernickelung von Aluminiumpartikeln	89
		5.3.3	Syntheseroute und Versuchsraum	91
	5.4	Bewer	tung der synthetisierten Kern-Hülle-Partikel	99
		5.4.1	Vorgehen für die Bewertung und Auswertemethodik	99
		5.4.2	Stabilität des Elektrolyten	102

		5.4.3	Stoffliche und morphologische Eigenschaften der Partikel	104
		5.4.4	Wirkzusammenhänge und Strategie der Prozessführung	107
	5.5	Zusam	menfassung	111
6	Rea	ktionsa	aktivierung und Charakterisierungsmethoden	113
	6.1	Allger	neines	113
	6.2	Entwi	cklung eines Versuchsaufbaus	113
		6.2.1	Anforderungen	113
		6.2.2	Auslegung und Funktionsprinzip	115
	6.3	System	n- und Messtechnik zur Leistungsmessung	119
		6.3.1	Messmethoden und -stellen	119
		6.3.2	Befähigung der Leistungsmesstechnik	120
		6.3.3	Vorgehen zur Auswertung der Leistungsmessdaten	121
	6.4	System	n- und Messtechnik zur Temperaturmessung	122
		6.4.1	Temperaturmessmethoden in Mikrowellenfeldern	122
		6.4.2	Befähigung der Infrarot-Thermografie	125
		6.4.3	Vorgehen zur Auswertung der Infrarot-Thermografie-Daten .	127
	6.5	Zusam	menfassung	129
7	Eva	luation	des Aktivierungs- und des Reaktionsverhaltens	131
	7.1	Allger	neines	131
	7.2	Versuc	chsraum und Versuchsdurchführung	131
		7.2.1	Auswahl der reaktiven Partikel	131
		7.2.2	Präparation der reaktiven Partikel	133
		7.2.3	Aktivierung der reaktiven Partikel	134
	7.3	Eigens	schaften der Partikel mit einer Kern-Hülle-Struktur	136
		-		100
		7.3.1	Reaktionsaktivierung mittels Mikrowellen	136
		7.3.1	Reaktionsaktivierung mittels Mikrowellen Bewertung des resultierenden Reaktionsverhaltens	136 140
		7.3.1 7.3.2 7.3.3	Reaktionsaktivierung mittels Mikrowellen Bewertung des resultierenden Reaktionsverhaltens Weitere Einzeleffekte und Wirkzusammenhänge	136 140 144
	7.4	7.3.1 7.3.2 7.3.3 Eigens	Reaktionsaktivierung mittels Mikrowellen	136 140 144 151
	7.4	7.3.1 7.3.2 7.3.3 Eigens 7.4.1	Reaktionsaktivierung mittels Mikrowellen	136 140 144 151 151
	7.4	7.3.1 7.3.2 7.3.3 Eigens 7.4.1 7.4.2	Reaktionsaktivierung mittels Mikrowellen Bewertung des resultierenden Reaktionsverhaltens Weitere Einzeleffekte und Wirkzusammenhänge schaften der Partikel mit einer lamellaren Struktur Reaktionsaktivierung mittels Mikrowellen Bewertung des resultierenden Reaktionsverhaltens	136 140 144 151 151 154
	7.4	7.3.1 7.3.2 7.3.3 Eigens 7.4.1 7.4.2 7.4.3	Reaktionsaktivierung mittels Mikrowellen Bewertung des resultierenden Reaktionsverhaltens Weitere Einzeleffekte und Wirkzusammenhänge schaften der Partikel mit einer lamellaren Struktur Reaktionsaktivierung mittels Mikrowellen Bewertung des resultierenden Reaktionsverhaltens Weitere Einzeleffekte und Wirkzusammenhänge	136 140 144 151 151 154 157
	7.4 7.5	7.3.1 7.3.2 7.3.3 Eigens 7.4.1 7.4.2 7.4.3 Vergle	Reaktionsaktivierung mittels Mikrowellen	136 140 144 151 151 151 154 157 161

8	Füg	en mittels reaktiver Partikel	165
	8.1	Allgemeines	165
	8.2	Möglichkeiten und Einschränkungen	165
	8.3	Einsatz reaktiver Partikel in der Klebtechnik	169
		8.3.1 Reaktive Partikel als Additiv in Klebstoffen	169
		8.3.2 Kleben mittels reaktiver Partikel und Mikrowellen	171
	8.4	Technologische und wirtschaftliche Bewertung	173
	8.5	Zusammenfassung	175
9	Sch	ussbetrachtung	177
	9.1	Zusammenfassung	177
	9.2	Ausblick	180
Lit	eratu	r	183
Ve	rzeic	hnis betreuter Studienarbeiten	231
An	hang	I	237
	A.1	Elektromagnetische Feldtheorie	237
	A.2	Herstellung lamellarer Partikel mittels Planeten-Kugelmühlen	240
	A.3	Exemplarische Studien zu wichtigen Einflussgrößen	242
	A.4	Magnetische Verlustmechanismen	248
	A.5	Informationen zur chemischen Synthese	249
	A.6	Bewertungen und Ergebnisse der chemischen Synthese	253
	A.7	Weiterführende Informationen zum Versuchsaufbau	264
	A.8	Ergebnisse des Aktivierungs- und des Reaktionsverhaltens	267
	Δ9	Informationen und Ergebnisse zum Kleben	271

Abkürzungsverzeichnis

ANOVA	Varianzanalyse (engl.: <u>analysis of va</u> riance)		
ВТР	Verhältnis der Masse der Mahlkugeln zur Masse des Mahlguts (engl.:		
	<u>ball to powder ratio</u>)		
CS	Verbrennungssynthese (engl.: combustion synthesis)		
DSC	dynamische Differenzkalorimetrie (engl.: dynamic scanning		
	<u>c</u> alorimetry)		
DTA	Differenz-Thermoanalyse (engl.: differential thermal analysis)		
EDTA	Ethylendiamintetraessigsäure (engl.: ethylenediaminetetraacetic acid)		
EDX	energiedispersive Röntgenspektroskopie (engl.: energy dispersive		
	\underline{X} -ray spectroscopy)		
E-Welle	transversal-magnetische Welle		
FBG	Faser-Bragg-Gitter		
FF	Forschungsfrage		
HEBM	hochenergetisches Mahlen (engl.: high energy hall milling)		
H-Welle	transversal-elektrische Welle		
i. d. R.	in der Regel		
i. O.	in Ordnung		
ISM	Frequenzen für kommerzielle, wissenschaftliche und medizinische		
	Anwendungen (engl.: industrial, scientific, and medical)		
ITU	Internationale Fernmeldeunion (engl.: International		
	Telecommunication Union)		
kfz	kubisch-flächenzentriert		
КНР	Kern-Hülle-Partikel		
LP	lamellarer Partikel		
MASHS	selbstfortschreitende Hochtemperatursynthese mit mechanisch		
	voraktivierten Partikeln (engl.: mechanically activated self-propagating		
	high-temperature synthesis)		

MSR	mechanisch induzierte selbstfortschreitende Hochtemperatursynthese
	(engl.: mechanically induced self-propagating reaction)
МТО	Maß zur Beschreibung der Standzeit eines Elektrolyten für eine
	außenstromlose Reduktion (engl.: metal turn over)
n. a.	nicht anwendbar
OLR	ordinale logistische Regression
PM	Pulvermischung
REM	Rasterelektronenmikroskopie
RFBG	regeneriertes Faser-Bragg-Gitter
RMS	reaktives Multischichtsystem (engl.: reactive multilayer system)
SHS	$selbst forts chreitende\ Hochtemperatursynthese\ (engl.:\ \underline{s}elf\-propagating$
	high-temperature synthesis)
ST	3- <u>Stift-T</u> uner
Std.abw.	<u>Standardabw</u> eichung
TEM	<u>T</u> ransmissions <u>e</u> lektronen <u>m</u> ikroskopie
TE-Welle	transversal-elektrische Welle
TEM-Welle	transversal-elektromagnetische Welle
TGA	thermogravimetrische Analyse (engl.: thermogravimetric analysis)
TM-Welle	transversal-magnetische Welle
TRXRD	zeitaufgelöste Röntgendiffraktometrie (engl.: time-resolved X-ray
	diffraction)
XRD	Röntgendiffraktometrie (engl.: X-ray diffraction)

Verzeichnis der Formelzeichen

Zeichen	Einheit	Bezeichnung
а	m	Hohlleiterbreite
a_c	m/s^2	Coriolisbeschleunigung
a_{ω}	m/s^2	Zentrifugalbeschleunigung durch
		den Mahlbecher (Planet)
a_{Ω}	m/s^2	Zentrifugalbeschleunigung durch
		die Hauptscheibe (Sonne)
b	m	Hohlleiterhöhe
В	$V \cdot s/m^2$	magnetische Flussdichte (Vektorfeld)
С	g/1	Konzentration
Cr	m	Hohlraumresonatorlänge
CWelle	m/s	Ausbreitungsgeschwindigkeit
<i>c</i> ₀	m/s	Vakuumlichtgeschwindigkeit
C_p	$J/(mol \cdot K)$	molare Wärmekapazität
\overline{C}_p	$J/(mol \cdot K)$	gemittelte molare Wärmekapazität
d	_	Transmissionsfaktor
d_e	m	Eindringtiefe des elektrischen Feldes
d_m	m	Eindringtiefe des magnetischen Feldes
d_p	m	Durchmesser eines Partikels
d_{50}	m	mittlerer Partikeldurchmesser
D	$A \cdot s/m^2$	elektrische Flussdichte (Vektorfeld)
e	_	eulersche Zahl
Ε	V/m	elektrische Feldstärke (Betrag)
\vec{E}	V/m	elektrische Feldstärke (Vektor)
E	V/m	elektrische Feldstärke (Vektorfeld)
E^0	V	Normalpotenzial
f	1/s	Frequenz

Lateinische Formelzeichen

Zeichen	Einheit	Bezeichnung
f_c	1/s	Cut-off-Frequenz
f_r	1/s	Resonanzfrequenz
G	J	freie Enthalpie
ΔG	J	Änderung der freien Enthalpie
Н	A/m	magnetische Feldstärke (Betrag)
\vec{H}	A/m	magnetische Feldstärke (Vektor)
H	A/m	magnetische Feldstärke (Vektorfeld)
ΔH	J	Änderung der Enthalpie
ΔH_f^0	J/mol	(molare) Standard-Reaktionsenthalpie
$\Delta H_{r,m}$	J/mol	molare Reaktionsenthalpie
j	_	imaginäre Einheit
J	A/m^2	Stromdichte (Vektorfeld)
Κ	_	(mathematische) Menge
Μ	_	Metall
МО	_	Metalloxid
р	_	Signifikanzniveau (p-Wert)
pK_n	_	dekadischer Logarithmus der
		Bruttostabilitätskonstante
p_0	bar	Standard-Druck
Р	_	Produkt
r	_	Reflexionsfaktor
\vec{S}	W/m^2	Poynting-Vektor
ΔS	J/K	Änderung der Entropie
t	S	Zeit(punkt)
t_e	S	End-Zeitpunkt
t_i	S	Zeitpunkt <i>i</i> mit $i \in \mathbb{N}$
t _{st}	S	Start-Zeitpunkt
Т	Κ	Temperatur
\overline{T}	Κ	arithmetischer Mittelwert von
		Temperaturwerten
T_{ad}	Κ	adiabate Reaktionstemperatur
T_b	Κ	Siedetemperatur
T_c	K	maximale Reaktionstemperatur
T _{Curie}	K	Curie-Temperatur
T_i	Κ	Temperatur <i>i</i> mit $i \in \mathbb{N}$

Zeichen	Finheit	Bezeichnung
Zeielieli	Emment	Dezeichnung
T_{ig}	Κ	Aktivierungstemperatur
T_m	Κ	Schmelztemperatur
T _{st}	Κ	Anfangstemperatur
T_0	К	Standard-Temperatur
x	m	Raumkoordinate
x_i	m	Ort i mit $i \in \mathbb{N}$
X	_	Edukt
у	m	Raumkoordinate
Y	_	Edukt
z	m	Raumkoordinate
Z_F	Ω	Feldwellenwiderstand
Z_{FE}	Ω	Feldwellenwiderstand der E-Welle
Z_{FH}	Ω	Feldwellenwiderstand der H-Welle
Z_{F0}	Ω	Feldwellenwiderstand des freien Raumes

Griechische Formelzeichen

Zeichen	Einheit	Bezeichnung
α	1/m	Dämpfung
α_D	1/m	Dämpfung für Dielektrika
α_L	1/m	Dämpfung elektrisch leitfähiger Werkstoffe
$\tan \delta_{\varepsilon}$	_	Permittivitäts-Verlustfaktor
$ an \delta_{\mu}$	_	Permeabilitäts-Verlustfaktor
ε	$A \cdot s / (V \cdot m)$	Permittivität
ϵ_0	$A \cdot s / (V \cdot m)$	elektrische Feldkonstante
\mathcal{E}_r	_	Permittivitätszahl
ε_r^*	_	komplexe Permittivitätszahl
ε_r'	_	Realteil der komplexen Permittivität
ε_r''	_	Imaginärteil der komplexen Permittivität
1	_	Anzahl der Feldmaxima in x-Richtung
κ	_	Bandnummer

Verzeichnis der Formelzeichen

Zeichen	Einheit	Bezeichnung
λ	m	Wellenlänge
λ_c	m	kritische Wellenlänge
λ_h	m	Wellenlänge im Hohlleiter
λ_0	m	Freiraumwellenlänge
μ	$V \cdot s / (A \cdot m)$	Permeabilität
μ_0	$V \cdot s / (A \cdot m)$	magnetische Feldkonstante
μ_r	_	Permeabilitätszahl
μ_r^*	_	komplexe Permeabilitätszahl
μ_r'	_	Realteil der komplexen Permeabilität
μ_r''	_	Imaginärteil der komplexen Permeabilität
V	_	Anzahl der Feldmaxima in y-Richtung
ρ	$A \cdot s/m^3$	Raumladungsdichte (Skalarfeld)
$ ho_e$	$\Omega \cdot m$	elektrischer Widerstand
σ	S/m	elektrische Leitfähigkeit
σ_T	Κ	Standardabweichung von
		Temperaturwerten
Σ	_	Summe
τ	_	Anzahl der Feldmaxima in z-Richtung
ω	1/s	Kreisfrequenz
ω_P	rad/s	Winkelgeschwindigkeit des
		Mahlbechers (Planet)
Ω_S	rad/s	Winkelgeschwindigkeit der
		Hauptscheibe (Sonne)

Tiefgestellte Zeichen

Zeichen	Einheit	Bezeichnung
<i>i</i> , <i>j</i>	_	Laufindex
m, n	_	stöchiometrischer Koeffizient
r	_	rücklaufend (reflektiert)
t	_	transmittiert

Zeichen	Einheit	Bezeichnung
v	_	vorlaufend
<i>x</i> , <i>y</i>	_	Raumkoordinate

Hochgestellte Zeichen

Zeichen	Einheit	Bezeichnung
g	_	gasförmig (engl.: gaseous)
i	_	Laufindex
l	_	flüssig (engl.: liquid)
m, n, o, p, q, r	_	Endwert
S	_	fest (engl.: solid)

Chemische Verbindungen

Summenformel	Bezeichnung	
Al ₂ O ₃	Aluminium(III)-oxid	
As ₂ O ₅	Arsen(V)-oxid	
$C_2H_8N_2$	Ethylendiamin (Ethan-1,2-diamin)	
$C_3H_4N_2$	Imidazol (1H-Imidazol)	
$C_{10}H_{16}N_2O_8$	Ethylendiamintetraessigsäure	
C ₆ H ₅ Na ₃ O ₇	Natriumcitrat (Trinatrium-2-hydroxypropan-1,2,3-	
	tricarboxylat)	
C ₄ H ₆ NiO ₄	Nickel(II)-acetat	
$C_2H_4O_2$	Essigsäure (Ethansäure)	
$C_2H_4O_3$	Glycolsäure (Hydroxyethansäure)	
$C_2H_6O_2$	Ethylenglycol (Ethan-1,2-diol)	
$C_3H_4O_4$	Malonsäure (Propan-1,3-disäure)	

Summenformel	Bezeichnung	
C ₆ H ₈ O ₇	Citronensäure (2-Hydroxypropan-1,2,3-tricarbonsäure)	
C_2H_7B	Dimethylboran	
C5H10NS2Na	Natriumdiethyldithiocarbamat	
CO ₂	Kohlenstoffdioxid	
CrO ₃	Chrom(VI)-oxid	
Fe ₂ O ₃	Eisen(II)-oxid	
Fe ₃ O ₄	Eisen(III)-oxid	
H ₃ BO ₃	Borsäure	
H ₃ PO ₄	Phosphorsäure	
NH ₃	Ammoniak	
N_2H_4	Hydrazin	
NH ₄ Cl	Ammoniumchlorid	
NH4F	Ammoniumfluorid	
NaF	Natriumfluorid	
NaH ₂ PO ₂	Natriumhypophosphit	
NaOH	Natriumhydroxid	
Ni _m Al _n	Nickelaluminid	
NiCl ₂	Nickel(II)-chlorid	
NiO	Nickel(II)-oxid	
$Ni(OH)_2$	Nickel(II)-hydroxid	
NiSO ₄	Nickel(II)-sulfat	
SiC	Siliciumcarbid	
SnO ₂	Zinn(IV)-oxid	
$Y_3Fe_2(FeO_4)_3$	Yttrium-Eisen-Granat 1	
Y ₃ Fe ₅ O ₁₂	Yttrium-Eisen-Granat 2	

1 Einleitung

1.1 Reaktive Partikel als innovative Wärmequelle

Fortwährende Innovationen bilden die Grundlage der erfolgreichen Produktionstechnik und sind zugleich das zentrale Bestreben von Industrie und Forschung. Der Begriff *Innovation* umfasst weit mehr als eine Idee oder Erfindung (SCHUMPETER 1947, S. 152). Entscheidend ist, ob es zu einer industriellen Anwendung, d. h. zu einer wirtschaftlichen Veränderung, kommt (SCHUMPETER 1961, S. 91 ff.). Ein großer Bedarf nach Innovationen besteht im Bereich der Fügetechnik, welcher in Produktionsprozessen eine zentrale Bedeutung zukommt und die sich im beständigen Wandel befindet.

Der vermehrte Einsatz neuartiger, funktionaler Werkstoffe, hochfester Verbundwerkstoffe aus Metallen, Polymeren und Keramiken sowie die leichtbau- und beanspruchungsgerechte Gestaltung von Bauteilgeometrien kennzeichnen diesen Wandel. Jedoch stellen diese Entwicklungen nicht nur essenzielle Maßnahmen für ressourceneffiziente Produkte, sondern auch produktionstechnische Herausforderungen (ZÄH ET AL. 2018, S. 40) dar. Folglich können derartige Veränderungen nur zu einem Erfolg führen, "wenn [zugleich] geeignete fügetechnische Konzepte erarbeitet werden" (ABELE & REIN-HART 2011, S. 97). Eine zielführende Strategie, welche die Ressourceneffizienz des Fügeprozesses erhöht und für das Fügen artverschiedener Werkstoffe mit unterschiedlichen Schmelztemperaturen, Wärmeleitfähigkeiten und Wärmeausdehnungskoeffizienten notwendig ist, ist die Flexibilisierung des Energieeintrags.

Eine potenzialträchtige Technologie, die dies ermöglicht, ist das Fügen mittels reaktiver Stoffsysteme. Diese zeichnen sich durch ihre einzigartige Eigenschaft aus, nach einem einmaligen Energieeintrag in einer exothermen, selbsterhaltenden Reaktion zu reagieren und innerhalb weniger Sekunden (VARMA ET AL. 1996, S. 2) Temperaturen von bis zu 4000 K (LEVASHOV ET AL. 2017, S. 204) zu generieren. Die freigesetzte Reaktionsenthalpie wird durch die Eigenschaften der Edukte des reaktiven Stoffsystems definiert. Demzufolge repräsentieren reaktive Stoffsysteme eine flexible und anpassbare Wärmequelle, welche zwischen den Fügepartnern platziert wird (Abbildung 1.1). Vorteilhaft ist, dass aufgrund der hohen Reaktionsrate nur ein kurzzeitiger Energieeintrag in die Fügepartner stattfindet, welcher diese oder ein Lot lokal aufschmilzt und zu einem stoffschlüssigen Fügeverbund führt. Von besonderer Bedeutung sind reaktive Stoffsysteme aus Nickel und Aluminium (VARMA ET AL. 1998, S. 101). Diese eignen sich für fügetechnische Anwendungen aufgrund der in einem großen Bereich anpassbaren Energiefreisetzung sowie aufgrund der mechanisch-technologischen Eigenschaften der durch die Reaktion synthetisierten Nickelaluminide (SAUTHOFF 1995, S. 38 ff.).

Abbildung 1.1: Schematische Darstellung des Funktionsprinzips für das Fügen mit reaktiven Stoffsystemen zur Herstellung von Multi-Werkstoff-Verbunden

Kommerziell sind reaktive Stoffsysteme derzeit als sogenannte reaktive Multischichtsysteme erhältlich, welche beispielsweise zur Zellkontaktierung von Batteriemodulen eingesetzt werden (THEODOSSIADIS & ZÄH 2017, S. 4 f.). Diese folienartigen Materialien weisen jedoch Nachteile auf, die ihre Anwendbarkeit in der Fügetechnik einschränken. Die Herstellung mittels Magnetronsputtern ist kosten- und zeitintensiv (MUKASYAN ET AL. 2015, S. 17). Außerdem entstehen während des Herstellungsprozesses Eigenspannungen (ADAMS 2015, S. 109), wodurch die reaktiven Multischichtsysteme spröde und zerbrechlich werden und sich folglich nicht bzw. nur bedingt für gekrümmte Flächen eignen (GU ET AL. 2013, S. 493). Dennoch veranschaulicht die kommerzielle Verfügbarkeit, dass eine Nachfrage nach dem Fügen mit reaktiven Stoffsystemen besteht.

Eine vielversprechende Alternative, welche ebenfalls den reaktiven Stoffsystemen zuzuordnen ist und sich auch für komplexe Geometrien eignet, sind reaktive Partikel (SCHREIBER & ZÄH 2018, S. 48 f.). Diese vereinen die Edukte eines reaktiven Stoffsystems innerhalb jedes Partikels und repräsentieren demnach individuelle und unabhängige Wärmequellen, welche zwischen den Fügepartnern mit unterschiedlichen Werkstoffeigenschaften platziert werden können. Die Energiefreisetzung durch die selbsterhaltende, exotherme Reaktion wird mittels der Eigenschaften der Partikel, wie beispielsweise der Partikelgröße, des stöchiometrischen Verhältnisses oder der Anordnung der Edukte, vorgegeben. Im Unterschied zu bloßen Pulvermischungen der jeweiligen Edukte, welche für die selbsterhaltende Reaktion einen ausreichenden Kontakt erfordern und daher verdichtet werden müssen, können reaktive Partikel lose oder einzeln verwendet werden. Zur Reaktionsaktivierung dieser vereinzelt vorliegenden reaktiven Partikel eignen sich in besonderem Maße Mikrowellen (GROHMANN ET AL. 2020, S. 1). Die elektromagnetischen Wellen ermöglichen hohe Heizraten für eine schnelle Reaktionsaktivierung, hohe Fügegeschwindigkeiten sowie eine volumetrische und selektive Erwärmung. Zudem kann die Reaktion, ungeachtet der hohen Reaktionsraten, durch die Mikrowellen auch nach der Aktivierung noch beeinflusst werden.

Gemäß diesen Ausführungen repräsentiert das Fügen mittels reaktiver Partikel eine zukunftsorientierte Weiterentwicklung der Fügetechnik zur Herstellung ressourceneffizienter Produkte in Multi-Werkstoff-Bauweise. Allerdings ist diese neuartige Technologie noch nicht ausreichend untersucht, um sich industriell zu etablieren und somit zu einer Innovation in der Produktionstechnik zu werden.

1.2 Allgemeine Zielsetzung und Betrachtungsbereich

Das Ziel dieser wissenschaftlichen Arbeit ist es, das Prozessverständnis für den Einsatz reaktiver Partikel als Wärmequelle in der Fügetechnik zu erhöhen. Auf diese Weise wird eine Technologie für die praktische Anwendung befähigt, die es ermöglicht, Multi-Werkstoff-Verbunde sowie Bauteile mit Freiformflächen zu fügen, ohne die Fügepartner hohen thermischen Belastungen auszusetzen. Dies erweitert die Fertigungsoptionen für massereduzierte und lasttragende Strukturen. In der hier vorliegenden wissenschaftlichen Auseinandersetzung werden Partikel im Größenbereich von Mikrometern thematisiert, welche innerhalb eines Partikels die Edukte Nickel und Aluminium vereinen. Nanopartikel sind aufgrund der andersartigen Einzeleffekte und Wirkzusammenhänge kein Bestandteil dieser Arbeit. Zur Aktivierung der reaktiven Partikel werden Mikrowellen mit einer industriell etablierten Frequenz von 2,45 GHz gewählt.

1.3 Einordnung und Aufbau der Arbeit

Die Zielsetzung und der Betrachtungsbereich dieser Arbeit verdeutlichen deren Verortung im Bereich der Ingenieurwissenschaft, welche nach ULRICH & HILL (1976a, S. 305) den angewandten Wissenschaften zuzuordnen ist. Begrifflich ist die damit einhergehende Anwendungsforschung, welche nutzenorientiert ist, von der Grundlagenforschung, welche rein erkenntnisorientiert ist, zu unterscheiden (CARRIER 2016, S. 8). Diese Gegenüberstellung schließt jedoch nicht aus, "dass ein und dasselbe Forschungsvorhaben beide Ziele verfolgen kann, also zugleich das Naturverstehen vertieft und den praktischen Nutzen mehrt" (CARRIER 2016, S. 8). Da die Zielsetzung dieser Arbeit die Generierung von industriell nutzbarem Wissen für eine neuartige Fügetechnologie beinhaltet, bedurfte es zu ihrer Erstellung sowohl erkenntnis- als auch nutzenorientierter Forschung. Weiterhin ist die Arbeit, aufgrund der Notwendigkeit der Verknüpfung der Disziplinen Produktionstechnik, Fügetechnik, Werkstofftechnik, chemische Verfahrenstechnik und Hochfrequenztechnik, in hohem Maße interdisziplinär.

Zur Zielerreichung bedarf es daher einer strukturierten Aufarbeitung der für diese Arbeit wesentlichen, theoretischen Grundlagen. Die Schwerpunkte des Kapitels 2 bilden die Eigenschaften reaktiver Stoffsysteme sowie die Ausbreitung elektromagnetischer Wellen. Relevante wissenschaftliche Vorarbeiten zur Herstellung und zu den Reaktionen reaktiver Partikel, den Wechselwirkungen von Mikrowellen mit metallischen Partikeln und dem Einsatz von reaktiven Partikeln und Mikrowellen in der Fügetechnik werden im Kapitel 3 zusammengefasst. Die differenzierte Kenntnis des Stands der Forschung und Technik ermöglicht es im Kapitel 4, signifikante Forschungslücken zu identifizieren und einen stichhaltigen Handlungsbedarf zu formulieren. Aus diesem leiten sich eine spezifizierte Zielsetzung und Forschungsziele in Form von Forschungsfragen ab. Zur Klärung der Forschungsfragen wird eine Forschungsmethodik vorgestellt, welche zugleich eine wissenschaftstheoretische Einordnung dieser Arbeit erlaubt.

Das Kapitel 5, in welchem die Herstellung hochreiner Partikel mit einer Kern-Hülle-Struktur beschrieben wird, kennzeichnet den Einstieg in die experimentellen Forschungsergebnisse und den Ausgangspunkt des gewählten, ganzheitlichen Forschungsansatzes. Im Kapitel 6 folgt die Entwicklung eines Versuchsaufbaus, welcher sowohl eine prozesssichere Reaktionsaktivierung mittels Mikrowellen als auch eine zeitlich und örtlich hoch auflösende Charakterisierung der exothermen Reaktionen ermöglicht. Mit der Syntheseroute und dem Versuchsaufbau waren die Voraussetzungen geschaffen, um gemäß Kapitel 7 das Aktivierungs- und das Reaktionsverhalten verschiedener reaktiver Partikel zu evaluieren. Den Abschluss des ganzheitlichen Forschungsansatzes bildet Kapitel 8. In diesem findet sich eine Darlegung zum Übertrag des generierten Prozessverständnisses in die industrielle Praxis, indem das Fügen mittels reaktiver Partikel und Mikrowellen demonstriert und technologisch und wirtschaftlich bewertet wird. Das Kapitel 9 dient der Zusammenfassung dieser wissenschaftlichen Arbeit sowie der Erläuterung der wichtigsten Handlungsfelder für weiterführende Forschungsarbeiten.