Lecture Notes in Networks and Systems 526

Leonard Barolli Hiroyoshi Miwa Tomoya Enokido *Editors*

Advances in Network-Based Information Systems

The 25th International Conference on Network-Based Information Systems (NBiS-2022)

Lecture Notes in Networks and Systems

Volume 526

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FEEC, University of Campinas— UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA

Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering, KIOS Research Center for Intelligent Systems and Networks, University of Cyprus, Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

The series "Lecture Notes in Networks and Systems" publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

For proposals from Asia please contact Aninda Bose (aninda.bose@springer.com).

More information about this series at https://link.springer.com/bookseries/15179

Leonard Barolli · Hiroyoshi Miwa · Tomoya Enokido Editors

Advances in Network-Based Information Systems

The 25th International Conference on Network-Based Information Systems (NBiS-2022)

Editors Leonard Barolli Department of Information and Communication Engineering Fukuoka Institute of Technology Fukuoka, Japan

Tomoya Enokido Faculty of Bussiness Administration Rissho University Tokyo, Japan Hiroyoshi Miwa School of Science and Technology Kwansei Gakuin University Sanda, Japan

ISSN 2367-3370 ISSN 2367-3389 (electronic) Lecture Notes in Networks and Systems ISBN 978-3-031-14313-7 ISBN 978-3-031-14314-4 (eBook) https://doi.org/10.1007/978-3-031-14314-4

 ${\ensuremath{\mathbb C}}$ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Welcome Message from NBiS-2022 Organizing Committee

We would like to welcome you to the 25th International Conference on Network-Based Information Systems (NBiS-2022), which is held from September 7 to September 9, 2022.

The main objective of NBiS is to bring together scientists, engineers and researchers from both network systems and information systems with the aim of encouraging the exchange of ideas, opinions and experiences between these two communities.

NBiS is one of the important conferences in the field. Extensive international participation, coupled with rigorous peer reviews, has made this an exceptional technical conference. The technical program and workshops add important dimensions to this event. We hope that you will enjoy each and every component of this event and benefit from interactions with other attendees.

Since its inception, NBiS has attempted to bring together people interested in information and networking, in areas that range from the theoretical aspects to the practical design of new network systems, distributed systems, multimedia systems, Internet/web technologies, mobile computing, intelligent computing, pervasive/ubiquitous networks, dependable systems, semantic services and scalable computing. For NBiS-2022, we have continued these efforts as novel networking concepts emerge and new applications flourish. In this edition of NBiS, many papers were submitted from all over the world. They were carefully reviewed, and only high-quality papers will be presented during conference days.

The organization of an international conference requires the support and help of many people. A lot of people have helped and worked hard for a successful NBiS-2022 technical program and conference proceedings. First, we would like to thank all the authors for submitting their papers. We are indebted to Track Co-Chairs, Program Committee Members and Reviewers who carried out the most difficult work of carefully evaluating the submitted papers.We would like to express our great appreciation to our keynote speakers for accepting our invitation as keynote speakers of NBiS-2022.

We hope that you have an enjoyable and productive time during the conference.

NBiS-2022 Organizing Committee

Honorary Chair

Makoto Takizawa Hosei University, Japan

General Co-chairs

Hiroyoshi Miwa Tomoya Enokido Fang-Yie Leu Kwansei Gakuin University, Japan Rissho University, Japan Tunghai University, Taiwan

Program Committee Co-chairs

Naohiro Hayashibara	Kyoto Sangyo University, Japan	
Marek Ogiela	AGH University of Science and Technology,	
Poland		
Isaac Woungang	Toronto Metropolitan University, Canada	

Award Co-chairs

Minoru Uehara David Taniar Arjan Durresi Toyo University, Japan Monash University, Australia IUPUI, USA

Publicity Co-chairs

Markus Aleksy Wenny Rahayu Lidia Ogiela

Keita Matsuo

ABB AG, Germany La Trobe University, Australia AGH University of Science and Technology, Poland Fukuoka Institute of Technology, Japan

International Liaison Co-chairs

Chuan-Yu Chang	National Yunlin University of Science and
	Technology, Taiwan
Hsing-Chung Chen	Asia University, Taiwan
Tomoyuki Ishida	Fukuoka Institute of Technology, Japan
Farookh Hussain	University Technology Sydney, Australia
Hiroaki Kikuchi	Meiji University, Japan
Kin Fun Li	University of Victoria, Canada

Local Arrangement Co-chair

Yusuke Sakumoto	Kwansei Gakuin University, Japan
Finance Chair	
Makoto Ikeda	Fukuoka Institute of Technology, Japan

Web Administrator Co-chairs

Phudit Ampririt	Fukuoka Institute of Technology, Japan
Kevin Bylykbashi	Fukuoka Institute of Technology, Japan
Ermioni Qafzezi	Fukuoka Institute of Technology, Japan

Steering Committee Chair

Leonard Barolin Fukuoka Institute ol Technology, Jap
--

Track Areas and PC Members

Track 1: Mobile and Wireless Networks

Track Co-chairs

Tetsuya Shigeyasu	Prefectural University of Hiroshima, Japan
Vamsi Krishna Paruchuri	University of Central Arkansas, USA
Makoto Ikeda	Fukuoka Institute of Technology, Japan

PC Members

Nobuyoshi Sato
Kanunori Ueda
Masaaki Yamanaka
Takuya Yoshihiro
Tomoya Kawakami

Iwate Prefectural University, Japan Kochi University of Technology, Japan Japan Coast Guard Academy, Japan Wakayama University, Japan Nara Institute of Science and Technology, Japan

Fujitsu Laboratory, Japan
Aleksander Moisiu University of Durresi,
Albania
Fukuoka Institute of Technology, Japan
Fukuoka Institute of Technology, Japan
IUPUI, USA

Track 2: Internet of Things and Big Data

Track Co-chairs

Chi-Yuan Chen

Stelios Sotiriadis	Birkbeck, University of London, UK
Chun-wei Tsai	National fian University, Taiwan
Patrick Hung	University of Ontario Institute of Technology,
	Canada
PC Members	
Sergio Toral	University of Seville, Spain
Euripides G. M. Petrakis	Technical University of Crete (TUC), Greece
Mario Dantas	Federal University of Juiz de Fora (UFJF), Brazil
Xiaolong Xu	University of Posts and Telecommunications,
	China
Kevin Curran	Ulster University, UK
Shih-Chia Huang	National Taipei University of Technology,
	Taiwan
Jorge Roa	UTN Santa Fe, Argentina
Alvaro Joffre Uribe	Universidad Militar Nueva Granada, Colombia
Marcelo Fantinato	University of Sao Paulo, Brazil
Marco Zennaro	Wireless and T/ICT4D Laboratory, Italy
Priyanka Rawat	University of Avignon, France
Francesco Piccialli	University of Naples Federico II, Italy

Track 3: Cloud, Grid and Service-Oriented Computing

Track Co-chairs	
Ciprian Dobre	Polytechnic University of Bucharest, Romania
Omar Hussain	UNSW Canberra, Australia
Muhammad Younas	Oxford Brookes University, UK
PC Members	
Adil Hammadi	Sultan Qaboos University, Oman

University of Naples Federico II, Italy National Ilan University, Taiwan

Walayat Hussain	University of Technology Sydney, Australia
Farookh Hussain	University of Technology Sydney, Australia
Rui Pais	University of Stavanger, Norway
Raymond Hansen	Purdue University, USA
Antorweep Chakravorty	University of Stavanger, Norway
Rui Esteves	National Oilwell Varco, Norway
Constandinos X.	University of Nicosia, Cyprus
Mavromoustakis	
Ioan Salomie	Technical University of Cluj-Napoca, Romania
George Mastorakis	Technological Educational Institute of Crete,
	Greece
Sergio L. Toral Marín	University of Seville, Spain
Marc Frincu	West University of Timisoara, Romania
Alexandru Costan	IRISA/INSA Rennes, France
Xiaomin Zhu	National University of Defense Technology,
	China
Radu Tudoran	Huawei, Munich, Germany
Mauro Migliardi	University of Padua, Italy
Harold Castro	Universidad de Los Andes, Colombia
Andrea Tosatto	Open-Xchange, Germany
Rodrigo Calheiros	Western Sydney University, Australia

Track 4: Multimedia and Web Applications

Track Co-chairs

Takahiro Uchiya	Nagoya Institute of Technology, Japan
Tomoyuki Ishida	Fukuoka Institute of Technology, Japan
Nobuo Funabiki	Okayama University, Japan

PC Members

Shigeru Fujita Yuka Kato Yoshiaki Kasahara Rihito Yaegashi Kazunori Ueda Ryota Nishimura Shohei Kato Shinsuke Kajioka Atsuko Muto Kaoru Sugita Noriyasu Yamamoto Chiba institute of Technology, Japan Tokyo Woman's Christian University, Japan Kyushu University, Japan Kagawa University, Japan Kochi University of Technology, Japan Keio University, Japan Nagoya Institute of Technology, Japan Nagoya Institute of Technology, Japan Fukuoka Institute of Technology, Japan Fukuoka Institute of Technology, Japan

Track 5: Ubiquitous and Pervasive Computing

Track Co-chairs

Chi-Yi Lin	Tamkang University, Taiwan
Elis Kulla	Fukuoka Institute of Technology, Japan
Isaac Woungang	Toronto Metropolitan University, Canada
PC Members	
Jichiang Tsai	National Chung Hsing University, Taiwan
Chang Hong Lin	National Taiwan University of Science and
	Technology, Taiwan
Meng-Shiuan Pan	Tamkang University, Taiwan
Chien-Fu Cheng	Tamkang University, Taiwan
Ang Chen	University of Pennsylvania, USA
Santi Caballe	Open University of Catalonia, Spain
Evjola Spaho	Polytechnic University of Tirana, Albania
Makoto Ikeda	Fukuoka Institute of Technology, Japan
Neeraj Kumar	Thapar University, India
Hamed Aly	Acadia University, Canada
Glaucio Carvalho	Sheridan College, Canada

Track 6: Network Security and Privacy

Track Co-chairs

Takamichi Saito	Meiji University, Japan
Sriram Chellappan	University of South Florida, USA
Feilong Tang	Shanghai Jiao Tong University, China

PC Members

Satomi Saito Kazumasa Omote Koji Chida Hiroki Hada Hirofumi Nakakouji Na Ruan Chunhua Su Toshihiro Yamauchi Masakazu Soshi Bagus Santoso

Laiping Zhao Jingyu Hua Fujitsu Laboratories, Japan University of Tsukuba, Japan NTT, Japan NTT Security (Japan) KK, Japan Hitachi, Ltd., Japan Shanghai Jiaotong University, China Osaka University, China Okayama University, Japan Hiroshima City University, Japan The University of Electro-Communications, Japan Tianjin University, China Nanjing University, China

Xiaobo Zhou	Tianjin University, China
Yuan Zhan	Nanjing University, China
Yizhi Ren	Hangzhou Dianzi University, China
Arjan Durresi	IUPUI, USA
Vamsi Krishna Paruchuri	University of Central Arkansas, USA
Davinder Kaur	IUPUI, USA

Track 7: Database, Data Mining and Semantic Computing

Track Co-chairs

Wendy K. Osborn	University of Lethbridge, Canada
Eric Pardade	La Trobe University, Australia
Akimitsu Kanzaki	Shimane University, Japan

PC Members

Asm Kayes	La Trobe University, Australia
Ronaldo dos Santos Mello	Universidade Federal de Santa Catarina, Brazil
Saqib Ali	Sultan Qaboos University, Oman
Hong Quang Nguyen	Ho Chi Minh City International University,
	Vietnam
Irena Holubova	Charles University Prague, Czech Republic
Prakash Veeraraghavan	La Trobe University, Australia
Carson Leung	University of Manitoba, Canada
Marwan Hassani	Aachen University, Germany
Tomoki Yoshihisa	Osaka University, Japan
Tomoya Kawakami	NAIST, Japan
Atsushi Takeda	Tohoku Gakuin University, Japan
Yoshiaki Terashima	Soka University, Japan
Yuuichi Teranishi	NICT, Japan

Track 8: Network Protocols and Applications

Track Co-chairsSanjay Kumar Dhurandher
Hsing-Chung ChenNSIT, University of Delhi, India
Asia University, TaiwanPC MembersAmita MalikDeenbandhu Chhotu Ram University of Science
and Technology, IndiaMayank DaveNIT, Kurukshetra, India
University of Delhi, India

R. K. Pateriya	MANIT, Bhopal, India	
Himanshu Aggarwal	Punjabi University, India	
Neng-Yih Shih	Asia University, Taiwan	
Yeong-Chin Chen	Asia University, Taiwan	
Hsi-Chin Hsin	National United University, Taiwan	
Ming-Shiang Huang	Asia University, Taiwan	
Chia-Cheng Liu	Asia University, Taiwan	
Chia-Hsin Cheng	National Formosa University Yunlin County,	
Taiwan		
Tzu-Liang Kung	Asia University, Taiwan	
Gene Shen	Asia University, Taiwan	
Jim-Min Lin	Feng Chia University, Taiwan	
Yen-Ching Chang	Chung Shan Medical University, Taiwan	
Shu-Hong Lee	Chienkuo Technology University, Taiwan	
Ho-Lung Hung	Chienkuo Technology University, Taiwan	
Gwo-Ruey Lee	Lung-Yuan Research Park, Taiwan	
Li-Shan Ma	Chienkuo Technology University, Taiwan	
Chung-Wen Hung	National Yunlin University of Science and	
	Technology University, Taiwan	
Yung-Chen Chou	Asia University, Taiwan	
Chen-Hung Chuang	Asia University, Taiwan	
Jing-Doo Wang	Asia University, Taiwan	
Jui-Chi Chen	Asia University, Taiwan	
Young-Long Chen	National Taichung University of Science and	
	Technology, Taiwan	

Track 9: Intelligent and Cognitive Computing

Track Co-chairs

Lidia Ogiela

Farookh Hussain Shinji Sakamoto

PC Members

Yiyu Yao Daqi Dong Jan Platoš

Pavel Krömer

Urszula Ogiela

AGH University of Science and Technology,
Poland
University of Technology Sydney, Australia
Kanazawa Institute of Technology, Japan

1
1
,

Jana Nowaková	VŠB Technical University of Ostrava, Czech
	Republic
Hoon Ko	Chosun University, South Korea
Chang Choi	Chosun University, Republic of Korea
Gangman Yi	Gangneung-Wonju National University, Korea
Wooseok Hyun	Korean Bible University, Korea
Hsing-Chung (Jack) Chen	Asia University, Taiwan
Jong-Suk Ruth Lee	KISTI, Korea
Hyun Jung Lee	Yonsei University, Korea
Ji-Young Lim	Korean Bible University, Korea
Omar Hussain	UNSW Canberra, Australia
Saqib Ali	Sultan Qaboos University, Oman
Morteza Saberi	UNSW Canberra, Australia
Sazia Parvin	UNSW Canberra, Australia
Walayat Hussain	University of Technology Sydney, Australia
Tetsuya Oda	Okayama University of Science, Japan
Makoto Ikeda	Fukuoka Institute of Technology, Japan
Admir Barolli	Aleksander Moisiu University of Durresi, Albania
Yi Liu	National Institute of Technology, Oita College, Japan

Track 10: Parallel and Distributed Computing

Track Co-chairs

Naohiro Hayashibara	Kyoto Sangyo University, Japan
Bhed Bista	Iwate Prefectural University, Japan

PC Members

Tomoya Enokido Kosuke Takano Masahiro Ito Jiahong Wang Shigetomo Kimura Chotipat Pornavalai

Danda B. Rawat Gongjun Yan Naonobu Okazaki Yoshiaki Terashima Atsushi Takeda Tomoki Yoshihisa Akira Kanaoka Rissho University, Japan Kanagawa Institute of Technology, Japan Toshiba Lab, Japan Iwate Prefectural University, Japan University of Tsukuba, Japan King Mongkut's Institute of Technology Ladkrabang, Thailand Howard University, USA University of Southern Indiana, USA Miyazaki University, Japan Soka University, Japan Tohoku Gakuin University, Japan Osaka University, Japan Toho University, Japan

NBiS-2022 Reviewers

Barolli Admir Barolli Leonard Bista Bhed Chang Chuan-Yu Chellappan Sriram Chen Hsing-Chung Cui Baojiang Di Martino Beniamino Durresi Arjan Enokido Tomoya Ficco Massimo Fujisaki Kiyotaka Fun Li Kin Funabiki Nobuo Gotoh Yusuke Hayashibara Naohiro Hussain Farookh Hussain Omar Ikeda Makoto Iio Jun Ishida Tomoyuki Javaid Nadeem Kamada Masaru Kaur Davinder Kikuchi Hiroaki Kohana Masaki Kulla Elis

Maeda Hiroshi Matsuo Keita Nishigaki Masakatsu Nowaková Jana Ogiela Lidia Ogiela Marek Okada Yoshihiro Okamoto Shusuke Osborn Wendy Palmieri Francesco Paruchuri Vamsi Krishna Rahayu Wenny Rawat Danda Shibata Yoshitaka Saito Takamichi Sato Fumiaki Takizawa Makoto Tang Feilong Taniar David Uchida Kazunori Uchiya Takahiro Uehara Minoru Venticinque Salvatore Wang Xu An Watanabe Koki Woungang Isaac Xhafa Fatos

NBiS-2022 Keynote Talks

Fundamental Model of Online User Dynamics Based on a Causal Framework

Masaki Aida

Tokyo Metropolitan University, Tokyo, Japan

Abstract. User dynamics in online social networks have come to have a great impact not only on online society but also on real life. Therefore, understanding online user dynamics is an important issue. Of course, it is difficult to understand all of the complex online user dynamics, but it may be possible to describe their characteristics in a particular way. This talk introduces an attempt to give a mathematical model of online user dynamics based on a causal framework in which the mutual influences working between users are propagated at finite speeds via an online social network. This model can theoretically explain various phenomena including the intensity of user dynamics diverges, such as online flaming phenomena, and the phenomenon that information propagation is restricted only within a specific community, such as polarization.

Big Data Analytics on COVID-19 Epidemiological Data

Carson K. Leung

University of Manitoba, Manitoba, Canada

Abstract. In the current era of big data, high volume of big data can be generated and collected from a wide variety of rich data sources at a rapid rate. Embedded in these big data are useful information and valuable knowledge. Examples include healthcare and epidemiological data such as data related to patients who suffered from viral diseases like the coronavirus disease 2019 (COVID-19). Knowledge discovered from these epidemiological data via data science helps researchers, epidemiologists and policymakers to get a better understanding of the disease, which may inspire them to come up with ways to detect, control and combat the disease. This talk presents big data analytics solutions for analyzing COVID-19 epidemiological data. The solutions help users to get a better understanding of information about COVID-19 cases. Evaluation on real-life COVID-19 data across Canadian provinces shows the benefits of big data analytics in discovering useful knowledge from COVID-19 epidemiological data.

Contents

A Negotiation Protocol Among Servers for Virtual Machines to Migrate to Reduce the Energy Consumption Dilawaer Duolikun, Tomoya Enokido, and Makoto Takizawa	1
Energy-Efficient Multi-Version Concurrency Control (EEMVCC) for Object-Based Systems	13
Fog Computing Model for the Information Flow ControlShigenari Nakamura, Tomoya Enokido, and Makoto Takizawa	25
An Incentive Framework for Surplus Food Distribution in the Context of Smart Cities	35
Performance Evaluation of V2X Communication Based on 2-Wavelength Wireless Link Method Yoshitaka Shibata and Akira Sakuraba	48
Soldering Danger Detection System Using a Line-of-Sight Estimation Tomoya Yasunaga, Kyohei Toyoshima, Chihiro Yukawa, Yuki Nagai, Tomoaki Matsui, Tetsuya Oda, and Leonard Barolli	58
Improvement of NMR-Reduction Method by Local Search for Optimization of Number of Mesh Routers in WMNs Aoto Hirata, Yuki Nagai, Tomoya Yasunaga, Kyohei Toyoshima, Chihiro Yukawa, Tetsuya Oda, and Leonard Barolli	66
Conceptual Framework of Blockchain Technology Adoption in Saudi Public Hospitals Using TOE Framework	78

The Probability of Encounters of Mutual Search Using Lévy Walk on Unit Disk Graphs	90
Tactical Alignment of Aerial Transmission Laser Beam for Free Space Optics Communication 10	02
Kota Watanabe, Takuto Koyama, Hiroshi Koga, Kiyotaka Izumi, and Takeshi Tsujimura	
Human-AI Protocols for Cloud Data Management 1 Urszula Ogiela, Makoto Takizawa, and Marek R. Ogiela 1	15
Trustworthy AI Explanations as an Interface in Medical Diagnostic Systems 1 Davinder Kaur, Suleyman Uslu, and Arjan Durresi	19
Data Architecture for Data-Driven Service Platform: Royal ProjectFoundation Case Study13Suphatchaya Autarrom, Kittayaporn Chantaranimi, Chanwit Chanton,Anchan Chompupoung, Pichan Jinapook, Waranya Mahanan,Pathathai Na Lumpoon, Juggapong Natwichai, Nontakan Nuntachit,Nitchanan Prapaitrakul, Rattasit Sukhahuta, Prompong Sugunsil,Sumalee Sangamuang, Titipat Sukhvibul, and Pree Thiengburanathum	31
Performance Comparison of FC-RDVM and RDVM Router Replacement Methods by WMN-PSOHC Simulation System Considering Different Instances 14 Shinji Sakamoto, Admir Barolli, Yi Liu, Elis Kulla, Leonard Barolli, and Makoto Takizawa	42
A Fuzzy-Based System for Handover in 5G Wireless Networks Considering Different Network Slicing Constraints: Effects of Slice Load Parameter on Handover Decision	52
A Fuzzy-Based System for Determining Driver Impatience in VANETs Considering Number of Forced Stops, Unnecessary Maneuvers, Time Pressure and Task Importance	63
Effect of Transporter Autonomous Underwater Vehicles for Underwater Optical Wireless Communication Considering Delay Tolerant Networks	72

Contents

Channel Allocation in Cognitive Radio Networks: A Game-Theoretic	182
Vinesh Kumar, Sanjay Kumar Dhurandher, Isaac Woungang, Shashank Gupta, and Surajpratap Singh	102
Investigating Moral Foundations from Web Trending Topics Jean Marie Tshimula, Belkacem Chikhaoui, and Shengrui Wang	193
Multi-observed Multi-factor Authentication: A Multi-factor Authentication Using Single Credential Shinnosuke Nozaki, Ayumi Serizawa, Mizuho Yoshihira, Masahiro Fujita, Yoichi Shibata, Tadakazu Yamanaka, Nori Matsuda, Tetsushi Ohki, and Masakatsu Nishigaki	201
Envy-Free Trip Planning in Group Trip Planning Query Problem Mayank Singhal and Suman Banerjee	212
An AOI-Based Surface Defect Detection Approach Applied to Woven Fabric Production Process Wei-Chun Hsu, Hsing-Chung Chen, Kai-Ming Uang, and Yong-Hong Lin	224
Evaluation of a Fuzzy-Based Robotic Vision System for RecognizingMicro-roughness on Arbitrary Surfaces: A Comparison Studyfor Vibration Reduction of Robot ArmChihiro Yukawa, Nobuki Saito, Tomoya Yasunaga, Yuki Nagai,Kyohei Toyoshima, Tetsuya Oda, and Leonard Barolli	230
Location Management Method for Students on Campus Using Smartphones for Health and Safety Iyori Honma, Yuya Sawano, Takuya Watanabe, and Ryozo Kiyohara	238
Common Factor Analysis of Information Security Incidents Based on Psychological Factors	248
Detection and Analysis of Intrusion Attacks Using Deep Neural Networks Atsushi Takeda	258
DTN Routing Method Based on Node Movement Prediction and Message Deliverability Kazunori Ueda	267
GPU-Accelerated Reverse K-Nearest Neighbor Search for High- Dimensional Data	279

Pre-cache Methods for Accommodating More Clients in Edge-Assisted Video-on-Demand Systems	289
Method for Exploring Travel Routes Based on Cycle Ports in Bike- Sharing System Yusuke Gotoh and Hiroka Hori	298
Proposal of Rescue Drone for Locating Indoor Survivors in the Event of Disaster	309
A Method for Taking Snapshots of Host Environment Using Containerization Technology Takayoshi Miyake and Yoshinari Nomura	319
Implementation of an English Word Learning AR Application forInfant English EducationMomoka Hagihara and Tomoyuki Ishida	328
Implementation of a Mixed Reality System for the Development ofTraditional Crafts IndustriesReiya Yahada and Tomoyuki Ishida	335
A Study on Driving Characteristics of Automobiles from Overhead View	343
Necessary Requirements of Avatars for Remote Communication in Real Space	354
Implementation and Evaluation on Smooth On-Line CommunicationSystem Using Multi-cameraShinya Takahashi and Yasuo Ebara	365
An Enhanced Adaptive Anti-packet Recovery Method for Inter- vehicle Communications	374
Reliability Evaluation of Predicted Precipitation Data Providedby AMeDAS and Its Applicability for Quality Improvementof Satellite LinksKiyotaka Fujisaki and Shunsuke Tamura	384
A Wireless Sensor Network Testbed for Monitoring a Water Reservoir Tank: Experimental Results of Delay and Temperature Prediction by LSTM. Yuki Nagai, Aoto Hirata, Chihiro Yukawa, Kyohei Toyoshima, Tomoya Yasunaga, Tetsuya Oda, and Leonard Barolli	392

Numerical Analysis of Photonic Crystal Waveguide with Fork-shaped Branch Hiroshi Maeda	402
Wireless Communication Channel Purification for Urban Utility Tunnel Based on Sector Pattern Antenna Array	408
What Kind of Restroom Sign Image is Preferred?	416
Web Application with Built-in Remote Support Capability by Meansof Voice Communication and Screen SharingShinya Nakamura, Michitoshi Niibori, and Masaru Kamada	424
Constructing a Client Certificate Distribution System Yasuhiro Ohtaki and Kazuyuki Yamamoto	430
Constructing Opaque Predicate Using Homomorphic Encryption Yohsuke Hirano and Yasuhiro Ohtaki	441
Evaluation of Information Aggregation Performance of PPN-Integrated Networks by Changing the Interval for Input PartSwitchingYudai Okui, Tatsuhiro Yonekura, and Masaru Kamada	449
Implementation of Interactive Tutorial for IslayTab by Restricting and Highlighting the DOM Node to Tap	457
QoE Metrics in Real-Time Web Games	464
Analysis of Learning-Data for Feedback System in Programming Classrooms Yoshihiro Kawano, Yoshiha Goto, and Yuka Kawano	474
Web Game Development Tool for Learning CommunicationFunctions for Beginners Networked Game DevelopersYu Osuga, Yoshihiro Kawano, Yoichi Murakami, Dai Hanawa,Masaki Hanada, and Eiji Nunohiro	484
Detecting Features for a Music Retrieval System	491
Author Index	501

A Negotiation Protocol Among Servers for Virtual Machines to Migrate to Reduce the Energy Consumption

Dilawaer Duolikun^{1(⊠)}, Tomoya Enokido², and Makoto Takizawa¹

 RCCMS, Hosei University, Tokyo, Japan dilewerdolkun@gmail.com, makoto.takizawa@computer.org
Faculty of Business Administration, Rissho University, Tokyo, Japan eno@ris.ac.jp

Abstract. It is critical to reduce the electric energy consumption of information systems to realize green societies. Here, each server has to negotiate with other servers to decide on which virtual machine to migrate to and from which servers. In this paper, we newly propose an NM (Negotiation for Migration of virtual machines) protocol for servers to negotiate with one another where not only each host server selects a guest server but also each guest server selects a host server so that the total energy consumption of the servers can be reduced. In the evaluation, we show the total energy consumption of the servers can be reduced to 40 to 60 [%] of non-migration algorithms in the migration algorithms using the NM protocol.

Keywords: Green computing systems · NM protocol · ML (Macro-level estimation) model · NMRB · NMEA

1 Introduction

In order to decrease the carbon dioxide emission, the total electric energy consumption of clouds of servers [2-7, 16] has to be reduced. In this paper, we consider the live migration approach [1, 16] of virtual machines [1, 4-7, 16]. Energyaware algorithms [8, 12-14, 22-25] are proposed to select a host server to perform an application process issued by a client. In addition, virtual machines migrate from host servers to guest servers to reduce the energy consumption of the servers in the live migration approach [8, 16-19, 24]. Virtual machines are also used to make systems tolerant of stop-faults of servers by replicating each process on multiple virtual machines [9-11] and making virtual machines migrate to operational servers [26].

Power consumption and computation models of servers in clouds [4-7, 14] and fog nodes in the IoT [28, 29] are proposed. By using the models, the execution time and energy consumption of a server to perform processes are obtained as discussed in papers [12-14]. In the MI (Monotonically Increasing) model [20-23],

the energy consumption of a server is more precisely estimated by considering the computation residue of each active process. However, it take time and more data is required to do the estimation. In this paper, we propose an ML (Macro-Level estimation) model by considering the total computation residue of all the active processes on a server in order to make the estimation simpler.

In our previous studies on the live migration approach [12–24], a centralized coordinator is assumed to exist to make a decision on which server sends which virtual machine to which server. It is not easy to realize the coordinator in scalable clouds due to overhead. In this paper, we newly propose an NM (Negotiation for Migration of virtual machines) protocol by which each server communicates with another server to make a virtual machine migrate among the servers. Here, each server estimates the energy consumption of servers in the ML model. We also propose a pair of NMRB (NM Round-roBin) and NMEA (NM Energy-Aware) algorithms where virtual machines autonomously migrate from host servers to guest servers by using the NM protocol. In the NMRB algorithm, a host server is selected to perform a new process issued by a client in the RB way. A host sever whose energy consumption is estimated to be smallest in the ML model is selected in the NMEA algorithm.

In the evaluation, we show the total energy consumption of the servers in a cloud can be about 40 to 60[%] reduced in the NMRB and NMEA algorithms using the NM protocol compared with non-migration algorithms.

In Sect. 2, we present the system model. In Sect. 3, we propose the ML model. In Sect. 4, we propose the NM protocol. In Sect. 5, we evaluate the NMRB and NMEA algorithms.

2 System Model

A cloud C is composed of servers $s_1, \ldots, s_m (m \ge 1)$. Each server s_t is equipped with $np_t \geq 1$ CPUs, each of which supports $cn_t \geq 1$ cores and each core supports $tn_t \geq 1$ threads. The server s_t totally supports $nt_t = nc_t \cdot tn_t$ threads. In this paper, a *process* stands for an application process which uses CPU resources [5]. A process being performed is *active*. Time is modeled to be a discrete sequence of time units [tu]. Processes issued by clients are performed on a virtual machine vm_k [1] on a server s_t . $SP_t(\tau)$ and $VP_k(\tau) \subseteq SP_t(\tau)$ are sets of active processes on a server s_t and a virtual machine vm_k , respectively, at time τ . For a pair of virtual machines vm_k and vm_h , vm_k is smaller than $vm_h (vm_k < vm_h)$ iff $|VP_k(\tau)| < |VP_h(\tau)|$. A virtual machine vm_k on a host server s_h can migrate to a guest server s_q in a live manner [1]. Active processes on vm_k do not terminate but are just suspended during the migration time tm. The migration time tm is about two [sec] according to the experiment [24]. VM_t is a set of virtual machines on a server s_t . The execution time of a process p_i on a server s_t is the same as a virtual machine vm_k on s_t [27]. A server and a virtual machine are *active* if at least one process is active, otherwise *idle*.

In the MLPCM (Multi-Level Power Consumption) model [13–16], the power consumption $NE_t(n_t)$ [W] of a server s_t to perform n_t active processes is:

$$NE_{t}(n_{t}) = \begin{cases} \min E_{t} & \text{if } n_{t} = 0.\\ \min E_{t} + n_{t} \cdot (bE_{t} + cE_{t} + tE_{t}) & \text{if } 1 \le n_{t} \le np_{t}.\\ \min E_{t} + np_{t} \cdot bE_{t} + n_{t} \cdot (cE_{t} + tE_{t}) & \text{if } np_{t} < n_{t} \le nc_{t}.\\ \min E_{t} + np_{t} \cdot bE_{t} + nc_{t} \cdot cE_{t} + n_{t} \cdot tE_{t} & \text{if } nc_{t} < n_{t} < nt_{t}.\\ \max E_{t}(=\min E_{t} + np_{t} \cdot bE_{t} + nc_{t} \cdot cE_{t} + nt_{t} \cdot tE_{t}) & \text{if } n_{t} > nt_{t}. \end{cases}$$
(1)

Each time a CPU, core, and thread are activated, the power consumption of a server s_t increases by bE_t , cE_t , and tE_t [W], respectively. The power $E_t(\tau)$ [W] consumed by a server s_t to perform n_t (= $|SP_t(\tau)|$) processes at time τ is $NE_t(n_t)$. Energy consumed by a server s_t from time x [tu] to time y is $\sum_{\tau=x}^{y} NE_t(|SP_t(\tau)|)$ [W tu].

The execution time of each process depends on how many processes are active on a thread. $minT_{ti}$ is the minimum execution time [tu] of a process p_i on a server s_t where only the process p_i is active on a thread without any other process. Let $minT_i$ be a minimum one of $minT_{1i}, \ldots, minT_{mi}$ in the cloud C. The total amount of computation of each process p_i is defined to be $minT_i$ [4–7]. In wellformed applications, most processes are daily used and it is easy to obtain $minT_i$ of each process p_i . The computation residue RP_i of each process p_i is min T_i when p_i starts. $minT_i/minT_{ti} = minT_i/minT_{ti} = TCR_t \ (\leq 1)$ for any pair of processes p_i and p_j on a server s_t . Here, TCR_t is the thread computation rate of a server s_t . If $l \ (> 0)$ processes are active on a thread, each p_i of the processes is performed at rate TCR_t/l , i.e. the computation residue RP_i of p_i is decremented by TCR_t/l for one time unit. On a server s_t with n_t active processes, each process is performed at rate $NPR_t(n_t)$ in the MLC (Multi-Level Computation) model [12–14] where $NPR_t(n_t) = TCR_t$ for $0 < n_t \leq nt_t$, $TCR_t \cdot (nt_t/n_t)$ for $n_t > n_t$. The server computation rate $NSR_t(n_t) (\leq n_t \cdot TCR_t)$ of a server s_t is $NPR_t(n_t) \cdot n_t$ for $n_t > 0$. The total computation residue RS_t of a server s_t is $\sum_{p_i \in SP_t(\tau)} RP_i$. RS_t is decremented by $NSR_t(|SP_t(\tau)|)$ at each time τ .

The power-computation rate $PCR_t(n_t)$ of a server s_t is $NE_t(n_t)/NSR_t(n_t)$ $(n_t > 0)$. One unit of computation is defined to be the computation which takes one time unit [tu] on the fastest server s_t where $TCR_t = 1$. $PCR_t(n_t)$ shows the power consumption of a server s_t to perform one computation unit, where n_t processes are active. If $n_t \ge nt_t$, $PCR_t(n_t)$ is $PCR_t(n_t) = maxE_t/(nt_t \cdot TCR_t)$.

We discuss how processes are performed on a server s_t based on the MLPCM and MLC models. Variables C_t , T_t , and E_t denote a set of active processes, active time and energy consumption of each server s_t , respectively. RP_i and T_i show the computation residue and execution time of each process p_i , respectively. At each time τ , if a process p_i starts on a server s_t , RP_i is $minT_i$. T_i is incremented by one if $RP_i > 0$. E_t is incremented by $NE_t(|C_t|)$. RP_i of each process p_i in the set C_t is decremented by $NPR_t(n_t)$. Then, if $RP_i \leq 0$, p_i terminates and is removed from the set C_t . Initially, $E_t = 0$, $C_t = \phi$, $T_t = 0$, and $\tau = 1$.

[Computation model of processes on a server s_t] while () {

for each process p_i which starts on a server s_t at time τ , $\{C_t = C_t \cup \{p_i\}; RP_i = minT_i; T_i = 0;\};$

 $n_{t} = |C_{t}|; \quad E_{t} = E_{t} + NE_{t}(n_{t}); \quad \text{if } n_{t} > 0, \ T_{t} = T_{t} + 1;$ for each process p_{i} in C_{t} , $\{T_{i} = T_{i} + 1; \ RP_{i} = RP_{i} - NPR_{t}(n_{t}); \text{ if } RP_{i} \le 0, \ C_{t} = C_{t} - \{p_{i}\}; \};$ $\tau = \tau + 1; \ \};$

3 An ML (Macro-Level Estimation) Model

We discuss how to estimate energy to be consumed by a server to perform processes based on the MLPCM and MLC models. In papers [20–22], the estimation algorithms like the MI [20] and SMI [22] are proposed where the computation residue RP_i of each active process p_i is taken into consideration. The energy consumption of the server s_t can be more precisely estimated [20]. However, the estimation algorithms are more complex, i.e. it takes longer time and requires more data to perform the estimation algorithms.

We consider the total computation residue RS_t of all the active processes on each server s_t at a macro level and do not consider the computation residue of each active process as discussed in papers [17,27]. Let n_t be the number of active processes on a server s_t , i.e. $n_t = |SP_t(\tau)|$ at time τ . Initially, each server s_t is idle, i.e. $n_t = 0$ and $RS_t = 0$. We assume that the minimum execution time $minT_i$ of each process p_i is a priori known. If a process p_i is issued to a server s_t , RS_t is incremented by $minT_i$. At each time unit, RS_t is decremented by the server computation rate $NSR_t(n_t)$.

Suppose n_t processes are active on a server s_t at time τ whose total computation residue is RS_t . It takes *execution time* $ET_t(RS_t, n_t) = RS_t/NSR_t(n_t)$ [tu] and s_h consumes *energy* $EC_t(RS_t, n_t) = RS_t \cdot PCR_t(n_t)$ [W tu] to perform n_t processes.

First, we consider the energy consumption $HGEC_{hg}$ of the servers s_h and s_g among which no virtual machine migrates. Since the servers s_h and s_g consume the energy $HEC_h = EC_h(RS_h, n_h)$ and $GEC_g = EC_g(RS_g, n_g)$, respectively, $HGEC_{hg}$ is as follows:.

$$HGEC_{hg} = \begin{cases} RS_h \cdot PCR_h(n_h) + RS_g \cdot PCR_g(n_g) + \\ mE_{hg}(RS_h/NSR_h(n_h), RS_g/NSR_g(n_g)). \end{cases}$$
(2)

In order to take into consideration the energy consumption of idle servers, the function mE_{hg} is defined in papers [13,21,22]. Here, $mE_{hg}(x,y)$ is $minE_h \cdot (x-y)$ if $x \ge y$, otherwise $minE_g \cdot (y-x)$.

Next, suppose a virtual machine vm_k with $nv_k(\leq n_h)$ active processes migrates from a host server s_h to a guest server s_g at time τ . Processes on vm_k are suspended at time τ to time $\tau+tm$ and restarts on the guest server s_g at time $\tau+tm$ where tm is the migration time. Since the nv_k processes leave the server s_h , the computation residue of the virtual machine vm_k is $RS_h \cdot (nv_k/n_h)$ and the computation residue of the host server s_h is reduced to $RS_h - RV_k$ $= RS_h \cdot (1-nv_k/n_h)$. The number of active processes on s_h is also reduced to $(n_h - nv_k)$. The total execution time VHT_h is $RS_h \cdot (1-nv_k/n_h)/NSR_h(n_h - nv_k)$ [tu] and s_h consumes the energy $VHEC_{h:k} = EC_h(RS_h - RV_k, n_h - nv_k)$ $= RS_h \cdot (1-nv_k/n_h) \cdot PCR_h(n_h - nv_k)$ [W tu]. Here, suppose n_g processes are active at time $\tau + tm$ when the virtual machine vm_k restarts on the guest server s_g , i.e. $tm < RS_g/NSR_g(n_g)$. For tm time units [tu] from time τ , n_g processes in the set $SP_g(\tau)$ are performed on s_g while active processes on vm_k are suspended. Here, the computation $NSR_g(n_g) \cdot tm$ is performed, i.e. the computation residue of s_g is reduced to $RS_g - NSR_g(n_g) \cdot tm$. The guest server s_g consumes the energy $NE_g(n_g) \cdot tm$ since the power $NE_g(n_g)$ [W] is consumed for tm [tu] until vm_k restarts on s_g . The computation residue RS_g of the server s_g is reduced to $RS_g - NSR_g(n_g) \cdot tm$. At time $\tau + tm$, since nv_k processes on vm_k newly restart in addition to the n_g processes on the guest server s_g , the computation residue increases by the computation residue RV_k , i.e. $(RS_g - NSR_g(n_g) \cdot tm) + RS_h \cdot (nv_k/n_h)$. The number of active processes also increases to $n_g + nv_k$. Hence, the total execution time $VGT_{g:k}$ of the guest server s_g is $tm + [RS_g - NSR_g(n_g) \cdot tm + RS_h \cdot (nv_k/n_h)]/NSR_g(n_g + nv_k)$ [tu]. The guest server s_g consumes the energy $VGEC_{g:k} = NE_g(n_g) \cdot tm + [RS_g - NSR_g(n_g) \cdot tm + RS_h \cdot (nv_k/n_h)]/NSR_g(n_g + nv_k)$ [tu].

Next, suppose no process is active at time $\tau + tm$, i.e. $tm \geq RS_g/NSR_g(n_g)$. That is, all the n_g processes terminate at time $\tau + RS_g/NSR_g(n_g)$ ($< \tau + tm$) and then no process is active until time $\tau + tm$ when vm_k restarts on the server s_g . The nv_k processes on vm_k are performed on s_g at time $\tau + tm$. It takes $ET_g(RV_k, nv_k) = RS_h \cdot (nv_k/n_h)/NSR_g(nv_k)$ [tu] to perform the nv_k processes and s_g consumes the energy $EC_g(RV_k, nv_k) = RS_h \cdot (nv_k/n_h) \cdot PCR_g(nv_k)$ [W tu]. Thus, the total execution time $VGT_{g:k}$ to perform the n_g processes and the nv_k processes is $tm + RS_h \cdot (nv_k/n_h)/NSR_g(nv_k)$ [tu]. The server s_g consumes the minimum power $minE_g$ [W] from time $\tau + RS_g/NSR_g(n_g)$ to $\tau + tm$ since s_g is idle. Hence, the guest server s_g consumes the energy $VGEC_{g:k} = RS_g \cdot PCR_g(n_g) + minE_g \cdot [tm - RS_g/NSR_g(n_g)] + RS_h \cdot (nv_k/n_h) \cdot PCR_g(nv_k)$.

$$VGEC_{g:k} = \begin{cases} NE_g(n_g) \cdot tm + [RS_g - NSR_g(n_g) \cdot tm + RS_h \cdot (nv_k/n_h)] \cdot PCR_g(n_g + nv_k) & \text{if } tm \leq RS_g/NSR_g(n_g) \cdot RS_g \cdot PCR_g(n_g) + minE_g \cdot [tm - RS_g/NSR_g(n_g)] + RS_h \cdot (nv_k/n_h) \cdot PCR_g(nv_k) & \text{otherwise.} \end{cases}$$
(3)

The servers s_h and s_g totally consume the energy $VHGEC_{hg:k} = VHEC_{h:k} + VGEC_{g:k} + mE_{hg}(VHT_h, VGT_g)$ if vm_k migrates from s_h to s_g .

If the following MG condition $MG_{sg:k}$ holds for a host server s_h , a guest server s_g , and a virtual machine vm_k , the total energy to be consumed by the servers s_h and s_g can be reduced if vm_k migrates from s_h to s_g .

[MG (MiGration) condition $MG_{hg:k}$] $HGEC_{hg} > VHGEC_{hg:k}$.

4 An NM Protocol

4.1 Selection of a Virtual Machine

We newly propose an NM (Negotiation for Migration of virtual machines) protocol for servers to negotiate with other servers to decide on which virtual machine on which host server migrates to which guest server. On each server s_h , n_h processes are active, the total computation residue of the n_h active processes is RS_h , and VM_h is a set of virtual machines.

Suppose a client issues a process p_i to a cloud C of servers s_1, \ldots, s_m (m > 0). First, a server s_h is first selected in the cloud C. In the round-robin (RB) algorithm, a server s_h is selected for the process p_i after s_{h-1} . In the EA (Energy-Aware) algorithms [12–14], a server s_h whose expected energy consumption $EC_h(RS_h+minT_i, n_t+1)$ is smallest is selected in the cloud C. Then, a local virtual machine vm_k is selected in the set VM_h to perform the process p_i in the following VMP algorithm:.

[VMP (Virtual Machine for a Process) selection algorithm]

- 1. If every virtual machine is idle, one idle virtual machine vm_k is selected.
- 2. If there is an active virtual machine vm_l where $nv_l < nt_h$, a largest virtual machine vm_k is selected where $nv_k \leq nt_h$.
- 3. If $nv_k \ge nt_h$ for every virtual machine vm_k in VM_h , a smallest virtual machine vm_k is selected.

If a smallest virtual machine is selected each time a process is issued to a server s_h , processes are uniformly allocated to every local virtual machine. This means, only virtual machines with too small number of active processes might migrate to another server even if the severs consume less energy if a virtual machine with more active processes migrate.

In the migration approach, a virtual machine vm_k to migrate is selected on a host server s_h in the following *VMM* selection algorithm:

[VMM (Virtual Machine to Migrate) selection algorithm] A virtual machine vm_k is active, i.e. $nv_k > 0$ and smallest in VM_h of a server s_h .

4.2 NM Protocol

If the MGC (migration check) condition is satisfied at current time τ , a server s_h selects a local active virtual machine vm_k to migrate in the VMM algorithm.

[MGC condition] $\tau \geq lastmgt_h + mgint$ and $n_h/nt_h > 2$.

Here, $lastmgt_h$ shows most recent time a local virtual machine on a server s_h migrates and mgint is the minimum migration interval. The condition $n_h/nt_h > 2$ means that at least two processes are active on each thread of a server s_h .

The server s_h obtains the expected energy consumption $HE_h = EC_h(RS_h, n_h)$ and execution time $HT_h = ET_h(RS_h, n_h)$ to perform n_h processes, where no local virtual machine migrates to another server. The server s_h also obtains the energy consumption $VHE_{h:k} = EC_{h:k}(RS_h - RV_k, n_h - nv_k)$ and the execution time $VHT_{h:k} = ET_h(RS_h - RV_k, n_h - nv_k)$ to perform $(n_h - nv_k)$ processes, where vm_k migrates to another server. As discussed in Sect. 3, the computation residue RV_k of vm_k is $RS_h \cdot (nv_k/n_h)$. Th server s_h sends an MGQ (MiGration reQuest) message with data $\langle vm_k, RV_k, HE_h, HT_h, VHE_{h:k}, VHT_{h:k} \rangle$ to other servers to ask if the servers can be guest servers of vm_k . Let GS_h be a set of servers to which the server s_h sends MRQ messages.