
EAI/Springer Innovations in Communication and Computing

Manju Khari
Deepti Bala Mishra
Biswaranjan Acharya
Ruben Gonzalez Crespo Editors

Optimization
of Automated
Software
Testing Using
Meta-Heuristic
Techniques

EAI/Springer Innovations in Communication
and Computing

Series Editor
Imrich Chlamtac, European Alliance for Innovation, Ghent, Belgium

The impact of information technologies is creating a new world yet not fully
understood. The extent and speed of economic, life style and social changes already
perceived in everyday life is hard to estimate without understanding the technological
driving forces behind it. This series presents contributed volumes featuring the
latest research and development in the various information engineering technologies
that play a key role in this process. The range of topics, focusing primarily on
communications and computing engineering include, but are not limited to, wireless
networks; mobile communication; design and learning; gaming; interaction;
e-health and pervasive healthcare; energy management; smart grids; internet of
things; cognitive radio networks; computation; cloud computing; ubiquitous
connectivity, and in mode general smart living, smart cities, Internet of Things and
more. The series publishes a combination of expanded papers selected from hosted
and sponsored European Alliance for Innovation (EAI) conferences that present
cutting edge, global research as well as provide new perspectives on traditional
related engineering fields. This content, complemented with open calls for
contribution of book titles and individual chapters, together maintain Springer’s and
EAI’s high standards of academic excellence. The audience for the books consists
of researchers, industry professionals, advanced level students as well as practitioners
in related fields of activity include information and communication specialists,
security experts, economists, urban planners, doctors, and in general representatives
in all those walks of life affected ad contributing to the information revolution.
Indexing: This series is indexed in Scopus, Ei Compendex, and zbMATH.

About EAI - EAI is a grassroots member organization initiated through cooperation
between businesses, public, private and government organizations to address the
global challenges of Europe’s future competitiveness and link the European
Research community with its counterparts around the globe. EAI reaches out to
hundreds of thousands of individual subscribers on all continents and collaborates
with an institutional member base including Fortune 500 companies, government
organizations, and educational institutions, provide a free research and innovation
platform. Through its open free membership model EAI promotes a new research
and innovation culture based on collaboration, connectivity and recognition of
excellence by community.

Manju Khari  •  Deepti Bala Mishra
Biswaranjan Acharya  •  Ruben Gonzalez Crespo
Editors

Optimization of Automated
Software Testing Using
Meta-Heuristic Techniques

ISSN 2522-8595	     ISSN 2522-8609  (electronic)
EAI/Springer Innovations in Communication and Computing
ISBN 978-3-031-07296-3     ISBN 978-3-031-07297-0  (eBook)
https://doi.org/10.1007/978-3-031-07297-0

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Manju Khari
School of Computer & Systems Sciences
Jawaharlal Nehru University
New Delhi, Delhi, India

Biswaranjan Acharya
Department of Computer Engineering-AI
Marwadi University
Rajkot, Gujarat, India

Deepti Bala Mishra
Department of MCA
GITA Autonomous College
Bhubaneswar, India

Ruben Gonzalez Crespo
Computer Science and Technology
Universidad Internacional de La Rioja
La Rioja, Spain

https://doi.org/10.1007/978-3-031-07297-0

v

Preface

Test automation is now ubiquitous, and almost assumed in large segments of the
research. Agile processes and test-driven development are now widely known and
used for implementation and deployment. This book presents software testing as a
practical engineering activity, essential to producing high-quality software. This
book is beneficial for an undergraduate or graduate course on software testing and
software engineering, and as a resource for software test engineers and developers.
This book has a number of unique features:

	1.	 It includes a landscape of test coverage criteria with a novel and extremely sim-
ple structure. At a technical level, software testing is based on satisfying cover-
age criteria. The book’s central observation is that there are few truly different
coverage criteria, each of which fits easily into one of four categories: graphs,
logical expressions, input space, and syntax structures.

	2.	 It projects a balance of theory and practical application, presenting testing as a
collection of objective, quantitative activities that can be measured and repeated.
The theoretical concepts are presented when needed to support the practical
activities that researchers and test engineers follow.

	3.	 It assumes the reader is learning to be a researcher whose goal is to produce the
best possible software with the lowest possible cost. The concepts in this book
are well grounded in theory, are practical, and most are currently in use.

Through this book an effort to in support of the idea of promoting software test-
ing and establishing as to software testing is made possible.

vi

Chapter 1

In Chap. 1, test suite minimization is done with an intention of optimizing the test
suite, and software faults detection and localization as well as adjoining activities
are focused on. In this chapter, code coverage and mutant algorithms are used to
generate the compact test cases on which an algorithm is applied for identifying and
locating errors. To optimize the test cases, NSGA-II algorithm is used. Defects4j
repository has been used for generating and performing tests.

Chapter 2

Chapter 2 focuses on mutation testing, which is the fault-based software testing
approach that is widely applicable for assessing the effectiveness of a test suite. The
test suite effectiveness is measured through artificial seeding of faults into the pro-
grams under test. Six open-source mutation testing tools and JAVA-based MTT
(Jester, Javamut, MuJava, Jumble, Judy, and Javalanche) are analyzed. The results
are based on the performance of various JAVA programs and two real-life applica-
tions. Benchmark comparison among the MTT is presented in terms of mutants,
mutation operator, mutation score, and quality output.

Chapter 3

In Chap. 3, the authors present MBT and state-based test case generation using a
state chart diagram. Firstly, the authors review the main concepts and techniques in
MBT. Then, in the next step, they review the most common modeling formalisms
for state chart diagram, with focus on various state-based coverage criteria.
Subsequently, the authors propose methods for a synchronous state-based testing
approach to generate test cases.

Chapter 4

In Chap. 4, the Author designed and developed a TCP technique to enhance the fault
detection rate of test cases at the early execution of the test suite. The developed
algorithm was examined with two benchmark algorithms on four subject programs
to evaluate the performance of the algorithm. APFD metrics are used as perfor-
mance evaluation metrics and the performance of the developed algorithm outper-
forms both of the benchmark algorithms.

Preface

vii

Chapter 5

In Chap. 5, authors analyze the already available and enhanced testing techniques
for the improved and good quality product. Some recent research studies have been
summed up in this work as software testing is acquiring more significance these days.

Chapter 6

In Chap. 6, authors identify and analyze an existing research paper previously con-
ducted by different researchers on predicting software reliability using a machine
learning approach in the context of formulated research questions.

Chapter 7

In Chap. 7, a systematic approach to finding bugs means errors or different other
defects in a running application which are ready to tested. It also helps to analyze
the actual programs and to lower the cost of finding errors. And different EAs like
GA-, PSO-, ACO-, and ABCO-based methods have been already proposed to gener-
ate the optimized test cases.

Chapter 8

Chapter 8 represents a use case of optimization of software testing in different wire-
less sensor network applications. The survey in the paper also shows that the use of
a metaheuristic is not limited to WSN, and the use of a metaheuristic in automated
software testing is exemplary. In the field of software testing, optimization of test
cases and increasing usability are a few tasks that can be optimized with the help of
metaheuristic algorithms.

Chapter 9

In Chap. 9, the author develops my CHIP-8 emulator for software testing strategy
for playing online games on many platforms. The author lists each instruction
explaining what it does and how it carries out it while providing the detailed docu-
mentation of our CHIP-8 emulator and thus, providing metaheuristic high-level
solutions to fix them.

Preface

viii

Chapter 10

Chapter 10 describes defects maintainability prediction of the software. This chap-
ter evaluates the mentioned scenario by using maintainability index and defect data.
The maintainability index is computed using the object-oriented metrics of the
software.

Chapter 11

The book ends with Chap. 11, which develops a hybrid metaheuristic encryption
approach employing software testing for secure data transmission named
EncryptoX. The main objective behind doing this project report is to gain skills and
knowledge regarding various cryptography and storage techniques used in software
testing.

New Delhi, India� Manju Khari
Bhubaneswar, India� Deepti Bala Mishra
Rajkot, Gujarat, India� Biswaranjan Acharya
La Rioja, Spain� Ruben Gonzalez Crespo

Preface

ix

Contents

��NGA-II-Based Test Suite Minimization in Software�������������������������������������     1
Renu Dalal, Manju Khari, Tushar Singh Bhal, and Kunal Sharma

��Comparison and Validation of Mutation Testing Tools Based
on Java Language���    13
Manju Khari

��State Traversal: Listen to Transitions for Coverage Analysis
of Test Cases to Drive the Test���    31
Sonali Pradhan, Mitrabinda Ray, Sukant Bisoyi, and Deepti Bala Mishra

��A Heuristic-Based Test Case Prioritization Algorithm
Using Static Metrics ���    45
Daniel Getachew, Sudhir Kumar Mohapatra, and Subhasish Mohanty

��A Literature Review on Software Testing Techniques�����������������������������������    59
Kainat Khan and Sachin Yadav

��A Systematic Literature Review of Predicting Software Reliability
Using Machine Learning Techniques ���    77
Getachew Mekuria Habtemariam, Sudhir Kumar Mohapatra,
Hussien Worku Seid, and Deepti Bala Mishra

��Evolutionary Algorithms for Path Coverage Test Data Generation
and Optimization: A Review ���    91
Dharashree Rath, Swarnalipsa Parida, Deepti Bala Mishra,
and Sonali Pradhan

��A Survey on Applications, Challenges, and Meta-Heuristic-Based
Solutions in Wireless Sensor Network���   105
Neha Sharma and Vishal Gupta

x

��myCHIP-8 Emulator: An Innovative Software Testing Strategy
for Playing Online Games in Many Platforms���   133
Sushree Bibhuprada B. Priyadarshini, Amrut Mahapatra,
Sachi Nandan Mohanty, Anish Nayak, Jyoti Prakash Jena,
and Saurav Kumar Singh Samanta

��Defects Maintainability Prediction of the Software���������������������������������������   155
Kanta Prasad Sharma, Vinesh Kumar, and Dac-Nhuong Le

��EncryptoX: A Hybrid Metaheuristic Encryption Approach
Employing Software Testing for Secure Data Transmission�������������������������   167
Sushree Bibhuprada B. Priyadarshini, Aayush Avigyan Sahu,
Vishal Ray, Padmalaya Ray, and Swareen Subudhi

�Index���   183

Contents

1

NGA-II-Based Test Suite Minimization
in Software

Renu Dalal, Manju Khari, Tushar Singh Bhal, and Kunal Sharma

1 � Introduction

Developing software is one of the major works that is being done in the industry in
this era of technology. For developing software one of the major tasks is testing for
errors and issues. Running the complete test suite without minimizing is a tedious
job as it will induce a big load on the system and the operation under execution. Test
case minimization is one of the options to reduce the test suite. For testing purposes,
the first step is to create test suites in which some operations are defined or a set of
information in which the software has to perform and the results of which describe
the ability of the software to perform under that kind of task.

But after creation of a test suite, the next step is to minimize the test suite as it
can contain many redundant and faulty tests which have to be removed to improve
the efficiency of the testing. The load on the machine gets reduced if proper mini-
mization is done. Test case minimization is used to getting the compacted test case.
This aids in testing that modification done in software program has not affected the
unmodified part of the software. Identifying and locating errors is one of the major
tasks which has to be done to minimize the test suite. But performing them at the
same time is a different issue as they are subsequent activities. At first, fault detec-
tion in the test suite using failing test cases is done, and then localization is done by
using the pass and fail information of the test suit.

R. Dalal (*)
Department of Information Technology, MSIT, GGSIP University, Delhi, India

M. Khari
School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India

T. S. Bhal · K. Sharma
Department of Computer Science, AIACT & R, GGSIP University, Delhi, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_1

https://doi.org/10.1007/978-3-031-07297-0_1

2

Software testing is one of the major processes in all the SDLC phases present.
Testing takes a lot of time and resources present at our end. Research says that in
about 50% of the total time given in development, 25% of it should be given only to
debugging. Test suite minimization helps in this process by reducing the time and
computing power applied on the tasks. As both detecting and localizing faults
should be performed one after another if we can combine these processes, this can
significantly reduce the work and load applied. The aim of this chapter is to achieve
greater efficiency as possible in minimizing and to achieve better CPU utilization,
memory utilization, and disk usage.

A software always gets updated, and new functionality is added from time to
time due to which new test cases are added in the test suite. After some updates,
there are some test cases which are no longer needed and are an overhead over the
system, so they have to be removed or should not be considered that is why it is a
must to perform minimization over the test suite. It also becomes easy to detect
faults in the minimized suite. As mentioned above, the detection and localization
tasks are done one after another. Combining them is a difficult process but essential
as performing the in concurrently takes more time and usage of other resources. For
combining them offline techniques can be used. The reduced test suite obtained
after these processes can be used for regression testing. Vidács et al. and many other
researchers work on this approach. They proposed an approach for combining both
these processes and minimizing the test suite.

For doing all this, multi-objective optimization algorithms come into play. Multi-
objective optimization algorithm deals in the domain of optimization problems
where multiple objective functions are optimized. The solution obtained is known
as non-dominated, Pareto adequate or non-inferior, and Pareto optimal, if none of
the objective functions can enhance the value without deteriorating the other objec-
tive values. An assessment is done in this study on projects taken from Defects4J
repository [1–3]. This assessment is performed by using NSGA-II, coverage, and
mutation algorithms. The main reason for undertaking minimization is:

•	 To reduce time for testing purpose
•	 Less system requirement
•	 Redundant test case elimination
•	 To predict faults easily

2 � Background

2.1 � What Is Test Suite?

Test suite is a collection of tests which helps testers in executing and performing
testing and reporting faults and errors present in the software. A single test case can
be added to many test suites. A test suite consists of many test cases which describe

R. Dalal et al.

3

the various conditions which the software has to encounter while being operated. It
can also be defined as a collection of scenarios which define the scope of testing for
a given execution environment.

Test suites are used for identifying gaps in testing efforts where successful com-
pletion of a test case can occur before the next step begins. Test suites are also useful
like build verification test, smoke test, end-to-end integration test, and functional
verification test.

A test suite can divide into three types:

•	 Static Suite: In this suite, creation of a collection of named scenarios will remain
static once defined. In this type sequence of execution is always guaranteed. The
order of execution is defined in this type of suite.

•	 Filter-Based Suite: In this suite, custom sets of fields are defined using filter
parameters. This type of suite is used for targeted testing of specified portions.

•	 Requirement-Based Suite: Here test suite is created based on the user require-
ments. This is mostly used in agile environments.

2.2 � Minimization of Test Suite

A test suite contains a huge amount of test cases, and executing them is an annoying
task. Many researches have been done to minimize this annoying task. A test suite
is minimized by removing the redundant test cases and removing those cases which
are no longer needed, or the functionality has been removed in the updated version
of the software [4].

2.3 � Partitioning

Partitioning can be divided into classes into equivalent partitions. This idea is based
on the concept of equivalence partition in set theory. These partitions are undistin-
guishable. Majorly two types of partitions are accessible: statement partitioning and
mutation partitioning. Statement partitioning is based on the code coverage. It
means portioning the code segment on the basis of their code coverage information
into diverse classes. Mutant partitioning is another type of partitioning method in
which the mutants are partitioned on the basis of their kill information by test cases.
Mutants can be partitioned into various partitions, for measuring this a factor d-score
is introduced by the researchers, it provides the information of number of mutants
differentiate by the considered test-cases [5].

NGA-II-Based Test Suite Minimization in Software

4

2.4 � Optimization Algorithms

Optimization algorithms are used for optimizing test cases. These algorithms are
used to reduce the test suite size and to produce results which can be used further in
multi-objective tasks. There are many optimization algorithms present. It can
broadly be classified into two categories, that is, single objective and multi-objective
[6]. Multi-objective includes NSGA-II, NSGA-III, MO-PSO, MO-BAT, etc.

3 � Defects4J

3.1 � About Defects4J Repository

Defects4J is a repository which contains a collection of reproducible bugs which is
used for advancing software research. Defects4J consists of many projects, and
there are many versions of each project which can be used to generate test suites of
various types. It contains 835 bugs from many open-source projects like Chart, Cli,
Closure, Math, Time, Csv, etc. Test suites are generated by using some generator
functions and then providing a version of the project. It also provides the support for
integrating any methods of applying algorithms outside the repository scope. It
comes with the support of applying basic coverage and mutation algorithms [7].
Defects4J comes with basic functionality like performing checkout and compiling
and performing testing on a test case.

4 � Code Coverage

The code coverage is a metric that illustrates the extent of the source program code
that has been tested. It is a part of white box testing. It is used to determine the
quantitative measure of the code. It generates the result of the test suite’s code cov-
erage. There are many reasons why we use code coverage, and some of them are to:
(1) Offers Quantitative measurements. (2) Describes the extent to which the code is
tested. (3) Calculate test implementation efficiency [8–10]. There are many tech-
niques in which code coverage can be performed such as:

•	 Decision coverage
•	 Statement coverage
•	 Toggle coverage
•	 Branch coverage
•	 FSM coverage

In this chapter statement and branch coverage are used.

R. Dalal et al.

5

4.1 � Statement Coverage

Statement coverage involves execution of all the executable statements in the source
code at least once. It is white box testing technique. It is used to calculate the num-
ber of statements which can be executed on the given requirements. Here as a part
of white box testing, the aim is to understand the working of the code at internal
levels. Its main goal is to include all the finite routes, lines, and statements present
in the source code. Maximization of statement coverage intends to discover the
minimized test case and can enhance its value. The statement coverage metric is
defined as Eq. 1:

	

SC
s M s T

M
�

�� �covered by

	 (1)

Here, |M| means total number of statements present in the source program.

4.2 � Branch Coverage

The outcome of the code module is tested in branch coverage. Branch coverage’s
main goal is to make sure every possible branch is tested. It tells us about the inde-
pendent code segments present in the codes [11]. The branch coverage ensures that
every section of each control structure may be examined at least once.

Maximization of branch coverage helps in finding the minimized test case, and it
maximizes the value of branch coverage. The metric of branch coverage is repre-
sented in Eq. 2.

	

Branchcover
covered by

�
�� �b P b T

P
	 (2)

Here, |P| represents the total number of branches in the code.

5 � Proposed Approach

5.1 � Workflow of Approach

Test suite minimization is required in software for the same the proposed approached
in represented in the Fig. 1

NGA-II-Based Test Suite Minimization in Software

6

Fig. 1  Workflow of
proposed approach

5.2 � Optimization NSGA-II Algorithm

NSGA II is the multi-objective algorithm which comes in the class of optimization.
It stands for elitist non-dominated sorting genetic algorithm. This algorithm is both
elitism preserving and diversity preserving. Elitist means it keeps the best solution
for the next iteration from the current one. Non-dominated searching means if there
are two individuals A and B, A dominates to B, if and only if there is no objective of
A worse than that objective of B and there is at least one objective of A better than
that objective of B. The objective of non-dominated sorting is to find out which
individual belongs to which front. Mathematically domination is:

A(x_1, y_1) dominates B(x_2, y_2) when : (x_1<=x_2 and y_1<=y_2) and
(x_1<x_2 or y_1<y_2)

One of the fronts may not fit properly in the size of the parent population as
before for this crowding distance is used. To keep a good spread in NSGA-II and
avoid local maxima or minima, crowding distance decides which individuals are
added to the new population. Individuals with higher crowding distance are picked
first. After this new offspring is created which has the same size as the parent. This
process happens in three phases tournament selection, crossover, and finally muta-
tion. All this happens for some iterations, and then the result is taken.

R. Dalal et al.

7

Pseudo Code of the Algorithm

 Fast sNon-Dominated Sort:

 for every p ∈P
 S_p = Φ
 n = 0
 for every q∈P
 if q<p then
 S_p = S_p ∪{q}
 else if q<p then
 n = n +1
 if n = 0 then
 p_rank = 1
 F_1 = F_1∪{q}
 i = 1
 while F_i ≠Φ
 Q = Φ
 for every q∈F_i
 for every q∈S_p
 n_q = n_q -1
 if n_q = 0
 q_rank = i+1
 Q = Q∪{q}
 i = i + 1
 F_i = Q

 Crowding_Distance_Assignment

 l = | I |
 for every i, set I[i] dist = 0
 for every objective m
 I = sort(I, m)
 I[1]dist = I[1]dist = ∞
 for i = 2 to (l-1)
 I[i]dist = I[i]dist + (I[i+1].m - I[i-1].m)/
(fmax_m - fmin_m)

 Final_Step

 R_t = P_t∪Q__t
 F = Fast_Non_Dominated_Sort(Rt)

NGA-II-Based Test Suite Minimization in Software

