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Chapter 1 
Introduction 

1.1 Cooperative Control of Multi-agent Systems 

Synchronization problem of multi-agent systems (MAS) has become a hot topic 
among researchers in recent years. Cooperative control of MAS is used in practical 
application such as robot networks, autonomous vehicles, distributed sensor net-
works, swarming, flocking and others. The objective of synchronization is to secure 
an asymptotic agreement on a common state or output trajectory by local interaction 
among agents. See [9, 13, 50, 94, 124, 132, 167] and references therein. 

We briefly review several important research directions in MAS. Firstly, we point 
out that there are two type of MAS: homogeneous (i.e. agents are identical) and het-
erogeneous (i.e. agents are non-identical). State synchronization inherently requires 
homogeneous MAS. On the other hand, for a heterogeneous MAS, generically, it is 
more reasonable to consider output synchronization since the dimensions of states 
and their physical interpretation may be different. 

For homogeneous MAS state synchronization based on diffusive full-state cou-
pling has been studied where the agent dynamics progress from single- and double-
integrator dynamics (e.g. [114, 122, 123]) to more general dynamics (e.g. [136, 
153, 164]). State synchronization based on diffusive partial-state coupling has also 
been considered, including static design [85, 86], dynamic design [46, 137, 138, 
146, 155], and the design with localized communication [22, 136]. For MAS with 
discrete-time agents, earlier work can be found in [27, 39, 55, 114, 123, 154] for  
essentially first and second-order agents, and in [40, 53, 58, 158, 160, 177, 188, 
192] for higher-order agents. 

In heterogeneous MAS, if the agents have absolute measurements of their own 
dynamics in addition to relative information from the network, they are said to be 
introspective, otherwise, they are called non-introspective. For heterogeneous MAS 
with non-introspective agents, it is well-known that one needs to regulate outputs of 
the agents to a priori given trajectory generated by a so-called exosystem (see [34, 
165]). Other works on synchronization of MAS with non-introspective agents can 
be found in the literature as [35, 36]. On the other hand, for MAS with introspective 
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agents, one can achieve output and regulated output synchronization. Most of the 
literature for heterogeneous MAS with introspective agents are based on modify-
ing the agent dynamics via local feedback to achieve some form of homogeneity. 
There have been many results for synchronization of heterogeneous networks with 
introspective agents, see for instance [17, 47, 56, 95, 121, 174]. 

In practical applications, the network dynamics are not-ideal and may be subject 
to delays. Time delays may afflict system performance or even lead to instability. As 
discussed in [15], two types of delays have been considered in the literature: input 
delays and communication delays. The former encapsulate the processing time to 
execute an input for each agent, whereas the latter can be considered as the time it 
takes to transmit information from an origin agent to its destination. It is worthwhile 
to point out that packet drops in exchanging information can be considered as special 
case of communication delay, because re-sending packets after they were dropped 
can be easily done but just having time delay in the data transmission channels. 
Some research work has been done for both constant and time-varying input delay, 
specifically with the objective of deriving an upper bound on the input delays such 
that agents can still achieve synchronization; see, for example [12, 61, 62, 73, 85, 
114, 152, 170, 180]. In the case of communication delay, some research work has 
been done; see [18, 31, 49, 98, 99, 152, 169, 183]. Time-varying communication 
delays for a general multi-agent system have been considered in [142]. As it is well-
known that in order to withstand large communication delays one needs to preserve 
diffusiveness (namely to ensure the invariance of the synchronization manifold). This 
can be achieved with two methods: 

1. The first method is the standard state/output synchronization by regulating the 
states/outputs to a constant trajectory. This method is intensively utilized in the 
literature [15]. A notable phenomenon in this case is that the final consensus 
is constant where in many practical problems this would be the case; see for 
example [111]. 

2. The second method is to consider delayed state/output synchronization which 
is introduced in [18, 19, 21, 74, 101] to allow non-constant or dynamic desired 
output/state trajectory. 

Actuator saturation is also pretty common and indeed is ubiquitous in engineering 
applications. Semi-global state and output synchronization in presence of input sat-
uration have been studied in the literature (see for example [180]). Compared with 
semi-global results, global synchronization has been studied for single-integrator 
and more generally neutrally stable agents in [26, 30, 57, 82, 93, 173, 176]. 

Performance is one of the key elements in designing consensus protocols in practi-
cal applications. The asymptotic convergence rate is defined in as an indicator 
for the performance. The convergence rate is an important element in designing 
protocols. Typically, the communication topology through which the agents com-
municate is a deciding factor in establishing the convergence rate of the protocol. 
More explicitly, the convergence rate of various existing protocols for continuous-
time MAS with undirected communication graphs depends on the second smallest 
eigenvalue of Laplacian matrix of the associated communication graph, also known

[171] 
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as the algebraic connectivity of the graph. In discrete-time MAS, the largest modulus 
of the eigenvalues of Perron matrix of the associated communication graph plays the 
same role in the asymptotic convergence rate, see for example [141, 171, 177]. In 
fact, for a certain class of undirected graphs the algebraic connectivity decreases with 
an increase in network size. The recent thesis [148] describes this effect and covers 
some non-exhaustive classes of graphs. In [13, Chap. 16], a similar conclusion has 
been drawn for a directed circulant graph. 

Synchronization and almost synchronization in presence of external disturbances 
are studied in the literature, where three classes of disturbances have been considered 
namely: 

1. Disturbances and measurement noise with known frequencies. 
2. Deterministic disturbances with finite power. 
3. Stochastic disturbances with bounded variance. 

For disturbances and measurement noise with known frequencies, it is shown 
in , that actually exact synchronization is achievable. This is shown in 

for heterogeneous MAS with minimum-phase and non-introspective agents and 
networks with time-varying directed communication graphs. Then, extended 
this results for non-minimum phase agents utilizing localized information exchange. 

[182] 
[181] 

182] [181

For deterministic disturbances with finite power, the notion of H∞ almost syn-
chronization1 is introduced in [116] for homogeneous MAS with non-introspective 
agents utilizing additional communication exchange. The goal of H∞ almost syn-
chronization is to reduce the impact of disturbances on the synchronization error to an 
arbitrarily degree of accuracy (expressed in the H∞ norm). This work was extended 
later in 179, 184] to heterogeneous MAS with non-introspective agents and 
without the additional communication and for network with time-varying graphs. 
H  almost synchronization via static protocols is studied in [ for MAS with ∞
passive and passifiable agents. Necessary and sufficient solvability conditions are 
provided in ] for  H  almost synchronization of homogeneous networks with ∞
non-introspective agents without additional communication exchange. 

[143

144] 

[117, 

In the case of stochastic disturbances with bounded variance, the concept of 
stochastic almost synchronization is introduced in in presence of both stochas-
tic disturbance and disturbance with known frequency. The idea of stochastic almost 
synchronization is to reduce the stochastic RMS norm of synchronization error arbi-
trary small in the presence of colored stochastic disturbances that can be modeled 
as the output of linear time invariant systems driven by white noise with unit power 
spectral intensities. By augmenting this model with agent model one can essentially 
assume that stochastic disturbance is white noise with unit power spectral intensity. In 
this case, utilizing linear protocols, the stochastic RMS norm of synchronization error 
equals to the H2 norm of the transfer function from disturbance to the synchronization 
error, as such one can formulate the stochastic almost synchronization equivalently 

[185] 

1 The term “almost synchronization” has been selected in connection with the concept of almost 
disturbance decoupling (see e.g. [ 115]) where the problem is to find a family of controllers to reduce 
the noise sensitivity to any arbitrary degree.
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in a deterministic framework to reduce the H2 norm of the transfer function from 
disturbance to synchronization error arbitrary small. This deterministic approach is 
referred to as almost H2 synchronization problem which is equivalent to stochastic 
almost synchronization problem. Recent work on H2 almost synchronization prob-
lem is which provides necessary and sufficient conditions for solvability of H2 

almost synchronization for homogeneous networks with non-introspective agents in 
the absence of additional communication exchange. H2 almost synchronization via 
static protocols is studied in for MAS with passive and passifiable agents.  [144] 

 [143] 

Most of the proposed protocols in the literature for synchronization of MAS 
require some knowledge of the communication network such as bounds on the spec-
trum of the associated Laplacian matrix or the number of agents. As it is pointed 
out in [145, 149, 150], these protocols suffer from scale fragility wherein stabil-
ity properties are lost for large-scale networks or when the communication graph 
changes. 

In the past few years, the authors of this monograph have worked on developing 
scale-free protocol design for various cases of MAS problems. The “scale-free” 
design has the following features: 

• The proposed protocols are designed solely based on the knowledge of agent 
models and do not depend on information about the communication network such 
as the spectrum of the associated Laplacian matrix. 

• The designs do not require knowledge of the size of network, i.e., the number of 
agents. That is to say, the universal dynamical protocols work for any communi-
cation network as long as it contains a spanning tree. 

The primary focus of this book is on the problem of achieving scale-free design for 
MAS. The audience for this book includes practicing engineers, graduate students, 
and researchers in the field of MAS. The contents of this book are drawn from the 
research of the authors and their coworkers which also includes application of our 
scale-free design to power grid systems. Thus it bears the signature of the authors 
and has a recognizable identity and a coherence of point of view which can be 
characterized as a structural view in both the analysis and design. 

1.2 Outline 

This monograph is written as a collection of the authors’ published work. Each 
chapter presents self-contained technical results and can be read independently. The 
outline of the remainder of this monograph and its main contributions can be sum-
marized as follows. 

• In Chap. 2, we provide some notations and technical preliminaries on linear alge-
bra, signal system norms, graph theory, MAS, and passivity. 

• Chapters 3 and 4 address scale-free synchronization of homogeneous and hetero-
geneous MAS for continuous- and discrete-time networks, respectively.
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The developments and results of Chaps. 3 and 4 are based on [102, 103, 107, 108]. 
• Chapter 5 deals with regulated state synchronization problem of homogeneous 
continuous- and discrete-time MAS when the agents are subject to unknown, and 
non-uniform input delays. 
The development and results of this chapter are based on [69–73]. 

• State synchronization of MAS in the presence of unknown, non-uniform, and 
arbitrarily large communication delays is considered for homogeneous continuous-
and discrete-time MAS in Chaps. 6 and 7, respectively. 
The developments and results of these chapters are based on [65, 66, 68]. 

• Regulated output synchronization of heterogeneous MAS in presence of unknown, 
non-uniform, and arbitrarily large communication delays is considered for both 
continuous- and discrete-time MAS in Chap. 8. 
The development and results of this chapter are based on [67]. 

• Delayed regulated synchronization of homogeneous and heterogeneous MAS sub-
ject to unknown, non-uniform, and arbitrarily large communication delays has been 
studied in Chaps. 9 and 10 for continuous- and discrete-time MAS, respectively. 
The developments and results of these chapters are based on [101, 105, 110]. 

• In Chaps. 11 and 12, nonlinear and linear protocols are designed to achieve global 
regulated state synchronization for homogeneous continuous- and discrete-time 
MAS with non-introspective agents in presence of input saturation. 
The developments and results of these chapters are partially based on [63, 64, 76, 
80]. 

• State and regulated state synchronization of continuous-time MAS with arbitrary 
fast convergence is studied in Chap. 13. 
The development and results of this chapter are partially based on [81]. 

• H∞ and H2 almost synchronization of homogeneous and heterogeneous MAS are 
studied in Chaps. 14 and 15. 
The developments and results of these chapters are based on [77–79, 104, 106, 
109]. 

• State synchronization of MAS via non-collaborative protocol is studied in Chap. 16. 
The development and results of these chapters are partially based on [86]. 

• Finally, in Chaps. 17 and 18, voltage control of multiterminal HVDC systems and 
Microgrids are studied utilizing scale-free nonlinear controllers. 
The developments and results of Chaps. 17 and 18 are based on [87, 111, 112].



Chapter 2
Notations and Preliminaries

2.1 Linear Algebra

We denote the set of real numbers by R, integers by Z, non-negative real numbers
by R≥0 = {x ∈ R|x ≥ 0}, and the entire complex plane by C. We denote the field of
rational functions with real coefficients by R(s). By rankK we denote the rank of a
matrixwhose entries are in thefiledK.We shallwrite rank only for the casewhenK =
R, orK = C. Moreover, we use the term normalrank for rankK wheneverK = R(s).
Given a matrix A∈ R

n×m , AT and A∗ denote transpose and conjugate transpose of A
respectively, and ∥A∥ is the induced 2-norm (which has submultiplicative property).
The im(·) denote the image of matrix (vector). For a square matrix M ∈ R

n×n , we
denote the set of eigenvalues of M by λ(M) and the smallest singular value of
M by σmin(M) while ρ(M) denotes the spectral radius of M . A square matrix M
is said to be Hurwitz/Schur stable if all its eigenvalues are in the open left half
complex plane/open unit disc. Let j indicate −1

√
. We denote by diag{A1, . . . , AN },

a block-diagonal matrix with A1, . . . , AN as its diagonal elements. In denotes the
n-dimensional identity matrix and 0n denotes n × n zero matrix; sometimes we drop
the subscript if the dimension is clear from the context. We define:

[t1, t2] = {t ∈ Z : t1 ≤ t ≤ t2}.

Then, we recall matrix’s Kronecker product. We denote the Kronecker product
between A and B by A ⊗ B. The Kronecker product is bilinear and associative:

A ⊗ (B + C) = A ⊗ B + A ⊗ C,

(A + B) ⊗ C = A ⊗ C + B ⊗ C,

(k A) ⊗ B = A ⊗ (kB) = k(A ⊗ B),

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C),

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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where A, B and C are matrices and k is a scalar. The following properties of the
Kronecker product will be useful:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

(A ⊗ B)−1 = A−1 ⊗ B−1,

(A ⊗ B)T = AT ⊗ BT,

(A ⊗ B)∗ = A∗ ⊗ B∗.

Next, in the following, we recall the definitions of invariant zeros and right-
invertibility of the linear time-invariant system ∑ 

∑ :
{
ẋ = Ax + Bu
y = Cx

Definition 2.1 λ ∈ C is called invariant zero of linear system ∑ if

rankC

(
λI − A −B

C 0

)
< normalrank

(
s I − A −B

C 0

)
,

where by normalrank wemean the rank of amatrix with entries in the field of rational
function R(s).

Definition 2.2 The linear system ∑ is right-invertible if, given a smooth reference
output yr , there exists an initial condition x(0) and an input u(t) that ensures y(t) =
yr (t) for all t ≥ 0.

Remark 2.3 The linear system ∑ 

• is right-invertible if and only if its transfer function matrix is a surjective rational
matrix.

• is right-invertible if and only if the rank of

(
s I − A −B

C 0

)
is n + p for all but

finitely many s ∈ C.

The linear system ∑ is at most weakly unstable if all eigenvalues of A are in the
closed left half plane. It should be noted that the set of at most weakly unstable agents
contains stable agents, neutrally stable agents as well as weakly unstable agents. The
related definitions and notations can be found in [34, 130, 163, 165].
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2.2 Signal and System Norms

For a deterministic continuous-time signal v(t), the L2 norm is defined by

∥v(t)∥L2 =
⎛
⎝

T{
0

vT(t)vT(t)dt

⎞
⎠

1
2

, (2.1)

and its Root Mean Square (RMS) value is defined by

∥v(t)∥RMS =
⎛
⎝ lim

T→∞
1

T

T{
0

v(t)v(t)dt

⎞
⎠

1
2

, (2.2)

and for a stochastic signal v(t) which is modeled as wide-sense stationary stochastic
process, the ∥v(t)∥RMS is given by

∥v(t)∥RMS = (
E[vT(t)v(t)]) 1

2 , (2.3)

where E[·] stands for the expectation operation. For stochastic signals that approach
wide-sense stationarity as time t goes on to infinity (i.e. for asymptoticallywide-sense
stationary signals) (2.3) is rewritten as

∥v(t)∥RMS =
(
lim
t→∞E[vT(t)v(t)]

) 1
2
. (2.4)

For a continuous-time system having a q × l stable transfer function G(s), the
H2 norm of G(s) is defined as

∥G∥H2 =
⎛
⎝ 1

2π
trace

⎡
⎣

+∞{
−∞

G( jω)G∗( jω)dω

⎤
⎦

⎞
⎠

1
2

.

By Parseval’s theorem, ∥G∥H2 can be equivalently be defined as

∥G∥H2 =
⎛
⎝trace

⎡
⎣

+∞{
0

g(t)gT(t)dt

⎤
⎦

⎞
⎠

1
2

,

where g(t) is the weighting function or unit impulse (Dirac distribution) response
matrix of G(s), as such for single-input single-output system ∥G∥H2 = ∥g∥L2 . The
H2 norm of G(s), can be interpreted as the RMS value of the output when the given
system is driven by independent zero mean white noise with unit power spectral
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density. Note that the H2 norm of a stable transfer function G(s) is finite if and only
if it is strictly proper. The H∞ norm of G(s) is defined as

∥G∥H∞ := sup
ω

σmax[G( jω)],

where σmax is the largest singular value ofG( jω). Letω(t) and z(t) be energy signals
which are respectively the input and the corresponding output of the given system.
Then, the H∞ norm of G(s) turns out to coincide with its RMS gain, namely

∥G∥H∞ = ∥G∥RMS gain = sup
∥ω∥RMS �=0

∥z∥RMS

∥ω∥RMS
.

An important property of the H∞ norm is that it is sub-multiplicative. That is for
transfer functions G1 and G2, we have

∥G1G2∥H∞ ≤ ∥G1∥H∞∥G2∥H∞ .

2.3 Graphs

A weighted graph G is defined by a triple (V, E,A) where V = {1, . . . , N } is a
node set, E is a set of pairs of nodes indicating connections among nodes, and
A = [ai j ] ∈ R

N×N is the weighting matrix. Each pair in E is called an edge, where
ai j > 0 denotes an edge ( j, i) ∈ E from node j to node i with weight ai j . Moreover,
ai j = 0 if there is no edge from node j to node i . We assume there are no self-loops,
i.e. we have aii = 0. A path from node i1 to ik is a sequence of nodes {i1, . . . , ik} such
that (i j , i j+1) ∈ E for j = 1, . . . , k − 1. A directed tree with root r is a subgraph
of the graph G in which there exists a unique path from node r to each node in this
subgraph. A directed spanning tree is a directed tree containing all the nodes of the
graph. See [32].

For a weighted graph G, the matrix L = [li j ] with

li j =
⎧⎨
⎩

N∑ 
k=1

aik, i = j,

−ai j , i �= j,

is called the Laplacian matrix associated with the graph G. The Laplacian matrix
L has all its eigenvalues in the closed right half plane and at least one eigenvalue
at zero associated with right eigenvector 1, i.e. a vector with all entries equal to 1.
When graph contains a spanning tree, then it follows from [123, Lemma 3.3] that
the Laplacian matrix L has a simple eigenvalue at the origin, with the corresponding
right eigenvector 1, and all the other eigenvalues are in the open right-half complex
plane.
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2.4 Multi-agent Systems and Graphs

Consider a homogeneousMAS composed of N identical linear time-invariant agents
of the form,

x+
i (t) = Axi (t) + Bui (t),

yi (t) = Cxi (t), (2.5)

where xi (t) ∈ R
n , ui (t) ∈ R

m , and yi (t) ∈ R
p are the state, input, and output of

agent i for i = 1, . . . , N . In the aforementioned presentation, for continuous-time
systems, x+

i (t) = ẋi (t) for t ∈ R; while for discrete-time systems, x+
i (t) = xi (t + 1)

for t ∈ Z.
For continuous-time agents, each agent i ∈ {1, . . . , N } has access to the quantity,

ζi (t) =
N∑ 
j=1

ai j (yi (t) − y j (t)) (2.6)

where ai j ≥ 0, and aii = 0 for i, j ∈ {1, . . . , N }. The topology of the communication
network can be described by a directed graph (digraph) G with nodes corresponding
to the agents in the network and edges given by the coefficients ai j . In particular,
ai j > 0 implies that an edge exists from agent j to i . Agent j is then called a parent
of agent i , and agent i is called a child of agent j . The weight of the edge equals
ai j ≥ 0. It is assumed that there is no self-loops in the graph, i.e. aii = 0. In this
context the matrix A = [ai j ] is referred to as the adjacency matrix.

The weighted in-degree of a vertex i is given by

din(i) =
N∑ 
j=1

ai j .

Similarly, the weighted out-degree of a vertex i is given by

dout(i) =
N∑ 
j=1

a ji .

A graph is called balanced if for every node we have

din(i) = dout( j).

Based on the adjacency matrix and the weighted in-degree, we can associate a Lapla-
cian matrix L to a graph,

L = diag{din(1), din(2), . . . , din(N )} − A.
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Based on the above definition, it is easily verified that a Laplacian matrix has the
property that all the row sums are zero. In terms of the coefficients of L , (2.6) can
be rewritten as

ζi (t) =
N∑ 
j=1

li j y j (t). (2.7)

We denote by 1N the column vector in R
n with all elements equal to 1. We will

use 1 if the dimension is obvious from the context. In light of [167, Corollary 2.37]
the following lemma is yield.

Lemma 2.4 The graph G describing the communication topology of the network
is balanced if and only if the associated Laplacian matrix L has the property that
L + LT ≥ 0. Moreover, in that case 1 is both a left and right eigenvector of the
Laplacian matrix L.

A directed tree is a directed subgraph of G, consisting of a subset of the nodes
and edges, such that every node has exactly one parent, except a single root node
with no parents. In that case, there exists a directed path from the root to every other
agent. A directed spanning tree is a directed tree that contains all the nodes of G. In
that case, the root node with no parents is called a root agent.

A directed graph may contain many directed spanning trees, and thus there may
be several choices for the root agent. The set of all possible root agents for a graph
is denoted by ∏ .G G

Example 2.5 Figure2.1 illustrates a directed graph containing multiple directed
spanning trees.

We recall from [2] and more specifically [123, Lemma 3.3] the following crucial
connection between the graph and its associated Laplacian matrix.

Lemma 2.6 The graph G describing the communication topology of the network
contains a directed spanning tree if and only if the associated Laplacian matrix L
has a simple eigenvalue at the origin. Moreover, in that case, the associated right
eigenvector is given by 1.

1 2 3 4
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Fig. 2.1 The depicted directed graph contains multiple directed spanning trees, rooted at nodes 2,
3, 4, 8, and 9. One of these, with root node 2, is illustrated by bold arrows
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Many problems and definitions in this book assume that the network graph is in
some certain sets. As such we introduce the following definitions of sets of graphs.

Definition 2.7 Let GN denote the set of directed graphs with N nodes that contain
a directed spanning tree.

Definition 2.8 LetGb,N denote the set of undirected graphs with N nodes which are
strongly connected and for which the corresponding Laplacian matrix L is balanced,
i.e.,

L + LT ≥ 0.

Definition 2.9 Let Gu,N denote the set of undirected graphs with N nodes.

Definition 2.10 Given a node set C , we denote by GN
C the set of all graphs with N

nodes containing the node set C , such that every node of the network graph G ∈ G
N
C

is a member of a directed tree which has its root contained in the node set C . We
will refer to the node set C as root set.

Remark 2.11 Note that Definition 2.10 does not require necessarily the existence of
directed spanning tree. On the other hand, the main difficulty is the loss of symmetry
for the Laplacian matrix. We therefore lose some nice properties which are valid for
symmetric Laplacian matrix which makes synchronization analysis more difficult.
Some of the existing results showed us this fact. See for instance [178].

For discrete-time agents, each agent i ∈ {1, . . . , N } has access to the quantity,

ζi (t) =
N∑ 
j=1

di j (yi (t) − y j (t)), (2.8)

where the di j ≥ 0. We choose dii = 1 − ∑ N
j=1, j �=i di j to form a matrix D which is a

row-stochastic matrix, such that
N∑ 
j=1

di j = 1

with i, j ∈ {1, . . . , N }. The topology of the network can again be described by a
directed graph (digraph) G with nodes corresponding to the agents in the network
and edges given by the coefficients di j , where j �= i . In particular, di j > 0 ( j �= i)
implies that an edge exists from agent j to i . Moreover, it is assumed that there is no
self-loops in the graph. Agent j is then called a parent of agent i , and agent i is called
a child of agent j . The weight of the edge equals the magnitude of di j . Clearly, in this
case all weights are less than equal to 1, and, additionally, the weighted in-degree
has to be less than or equal to 1. Note that the diagonal elements dii do not affect
(2.8) and are chosen to be such that the matrix becomes a row-stochastic matrix.

We have the following result (see [123] for the sufficiency part).
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Lemma 2.12 Assume that the graph G describing the communication topology of
the network contains a directed spanning tree and dii > 0 for i = 1, . . . , N implies
that the row stochastic matrix D has a simple eigenvalue at 1 and all other eigenval-
ues have amplitude strictly less than 1. Moreover, in that case the associated right
eigenvector is given by 1.

Remark 2.13 Note that the condition that dii > 0 for i = 1, . . . , N is not a necessary
condition for the property that the row stochastic matrix D has a simple eigenvalue
at 1 and all other eigenvalues have amplitude strictly less than 1. This can be seen
from the example,

D = 1
4

⎛
⎝2 1 1
2 0 2
1 1 2

⎞
⎠ .

Anecessary condition is that the graph contains a spanning tree and the row stochastic
matrix is aperiodic.

Proof of Lemma 2.12. Based on the row stochastic matrix D, we can associate a
Laplacianmatrix L = I − D where both the Laplacianmatrix and the row stochastic
matrix D are connected to the same graph but with different weighting of the edges.
Based on Lemma 2.6, we know that L has a simple eigenvalue at 0 with associated
right eigenvector given by 1. Clearly this implies that D has a simple eigenvalue at
1 with associated right eigenvector given by 1.

From Geršgorin’s circle criterion, any eigenvalue of the matrix D is contained in
a disc with center dii and radius 1 − dii for some i . Since dii �= 0 we find that the
only eigenvalue on the unit disc can be 1. Therefore all eigenvalues unequal to 1 have
amplitude strictly less than 1.

2.5 Passivity

We define the concept of passivity for continuous- and discrete-time systems.

2.5.1 Continuous-Time System

Consider a general, strictly proper system ∑ ,

∑ :
{
ẋ = Ax + Bu,

y = Cx + Du,
(2.9)

where x ∈ R
n, u ∈ R

m , and y ∈ R
p. We first define passive and passifiable systems.
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Definition 2.14 The system (2.9) is called passive if the system is square (i.e.,
m = p), and for initial condition x(0) = 0, for any input u, and for any T ≥ 0, we
have

T{
0

yT(t)u(t) dt ≥ 0.

The system is called passifiable via static output feedback if the system is square
and there exists a matrix H such that for initial condition x(0) = 0, for any input v
and for any T ≥ 0, we have

T{
0

yT(t)u(t) dt ≥
T{

0

yT(t)Hy(t) dt.

The system is called passifiable via static input feedforward if the system is square
and there exists a matrix R such that for initial condition x(0) = 0, for any input v

and for any T ≥ 0, we have

T{
0

yT(t)u(t) dt ≥
T{

0

uT(t)Ru(t) dt.

The positive real lemma (see e.g., [5, 166]) gives an easy characterization when
systems are passive.

Lemma 2.15 Assume that (A, B) is controllable and (A,C) is observable with B
and C full-column and full-row rank, respectively. The system (2.9) is passive if and
only if there exists a matrix P > 0 such that

G(P) =
(
PA + ATP PB + CT

BTP − C −D − DT

)
≤ 0. (2.10)

Remark 2.16 For strictly proper systems the condition (2.10) reduces to

PA + ATP ≤ 0,

PB = CT.
(2.11)

Classical passivity requires the system to be square. For non-square systems,
G-passivity and G-passifiability has been introduced in [29]. Given a prespecified
m × p-matrixG, a system (2.9) is calledG-passive if the cascade of the system (2.9)
with post-compensator G ∈ R

m×p as shown in Fig. 2.2 is passive. Similarly, given
a prespecified m × p-matrix G, a system (2.9) is called G-passive if the cascade of
the system (2.9) with post-compensatorG ∈ R

m×p as shown in Fig. 2.2 is passifiable
via static output feedback.
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Fig. 2.2 A G-passive
system

From the positive-real lemma we almost immediately find a characterization of
G-passivity.

Lemma 2.17 Assume that (A, B) is controllable and (A,C) is observable with B
and GC full-column and full-row rank, respectively. The system (2.9) is G-passive
if and only if there exists a matrix P > 0 such that

G(P) =
(
PA + ATP PB + CTGT

BTP − GC −GD − DTGT

)
≤ 0. (2.12)

Remark 2.18 For strictly proper systems the condition (2.12) reduces to

PA + ATP ≤ 0,

PB = CTGT.
(2.13)

From the literature on squaring down, it follows that such G should be designed,
because in general G may introduce invariant zeros inC+ and in this case the system
can never be passive or passifiable.

In this book, we consider the more general concepts of squared-down passive,
squared-down passifiable via static output feedback and squared-down passifiable
via static input feedforward for a non-square system (2.9) based on the idea of
squaring down in [129]. Since this book is considering MAS with strictly proper
systems, we define these concepts for strictly proper systems.
The system (2.9) is called squared-down passive if there exists a pre-compensator
G1 and a post-compensator G2 such that the interconnection in Fig. 2.3 with input û
and output ŷ is passive. Assuming G1 and G2 are such that (A, BG1) is controllable,
(A,G2C) is observable, this is equivalent to the existence of a positive definitematrix
P , such that

PA + ATP ≤ 0,
PBG1 = CTGT

2 .
(2.14)

Remark 2.19 Note that when G1 = I , squared-down passivity is similar to G-
passivity as used in [29]. However, in [29] a more strict version of passivity is used
which requires the system to be asymptotically stable. Our version can also be used
for neutrally stable systems.

Fig. 2.3 A squared-down
passive system
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Fig. 2.4 A squared-down
passive system via static
output feedback

For a square system, i.e.,G1 = G2 = I squared-down passivity becomes conven-
tional passivity.

Similar to the definition of G-passifiability, system (2.9) is called squared-down
passifiable via static output feedback if there exists a pre-compensator G1 ∈ R

m×q ,
a post-compensator G2 ∈ R

q×p, and a static output feedback

û = −H ŷ + v = −HG2y + v, u = G1û (2.15)

such that interconnection of the system (2.9) and the pre-feedback (2.15) is passive
with respect to the new input v and output ŷ as shown in Fig. 2.4.

AssumeG1 andG2 are such that (A, BG1) is controllable, (A,G2C) is observable
with BG1 andG2C full-column and full-row rank, respectively. In that case, squared-
down passifiable via static output feedback is equivalent to the existence of a matrix
H and a positive-definite matrix P such that

P(A − BG1HG2C) + (A − BG1HG2C)TP ≤ 0,

PBG1 = CTGT
2 .

(2.16)

The system (2.9) is called squared-down passifiable via static input feedforward if
there exists a pre-compensator G1 ∈ R

m×q , a post-compensator G2 ∈ R
q×p, and an

input feedforward matrix R, which make the interconnection of (2.9) and

z = Rû + ŷ = Rû + G2y, u = G1û,

with respect to the new input û and the new output z, as shown in Fig. 2.5. If (A, BG1)

is controllable and (A,G2C) is observable with BG1 and G2C full-column and full-
row rank, respectively, this is equivalent to the existence of a positive definite matrix
P such that

G(P) =
(

PA + ATP PBG1 − CTGT
2

GT
1 B

TP − G2C −R − RT

)
≤ 0. (2.17)

Note that systems which are squared-down passifiable via static input feedforward
are always neutrally stable which follows directly from (2.17).

Remark 2.20 If G1 = G2 = I with the choice of R = aI , our squared-down pas-
sifiability via static input feedforward is reduced to input feedforward passivity as
given in [119, Eq. (4)].
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Fig. 2.5 Squared-down
passive system via static
input feedforward

Finally, we will define a class of agents, which are squared-down minimum-phase
with relative degree 1. A system (2.9) is called squared-down minimum-phase with
relative degree 1which uses a pre-compensator G1 ∈ R

m×q and a post-compensator
G2 ∈ R

q×p if the square system (A, BG1,G2C) is minimum-phase with relative
degree 1 (det(G2CBG1) �= 0). Note that for such a system (A, BG1,G2C), with
input û, with u = G1û, and output ŷ = G2y there exist non-singular state transfor-
mation matrices Tx and Tu with

x̃ =
(
x̃1
x̃2

)
= Tx x, ũ = Tuû

such that the dynamics of x̃ is represented by

⎧⎨
⎩

˙̃x1 = A11 x̃1 + A12 x̃2,˙̃x2 = A21 x̃1 + A22 x̃2 + ũ,

ŷ = x̃2,
(2.18)

where x̃1 ∈ R
n−m and x̃2 ∈ R

m . Moreover, A11 is Hurwitz stable.

Remark 2.21 Minimum-phase agents with relative degree 1 are a subclass of passi-
fiable agents via output feedback. The advantage is that the extra structure will enable
a more explicit design. This connection has already been studied in [20] although
they use state feedback. There they even consider weakly minimum-phase agents.
However, in our view, our design is more transparant. Moreover, they only consider
unweighted graphs.

2.5.2 Discrete-Time System

Consider a general, strictly proper system ∑ ,

∑ :
{
x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

(2.19)

where x ∈ R
n, u ∈ R

m , and y ∈ R
p. We first define passive and passifiable systems.
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Definition 2.22 The system (2.19) is called passive if the system is square (i.e.,
m = p) and for initial condition x(0) = 0, for any input u and for any T ≥ 0 we
have

T∑ 
k=0

yT(k)u(k) ≥ 0.

The system is called passifiable via static output feedback if the system is square
and there exists a matrix H such that for initial condition x(0) = 0, for any input v
and for any T ≥ 0, we have

T∑ 
k=0

yT(k)u(k) ≥
T∑ 

k=0

yT(k)Hy(k).

The system is called passifiable via static input feedforward if the system is square
and there exists a matrix R such that for initial condition x(0) = 0, for any input v

and for any T ≥ 0, we have

T∑ 
k=0

yT(k)u(k) ≥
T∑ 

k=0

uT(k)Ru(k).

The positive real lemma (see e.g. [41]) gives an easy characterization when sys-
tems are passive.

Lemma 2.23 Assume that (A, B) is controllable and (A,C) is observable with B
and C full-column and full-row rank, respectively. The system (2.9) is passive if and
only if there exists a matrix P > 0 such that

G(P) =
(
ATPA − P ATPB + CT

BTPA − C BTPB − D − DT

)
≤ 0. (2.20)

Similar to continuous-time case, we can consider the more general concepts
of squared-down passive, squared-down passifiable via static output feedback and
squared-down passifiable via static input feedforward for a non-square system (2.9)
based on the idea of squaring down in [129]. Since this book is considering MAS
with strictly proper systems, we define these concepts for strictly proper systems.
However, for discrete-time systems this implies that the system can never be squared-
down passive and squared-down passifiable via static output feedback. However,
strictly proper, discrete-time agents can be squared-down passifiable via static input
feedforward.

Consider a linear system ∑ given by

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k), (2.21)


