Second Edition

Learning to Program with

MATLAB

Building GUI Tools

ﬁnﬁ% Craig S. Lent
WILEY

LEARNING TO PROGRAM
WITH MATLAB

LEARNING TO PROGRAM
WITH MATLAB

Building GUI Tools

Second Edition

Craig S. Lent
University of Notre Dame
Notre Dame, USA

WILEY

This edition first published 2022
© 2022 John Wiley & Sons, Inc.

Edition History
John Wiley & Sons (1e, 2013)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from
this title is available at http://www.wiley.com/go/permissions.

The right of Craig S. Lent to be identified as the author of this work has been asserted in accordance
with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This work’s use or discussion of
MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. While
the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials or promotional statements for this work. The fact that an
organization, website, or product is referred to in this work as a citation and/or potential source of
further information does not mean that the publisher and authors endorse the information or services
the organization, website, or product may provide or recommendations it may make. This work is
sold with the understanding that the publisher is not engaged in rendering professional services. The
advice and strategies contained herein may not be suitable for your situation. You should consult with
a specialist where appropriate. Further, readers should be aware that websites listed in this work may
have changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Lent, Craig S., 1956- author.

Title: Learning to program with MATLAB : building GUI tools / Craig S.
Lent, University of Notre Dame, Notre Dame, USA.

Description: Second edition. | Hoboken, NJ : Wiley, 2022. | Includes index.

Identifiers: LCCN 2022017476 (print) | LCCN 2022017477 (ebook) | ISBN
9781119900474 (paperback) | ISBN 9781119900481 (adobe pdf) | ISBN
9781119900498 (epub)

Subjects: LCSH: Computer programming. | Visual programming (Computer
science) | MATLAB. | Graphical user interfaces (Computer systems) |
BISAC: COMPUTERS / General.

Classification: LCC QA76.6 .1.45 2022 (print) | LCC QA76.6 (ebook) | DDC
005.13-dc23/eng/20220527

LC record available at https://Iccn.loc.gov/2022017476

LC ebook record available at https://Iccn.loc.gov/2022017477

Cover design: Wiley
Cover images: Images courtesy of the author

Set in 10/12pt TimesLTStd by Straive, Chennai, India

http://www.wiley.com/go/permissions
http://www.wiley.com
https://lccn.loc.gov/2022017476
https://lccn.loc.gov/2022017477

To Tom Finke, the late Pat Malone, and Katy McShane, and
all the amazing teachers at the Trinity School campuses in
South Bend, IN, Eagan MN, and Falls Church, VA.

Contents

Preface to the Second Edition xiii
About the Companion Website Xvii
I MATLAB Programming 1
1 Getting Started 3
1.1 Running the MATLABIDE. i 3
Manipulating Windows 5

1.2 MATLAB variablesutiiii e 5
Variable assignment Statements.ueeuteeneeenneennnennn 6
Variable nameso i 7
Variable workspace 8

1.3 Numbers and functionscouiiiiiiiiiinienieenn... 8
1.4 DOCUMENIAtION . . .t v\ttt ettt ettt e 9

1.5 Writing simple MATLAB SCIiptSovitiiiiininiii.n, 10
BloCK SEIUCLUTEottt e 11
Appropriate variable nameso i 11

Useful comments ...t 11

UNitS et e 11
Formatting forclarityo 12

Basic display command i 12

1.6 A few words about errors and debugging.......................... 12
Error messages are your friends i 13

Sketch a planon paper first ... 13

Start small and add slowlyo i 13

1.7 Usingthedebugger..........cooiiiiiiiiiiii i, 13
Looking aheadot 14
Programming Problems i 14

2 Vectors and Strings 19
2.1 VeCtOr DaSICS .« vt e ettt et e e e e 20
2.2 Operations ON VECLOTS« ..vuutee e et et e a e ae e e 21
Multiplication by ascalar............. ... i 21
Addition withascalar.......... i 21
Element-by-element operation with two vectors.................... 21
Functions of vectors.oviiiii i 22

Length of VeCtors . ..o e 22
SUDAITAYS . - o ettt e 23
Concatenating VECTOISo vttt vttt 23

2.3 Special vector functionsouiiiiiiiii i 23
Statistical Functions. i i 24

24 Usingrandand randio 25

vii

viii

Contents

2.5
2.6
2.7
2.8

SN DASICS & vttt e
SN OPETALIONS . o vttt ettt ettt e e e ae e
Character VECLOTSttt e it ettt e et
Getting information from theuser...............
Looking aheado
Programming Problems ...

Plotting

3.1

32
33

34

3.5
3.6

The plotcommand i i,
AXiSscaling . ..o
Plotlabeling. e e
Tabulating and plotting a simple function
Bar graphs and histograms................ oo i
Histograms. e
Drawing several plotsonone graph...............,
Multiple plots with a single plot command
Combining multiple plots with a hold command...................
Thickening plotted curves ...t
Adding lines and teXtoiit i
Changing object propertiesc.ovirieeiniiiieennieeann.
Looking aheadot e
Programming Problems i i

Matrices

4.1

4.2

4.3

4.4

Entering and manipulating matrices ...
Size of amatriX......oovuiiii i
MaALTiX tTANSPOSE « « .« v e ettt ettt e et et e e e e
Operations ON MALTICES vv vttt eei e eiieeeenaieeenns
Arithmetic operations withascalar...............................
Addition and subtraction of two matrices of the same size...........
Functions of matrices ...t
Matrix multiplication. e
The identity MmatriX.ooueeintn i
The inverse of a MatrixXooutiinin e
The determinant of a MatrixX.oovueiieeiienene ..
Matrix—vector multiplication. ...,
Solving linear systems: the backslash operator.....................
Extended example: solving circuit problems
WIre SEZMENES . . . oottt ettt et et e
WIre JUnCtionSot e
VOItage SOUICES . . . vt vttt ettt e et e
ReSISIOTS . . oottt
Ground i
Special matrix functions........... ool
Looking aheado
Programming Problems i

Control Flow Commands

5.1
5.2
53
54

Conditional execution: the if statement...........................
Logical eXpressionscouuuuetteinii i
Logical variablesoiuiiiii i
oI J00PS . e
Good programming PractiCeooueeeuueenueenneennnenn.

11

5.5 Whileloops ...
5.6 Other control flow commands......................ccoiiiiiiian.
Switch-case statement i
Break statement e
Programming Problems o i

Animation

6.1 Basic animationoitiiitiiiii e

6.2 Animating function plots

6.3 Kinematics of MOtion,
One-dimensional motion: constant speed.........................
Motion with constant acceleration..................covuiinee....
Time-marching dynamics: nonconstant force

6.4 Lookingahead i
Programming Problems il

Writing Your Own MATLAB Functions
7.1 MATLAB functionfiles............ ...,
Declaring MATLAB functionsc.cooiiiiiiniann...
7.2 Function inputs and outputsoouiiieiiiiie i
7.3 Local WOTKSPaCES . ..o\ttt et e
7.4 Multiple OUtPULS . . . oo v e
7.5 Functionfiles
7.6 Other functional forms,
Subfunctions
Nested functions.oeitint it
Anonymous functionsttt
7.7 Optional arguments for functions.................. ...
7.8 Looking forwardccoiiiiiiiiiiii i
Programming Problems i i

More MATLAB Data Classes and Structures
8.1 Cellarraysvunniti
8.2 SHIUCIUIS. . . e
8.3 CompleX NUMDETSottt
8.4 Functionhandles i
8.5 Tables
8.6 Other data classes and data structures...................couuuun..
Programming Problems i

Building GUI Tools

Building GUI Tools with App Designer

9.1 The App Designerinterface.............c.ooiviiiiieeniinn...

9.2 Getting started: HelloTool ...,

9.3 Components communicating: SliderTool

9.4 Transforming a MATLAB program into a GUI tool:
DampedEfieldTool. i
Step 0: Write and debug the program
Step 1: Planthe GUIL. i i
Step 2: Create the GUI in App Designer..........................

114
115
115
116
117
117
117
118
118
122
122
123
124
125

132
132
133
134
135
135
136
137

139

Contents

ix

x Contents

Step 3: Connect program inputs and outputs to the GUI
(6703 1101010 1 1S5 0 1 5
Step 4: Add callbacks to invoke the primary model function.
0.5 Testand iMProveouuutteenn ettt
Many ways todo things ...,
Key points from this chapter................
Programming Problemso

10 More GUI Techniques
10.1 Sharing data between callbacks,
10.2 More GUI cOmPONENtso voueveeenie et e iaiieeeannnn
Text and Numeric Edit Fieldsl
Drop Downot
Check BOX . ..ot

Image ...
Communicating user choices.,
Tab GIOUP . .« ottt
Menubar...... ...

TeXt AT@a . ..ottt
The uses of invisibility i
10.3 POPUPS -« eee et
Progress dialogue. ...
Waithar. . ..o
Inputdialogue. ...
Confirm dialoguet
10.4 Responding to keyboard input i
10.5 Mouse events and object dragging..............cooviiiiieeannn.

III Advanced Topics

11 More Graphics

11.1 Logarithmic plots.outi i
11.2 Plotting functions On tWo aXesceevuutueeennneeennnnn.
11.3 Plotting Surfaces.ouuiiiniii i
11.4 Plotting vector fields oo
11.5 Working withimagesc.oviiiiiiiiii i

Importing and manipulating bit-mapped images...................

Placing images on surface objects ...
11.6 Rotating composite objects in three dimensions...................

12 More Mathematics
12,1 DeIIVALIVES . .« o ettt ettt et et e
Derivatives of mathematical functions expressed as MATLAB
FUNCHONS . . . et
Derivatives of tabulated functions,
12.2 TNteration . . oo v vttt ettt et et e
Integrating tabulated functions i

168
169
170
170
171
171
172
172
173
173
173
174
174
176
176
176
176
176
178
178
179
181
181

187

189
189
192
194
199
200
200
207
209

Integrating mathematical functions expressed as MATLAB

functions

12.3 Zeros of a function of one variable
12.4 Function minimizationc..eureeeeeeeeeeennennn...
Finding a minimum of a function of one variable...............
Multidimensional minimizationc.ceveeeeeenn....

Fitting to an arbitrary function by multidimensional

MINIMIZAION . . ottt e ettt e e e et et

Solving simultaneous nonlinear equations by multidimensional

MINIMIZAION . . oottt e e e

12.5 Solving ordinary differential equations........................
Plotting aslopefieldo
12.6 Eigenvalues and eigenvectorscveviuiieeennnneen...

13 Reading and Writing Files

13.1 Saving and loading datain .matfiles..........................
13.2 Reading and writing spreadsheet files..........................
13.3 Writing text filesot e
The writematrixcommand.............c.ooviiiinninnen...
Writing formatted text files i
Formatting a string using sprintf....................,
13.4 Reading data fromatextfile....................coiiiiiaL.
Readingintoacellarray............cooiiiiiiiiiiiiin...
Reading complicated text datafiles............................
13.5 A GUI interface to file names using uiputfile and uvigetfile

Appendix Using IXTgX Commands

Index

221
225
227
227
229

229

233
235
238
239

242
242
244
245
245
246
249
249
250
250
252

255

261

Contents xi

Preface to the Second Edition

To learn how to program a computer, in a modern language with serious graphical
capabilities, is to take hold of a tool of remarkable flexibility that has the power to
provide profound insight. This text is primarily aimed at being a first course in pro-
gramming, and is oriented toward integration with science, mathematics, and engi-
neering. It is also useful for more advanced students and researchers who want to
rapidly acquire the ability to easily build useful graphical tools for exploring com-
putational models. The MATLAB programming language provides an excellent
introductory language, with built-in graphical, mathematical, and user-interface
capabilities. The goal is that the student learns to build computational models with
graphical user interfaces (GUIs) that enable exploration of model behavior. This
GUI tool-building approach has been used at multiple educational levels: graduate
courses, intermediate undergraduate courses, an introductory engineering course
for first-year college students, and high school junior and senior-level courses.

The MATLAB programming language, descended from FORTRAN, has evolved
to include many powerful and convenient graphical and analysis tools. It has
become an important platform for engineering and science education, as well
as research. MATLAB is a very valuable first programming language, and for
many, will be the preferred language for most, if not all, of the computational
work they do. Of course, C++, Java, Python, and many other languages play
crucial roles in other domains. Several language features make the MATLAB
language easier for beginners than many alternatives: it is interpreted rather than
compiled; variable types and array sizes need not be declared in advance; it is not
strongly typed; vector, matrix, multidimensional array, and complex numbers are
basic data types; there is a sophisticated integrated development and debugging
environment; a rich set of mathematical and graphics functions are provided.

While computer programs can be used in many ways, the emphasis here is on
building computational models, primarily of physical phenomena (though the
techniques can be easily extended to other systems). A physical system is modeled
first conceptually, using ideas such as momentum, force, energy, reactions, fields.
These concepts are expressed mathematically and applied to a particular class
of problem. Such a class might be, for example, projectile motion, fluid flow,
quantum evolution, electromagnetic fields, circuit equations, or Newton’s laws.
Typically, the model involves a set of parameters which describe the physical
system and a set of mathematical relations (systems of equations, integrals,
differential equations, eigensystems, etc.). The mathematical solution process
must be realized through a computational algorithm—a step-by-step procedure
for calculating the desired quantities from the input parameters. The behavior
of the model is then usually visualized graphically, e.g., one or more plots, bar
graphs, or animations.

xiii

xiv Preface to the Second Edition

A GUI tool consists of a computational model and a graphical user interface that
lets the user easily and naturally adjust the parameters of the model, rerun the
computation, and see the new results.

The experience which led to this text was the observation that student learning is
enhanced if the students themselves build the GUI tool: construct the computa-
tional model, implement the visualization of results, and design the GUL

The GUI is valuable for several reasons. The most important is that exploring
model behavior, by manipulating sliders, buttons, checkboxes, and the like,
encourages a focus on developing an intuitive insight into the model behavior.
Insight is the primary goal. Running the model many times with differing inputs,
the user can start to see the characteristic behavior of physical system represented
by the model. Additionally, it must be recognized that graphically driven tools
are what students are accustomed to when dealing with computers. A command
line interface seems crude and retrograde. Moreover, particularly for engineering
students, the discipline of wrapping the model in a form that someone else could
use, encourages a design-oriented mentality. Finally, building and delivering a
sophisticated mathematical model that is operated through a GUI interface is
simply more rewarding and fun.

The GUI tool orientation guides the structure of the text. Part I (Chapters 1-8) cov-
ers the fundamentals of MATLAB programming and basic graphics. It is designed
to be what one needs to know prior to actual GUI building. The goal is to get the
student ready for GUI building as quickly as possible (but not quicker).

In this context, Chapters 4 (matrices) and 6 (animation) warrant comment. Because
arrays are a basic MATLAB data class and solving linear systems a frequent appli-
cation, this material is included in Part I. An instructor could choose to cover it
later without disrupting the flow of the course. Similarly, the animation techniques
covered in Chapter 6 could be deferred. The animation process does, however, pro-
vide very helpful and enjoyable practice at programming for loops. Many GUI
tools are enhanced by having an animation component; among other advantages,
animation provides a first check of model behavior against experience. The end
of Chapter 6 also includes a detailed discussion of the velocity Verlet algorithm
as an improvement on the Euler method for solving systems governed by New-
ton’s second law. While this could be considered a more advanced topic, without
it, models as simple as harmonic motion or bouncing balls fail badly because of
nonconservation of energy.

Part II covers GUI tool creation with the App Designer program, which is part
of MATLAB. Chapters 9 and 10 are the heart of the text and take a very tutorial
approach to GUI building. Chapter 9 details a simple, but widely useful, tech-
nique for transforming a functioning MATLAB program into a GUI tool. Readers
already familiar with MATLAB, but unfamiliar with using App Designer, can
likely work through this chapter in a couple of hours and be in short order making
GUI tools.

Part ITI, Chapters 11-13, covers more advanced techniques for graphics, mathe-
matics, and using files. It is not meant to be comprehensive; the online MATLAB
help documentation is excellent and will be the main source for a lot of details.
The text covers what, in many cases, is the simplest way to invoke a particular
function; more complicated uses being left for the student to explore using the
documentation.

Preface to the Second Edition xv

This approach—having students write GUI tools for specific problem
domains—grew out of the author’s experience teaching undergraduate elec-
tromagnetics courses and graduate quantum mechanics courses in electrical
engineering at the University of Notre Dame. These areas are characterized by a
high level of mathematical abstraction, so having students transform the esoteric
mathematics first into code, and then into visualizable answers, proved invaluable.

The text began as a set of lecture notes for high school students at Trinity School
at Greenlawn, in South Bend, Indiana. Since 2005, all Trinity juniors have learned
MATLAB using this approach and have used it extensively in the physics and
calculus courses that span the junior and senior year. The two other Trinity School
campuses, one in Falls Church, Virginia, and the other in Eagan, Minnesota,
adopted the curriculum soon after the Greenlawn campus. The chapter on
mathematics is largely shaped by the material covered in the Trinity senior year.
The author is profoundly grateful to the faculty and students of Trinity Schools,
for their feedback, love of learning, and courage. Special thanks to Tom Finke,
the remarkable head of Math and Science for Trinity Schools, and to Dr. John
Vogel of Trinity School at River Ridge for very helpful reviews of the manuscript.

A note on formatting: numerous examples, programs, and code fragments are
included in highlighted text. When the example is meant to illustrate the behavior
of MATLAB commands typed in the Command window, the MATLAB command
prompt “>" is included, as in:

>> disp("Hello, world!™)
Hello, world!

Program listings, by contrast, contain the code as it would be seen in the Editor
window.

%% greetings.m
% Greet user in cheery way

% Author: Calvin Manthorn
greeting="Hello, world!";
disp(greeting);

After many decades of nearly daily use, the author still finds a durable and sur-
prising joy in writing MATLAB programs for research, teaching, and recreation.
It is hoped that, through all the details of the text, this comes through. May you,
too, enjoy.

Craig S. Lent, University of Notre Dame, Notre Dame, IN, June 2022

About the Companion
Website

This book is accompanied by a companion website:
www.wiley.com/go/learningtoprogramwithmatlab2e

The website includes MATLAB codes from the text by chapter.

xvii

https://www.wiley.com/go/learningtoprogramwithmatlab2e

MATLAB Programming

Getting Started SRR

This chapter will introduce the basics of using MATLAB, first as a powerful
calculator, and then as a platform for writing simple programs that automate what
a calculator would do in many steps. The emphasis here will be on performing
basic mathematical operations on numbers.

The MATLAB integrated development environment (IDE) is the program that runs
when you launch MATLAB. You will use it to operate MATLAB interactively and
to develop and run MATLAB programs.

The concept of a MATLAB variable is important to grasp. It is not identical
with the familiar mathematical notion of a variable, although the two are related.
MATLAB variables should be thought of as labeled boxes that hold a number or
other types of information.

MATLAB has many built-in functions for evaluating common mathematical
functions. More complicated MATLAB functions, including those of your own
making, will be explored further in Chapter 7.

After completing this chapter you should be able to

e use the MATLAB IDE to operate MATLAB interactively from within the
command window;

e create and name MATLAB variables and assign them numerical values;

e invoke several built-in MATLAB mathematical functions (such as the sine,
cosine, and exponential functions);

e get more information on MATLAB statements and functions using the help
and doc commands;

e write a simple program that set the values of variables, calculates some quanti-
ties, and then displays the results in the command window;

e run through a program line-by-line using the MATLAB debugger in the Editor
window.

1.1 Running the MATLAB IDE

MATLAB is normally operated from within the MATLAB IDE. You can launch
MATLAB in the Windows environment by double-clicking on the shortcut on your
desktop or by selecting it from the Start | Programs menu (Figure 1.1).

The IDE is organized into a header menu bar and several different windows.
Which windows are displayed can be determined by checking or unchecking

Learning to Program with MATLAB: Building GUI Tools, Second Edition. Craig S. Lent.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/learningtoprogramwithmatlab2e

http://www.wiley.com/go/learningtoprogramwithmatlab2e

4 CHAPTER 1

Getting Started

FIGURE 1.1 The MATLAB integrated development environment (IDE) with the default
layout.

items in under the Desktop menu in the top menu bar. Some important windows
for working with MATLAB are the following:

Command window. This is the main interactive interface to MATLAB. To issue
a MATLAB command (also called a MATLAB statement), type the command
at the >> prompt and press Enter.

Workspace browser. Each variable defined in the current workspace is repre-
sented here. The name, class (type), value, and other properties of the vari-
able can be shown. Choose which properties to show using the View—Choose
Columns menu from the header menu bar. A recommended set to display is:
Name, Value, and Class. Double-clicking on a variable brings up the Variable
Editor window. The icon representing numbers is meant to symbolize an array,
i.e., a vector or a matrix. MATLAB’s basic data type is the array—a number is
treated as a 1 X 1 array.

Current Folder browser. In Windows parlance, the current folder is the same as
the current directory. Without further instruction, MATLAB will save files in the
current folder and look for files in the current directory. The browser displays
files and other directories (folders) that reside in the current directory. Icons at
the top of the browser allow the user to move up a directory (folder) level or to
create a new folder. Double-clicking on a displayed folder makes it the current
folder.

Editor window. The MATLAB editor is where programs are written. It doubles
as part of the debugger interface, which is covered in detail later. The editor
“knows” the MATLAB language and color codes language elements. There are
many other convenient features to aid code-writing.

Figures window. Graphics is one of the main tools for visualizing numerical quan-
tities. The results of executing graphics-related commands, such as those for
plotting lines and surfaces, are displayed in the Figures window.

Variable Editor. The value or values held in a particular variable are displayed
in a spreadsheet-like tool. This is particularly useful for arrays (matrices and
vectors).

1.2 MATLAB variables 5

Editor AN s =

Ribbon [% @m- =" G, =~ Bas e

Current Folder/Workspace/Figures

Editor

Command Window

FIGURE 1.2 Recommended layout of the MATLAB IDE windows.

Manipulating windows

As usual in Windows, the currently active window is indicated by the darkening of
its blue frame. Each window can be undocked using the small arrow button near
the upper right-hand corner of the window. Undocked windows can be arranged on
the screen using the usual Windows mouse manipulations. An undocked window
can be docked again using the small arrow button (this time the arrow points
downward) in the upper right-hand corner of the window.

Windows can be manipulated within the IDE by clicking and dragging the top
frame of the window. Outlines of the drop position of the window appear and
disappear as the mouse is moved around. This takes some practice.

More than one IDE window can share the same screen pane. Choose between
active windows in a single pane by using the tabs at the top, side, or bottom of
the pane.

A (strongly) recommended setup for the desktop includes three panel areas. In the
upper left quadrant of the IDE, position the Workspace browser, Current Folder
browser, and (optionally) the Figures window. One of these three is visible at any
time, with the others being accessible by clicking the labeled tab. In the lower left,
have the Command window open. The right portion is then devoted to the Editor
window, where most of your programming work will take place. It really helps the
development process to adopt this setup or something very like it (Figure 1.2).

1.2 MATLAB variables

A MATLAB variable is simply a place in the computer’s memory that can hold
information. Each variable has a specific address in the computer’s memory.
The address is not manipulated directly by a MATLAB program. Rather, each
variable is associated with a name which is used to refer to its contents. Each
variable has a name, such as x, initialVelocity, or studentName. It also has
a class (or type) that specifies what kind of information is stored in the variable,

6 CHAPTER1

Getting Started

4.27 7.23 "Bob"

a vinit fName

FIGURE 1.3 A schematic representation of MATLAB variables a, vinit, and fName.
Each has a name, class (type), and a current value.

and, of course, each variable usually has a value, which is the information actually
stored in the variable. The value may be a structured set of information, such as a
matrix or a string of characters.

Numbers are stored by default in a variable class called double. The term origi-
nates in the FORTRAN variable type known as “double precision.” Numbers in
the double class take 64 bits in the computer’s memory and contain about 15 digits
of precision. Alphanumeric strings, such as names, are stored in variables of the
string class. Boolean variables, which can take the value true or false, are stored
in variables of the logical class. Logical true and false are represented by a 1 and
a 0. Other variable classes will be discussed later (Figure 1.3).

Variable assignment statements

The equals sign is the MATLAB assignment statement. The command a=5 stores
the value 5 in the variable named a. If the variable a has not already been created,
this command will create it, then store the value. The class of the variable (its type)
is determined by the value that is to be stored. Assignment statements can be
typed into the Command Window at the command prompt, a double greater-than
symbol, “>>."

class double
class string
class double
class Togical

>> a=4;

>> fname="Robert";

>> temperature=101.2;
>> isDone=true;

R R R R

In these examples, everything after the percent sign is a comment, information
useful to the reader but ignored by MATLAB.

The assignment statement will cause MATLAB to echo the assignment to the
Command Window unless it is terminated by a semicolon.

>> a=4.2

a =
4.2000

>> a=5.5;

>>

The right-hand side of the assignment statement can be an expression, i.e., a com-
bination of numbers, arithmetic operators, and functions.

>> a=4%*7+2.2;

>> r=a+b;

>> b=sin(3.28);

>> x2=x1+4*sin(theta);

>> zInit=1+yInit/cos(a*xInit);
>> k=k+1;

1.2 MATLAB variables

The general form of the assignment statement is
<variable name>=<expression>;

The expression is first evaluated, and then the value is stored in the variable named
on the left-hand side of the equals sign. If variables appear in the expression on
the right-hand side of the equals sign, the expression is evaluated by replacing the
variable names in the expression with the values of the variables at the time the
statement is executed. Note that this does not establish an ongoing relationship
between those variables.

>> a=5;
>> b=7;
>> c=a+b % uses current values of a and b

12 % kept same value despite a and b changing

The equals sign is used to store a result in a particular variable. The only thing per-
mitted to the left of the equals sign is the variable name for which the assignment
is to be made. Although the statement a=4 looks like a mathematical equality, it
is in fact not a mathematical equation. None of the following expressions is valid:

>> r=a=4; % not a valid MATLAB statement
>> a+l=press-2; % not a valid MATLAB statement
>> 4=a; % not a valid MATLAB statement

>> "only the Tonely"="how I feel"; % not a valid MATLAB statement

By contrast this, which makes no sense as mathematics, is quite valid:

>> nr=nr+1; % increment nr

Variable names

Variable names are case-sensitive and must begin with a letter. The name must be
composed of letters, numbers, and underscores; do not use other punctuation sym-
bols. Long names are permitted but very long names should be used judiciously
because they increase the chances for misspellings which might go undetected.
Only the first 31 characters of the variable name are significant.

xinit okay
VRightInitial okay
4You2do not okay
Start-up not okay
vector¥l not okay

TargetOne okay

7

8 CHAPTER1 Getting Started

ThisIsAVeryVerylLongVariableName okay
ThisIsAVeryVerylLongVariablename okay, but different from previous
X_temp okay

Variable workspace

The currently defined variables exist in the MATLAB workspace. [We will
see later that it is possible for different parts of a program (separate functions)
to have their own separate workspaces; for now there is just one workspace.]
The workspace is part of the dynamic memory of the computer. Items in the
workspace will vanish when the current MATLAB session is ended (i.e., when
we quit MATLAB). The workspace can be saved to a file and reloaded later,
although use of this feature will be rare. The workspace can be managed further
using the following commands:

clear a v g clears the variables a v g from the workspace

clear clears all variables from the workspace

who lists the currently defined variables

whos displays a detailed list of defined variables

save saves the current workspace to the file called matlab.mat

save foobar saves the current workspace to the file called foobar.mat

Toad loads variables saved in matlab.mat into the current
workspace

Toad foobar loads variables saved in foobar.mat into the current
workspace

1.3 Numbers and functions

While real numbers (class double) are precise to about 15 digits, the dis-
play defaults to showing fewer digits. The command format Tong makes the
display show more digits. The command format short, or just format, resets
the display.

Large numbers and small numbers can be entered using scientific notation.
The number 6.0221415 x 10** can be entered as 6.0221415e23. The number
—1.602 x 107" can be entered as -1.602e-19.

Complex numbers can be entered using the special notation 5.2+2.11.
The square root of —1 is represented in MATLAB by the predefined values
of i and j, although these can be overwritten by defining a variable of that
name (not recommended). MATLAB also recognizes the name p1i as the value
3.141592653589793. This can also be overwritten by defining a variable named
pi, an extraordinarily bad idea.

Internally MATLAB represents real numbers in normalized exponential base-2

notation. The range of numbers is roughly from as small as 107>% to as large as
10308

1.4 Documentation

Standard numerical operations are denoted by the usual symbols, and a very large
number of functions are available. Some are shown below.

+ addition

- subtraction

® multiplication

/ division

" exponentiation, e.g., 1.373.2 is 1.3%?
sin(x) returns the sine of x

sind(x) returns the sine of x degrees

cos (x) returns the cosine of x

cosd(x) returns the cosine of x degrees

tan(x) returns the tangent of x

tand (x) returns the tangent of x degrees

atan(x) returns the inverse tangent of x

atand(x) returns the inverse tangent of x in degrees
acos(x) returns the inverse cosine of x

acosd(x) returns the inverse cosine of x in degrees
asin(x) returns the inverse sine of x

sind(x) returns the inverse sine of x in degrees
exp(x) returns ¢*

Tog(x) returns the natural logarithm of x

Togl0(x) returns the log;,(x)

sqrt(x) returns the square root of x

abs(x) returns the absolute value of x

round(x) returns the integer closest to x

ceil(x) returns the smallest integer greater than or equal to x
floor(x) returns the largest integer less than or equal to x
isprime(n) returns true if n is prime

factor (k) returns prime factors of k

sign(x) returns the sign (1 or —1) of x; sign(0) is 0
rand returns a pseudorandom number between 0 and 1
rand(m) returns an m X m array of random numbers
rand(m,n) returns an m X n array of random numbers

See more in the interactive help: Help| |ProductHelp| MATLAB |Functions |
Mathematics

1.4 Documentation

There are many MATLAB commands and functions. To get more information on
a particular command, including syntax and examples, the online facilities are
accessed from the command window using the help and doc commands.

