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Foreword

In a seminal paper published in the early 1970s, Manfred Eigen introduced a simple
system of differential equations describing the evolution of an infinite population
of macromolecules undergoing chemical reactions. The trajectories of this system
converge to a unique equilibrium, called the “quasispecies” equilibrium.

The book by Raphaël Cerf and Joseba Dalmau revisits in depth the notion of
quasispecies and demonstrates its remarkable universality in population dynamics,
far beyond the original problem considered by Eigen. It explains how and why the
quasispecies equilibrium can describe the long-term behavior of most classical mod-
els in population dynamics, whether they are deterministic or stochastic, including
Moran–Kingman, multitype Galton–Watson, Wright–Fisher, continuous branching
and Moran models. The common unifying thread is the fact that the quasispecies
equilibrium is the normalized Perron–Frobenius eigenvector of the natural matrix
encoding the fitness and mutation probabilities of the macromolecules.

The authors have recently made significant contributions to our understanding of
finite population models, in the regime where genotypes are large (compared to the
size of the population) and mutations are small. The book offers a beautiful synthesis
of these works, the most salient features of which are: several explicit formulas
describing the quasispecies distribution and their links with classical combinatorial
identities, the phase transition separating a quasispecies regime from a disordered
regime and a full proof for the Wright–Fisher model.

With the exception of a few classical results, all the results of the first four parts are
rigorously demonstrated. The proofs are elegant, powerful and always accessible. The
subsequent parts present some conjectures and more technical results, guiding the
reader to further open questions. The text is a pleasure to read and can easily be used
in several courses both in probability and Markov chains, population dynamics or
mathematical ecology. In addition, the specialist, whether she/he is a mathematician
or a theoretical ecologist or biologist, will find powerful ideas here for investigating
finite population models.

University of Neuchâtel, March 2022 Michel Benaïm
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Chapter 1
Introduction

We are surrounded by a huge heterogeneity of living beings: insects, plants, animals
and humans. Even the creatures belonging to the same species present an extraordi-
nary variability. And yet, what we can see with the naked eye, is but a tiny fraction of
the realm of the living. Indeed, bacteria, viruses, prions and dozens of other microbes
interact with us everyday without us even noticing. No matter how different, the one
feature that we all share, is that we have all been shaped by the means of evolution:
a careful equilibrium between mutation and selection. Mutations are responsible for
having introduced all the changes in our genetic information, from a remote past
until today, making us look as we do, while selection, caused by a combination of
many internal as well as external forces, has preserved our lineage through history,
by making it successful where many others have perished.

The present text focuses on equilibrium, on the subtle balance between selection
and mutation to which we owe the vast genetic heterogeneity in many of the living
populations. Imagine a population evolving in an environment that selects certain
genotypes over some others (selection meaning that the fittest genotypes produce, on
average, more children than their less fit companions), and that mutations allow for
the fit genotypes to become unfit and vice versa. On one hand, if selection is mild,
and the mutation rate is very high, the most fit individuals will have no advantage,
since their genotype will immediately mutate and become unfit. In fact, if we observe
such a population, we will see how the different genotypes come and go, and all of
them will eventually vanish to let new genotypes appear, thus never reaching an
equilibrium. On the other hand, if selection is very strong, and the mutation rate is
very low, the fittest genotype will take over the whole population, thus leaving no
place for any variability in the population.

We focus here on the intermediate situation, where selection and mutation com-
pensate each other, and the population reaches an equilibrium. The main questions
that we try to answer are: can this equilibrium be described as a function of the muta-
tion and selection parameters? And if yes, to what extent is this description sensitive
to the choice of the model? There exist several models describing the evolution of
a population under mutation and selection, which encompass different features: the
population size may be finite or infinite, constant or variable, the dynamics might
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2 1 Introduction

be deterministic or random, the different generations may or may not overlap, the
mutations may happen during reproduction, or at any time of the life cycle. We
consider throughout this text a series of models with these different features, and we
study the equilibrium of the resulting mathematical processes.

Our goal is to present a unified picture of the mutation selection equilibrium,
which is valid for several classical models in an adequate regime. Our starting
point is the quasispecies equation, a general non-linear equation that describes the
mutation-selection equilibrium of all the different models considered throughout
the text. This equation arises naturally in Eigen’s model [31], and it was Manfred
Eigen and Peter Schuster who coined the term quasispecies to refer to the mutation-
selection equilibrium of this model [33]. Notice that the quasispecies model of Eigen
is dynamical in nature; what we call the quasispecies equation is themere equilibrium
equation which arises from Eigen’s model.

There exists a huge literature on Eigen’s model and quasispecies theory. Our goal
here is not to present a synthesis of all the works on the quasispecies subject. For
readers who wish to learn more on the various aspects of quasispecies theory and
its application to the study of viruses, we refer to the books [27, 28, 30] and to the
review papers [7, 13, 29]. Let us try instead to explain the objectives of our text and
its relationship with other works on quasispecies.

Eigen’s model is defined through a set of differential equations which describe the
evolution of an infinite population of macromolecules [31]. Within this framework,
Eigen and Schuster studied a specific stylized landscape, called the single peak land-
scape or sharp peak landscape, in which there is only one favored sequence, called
the Master sequence [32]. Despite the simplicity of the model, they were able to
derive very interesting results, namely the existence of an error threshold, and the
formation of a specific population structure which they called a quasispecies. These
concepts became widely used in biology to discuss the evolution of a population
driven by mutation and selection, especially in the context of virus populations.
Viruses being simpler organisms, and their mutation rates being very high, the con-
cepts of quasispecies and error threshold are particularly relevant in understanding
populations of viruses, as shows the extensive use of the term even in the more
recent literature aimed at understanding the recent outbreak of the SARS-CoV-2
virus [1, 40, 48, 49, 87]. However, there is a major theoretical obstacle to apply
Eigen’s model to viruses, which was raised in [50]. Indeed, Eigen’s model was ini-
tially formulated for an infinite population, whose genotype has finite length, whereas
biological populations are finite with a typical population size much smaller than the
number of possible genotypes. In addition to that, several finite population models of
evolution have also been studied over the last decades, which incorporate stochastic
effects, in the field of population genetics. The most classical ones are the Moran
model, the Wright–Fisher model and the Galton–Watson process (see for instance
the classical book [35]). This leads to a natural debate: is quasispecies theory suitable
to describe the evolution of viruses, and what is its link with population genetics?

This question was fully addressed by Wilke [86]. Wilke argued that there is
no disagreement between the population genetics of haploid, asexually replicating
organisms and quasispecies theory, and he demonstrated it for the model of evolution
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of a single locus with two alleles, and for the mutational load studied by Kimura and
Maruyama [56]. Furthermore, Wilke discussed whether quasispecies theory applies
to finite populations. Severalworks aim at building amodel for a finite size population
which derives from Eigen’s model, by introducing an approximation scheme to the
deterministic differential equations, which incorporates stochastic effects: Alves and
Fontanari [2], Demetrius, Schuster and Sigmund [25], McCaskill [62], Gillespie
[41], Weinberger [85], and more recently Musso [67] and Dixit, Srivastava, Vishnoi
[26]. In a very influential paper, Nowak and Schuster [69] constructed a birth and
death model to approximate Eigen’s model. Finite size corrections to Eigen’s model
have also been computed with the help of complex methods from statistical physics
[3, 58, 73, 75, 76]. Moreover, various computer simulations have demonstrated
that the predictions of quasispecies theory can be observed for finite populations.
Comas, Moya and González-Candelas [19] studied how the population size affects
the survival of the flattest. Ochoa [70] performed extensive simulations in the context
of genetic algorithms. However these theoretical studies and these simulations deal
with very stylized fitness landscapes and simple reproduction mechanisms, which
are still very far from the complexity of real viruses. In the end,Wilke [86] concludes
that there is nothing that could contradict the existence of the quasispecies effect in
finite populations, and at the same time there is no true experimental evidence in its
favor. The debate on the relevance of quasispecies concepts to the study of viruses
is still ongoing [47, 72], and it seems to be quite open up to now.

This text is essentially a mathematical development of the questions discussed
in Wilke’s paper [86]. Namely, we wish to study further the mathematical links
between Eigen’s model and classical finite population models. Over the past few
years, we have been investigating this question by examining successively several
models. In each of these models, we found out that a quasispecies can be formed
in a suitable asymptotic regime of the parameters [15, 16, 17, 20, 22]. However
each model required a different treatment and lengthy proofs. Naturally, we tried
to unify these results and to understand the common features which lead to the
formation of a quasispecies. Currently, it seems to us that the central object which
can be recovered in each case is the quasispecies equation, namely the equilibrium
equation associated to Eigen’s model. This is why this review text is centered on this
quasispecies equation.

This text has several goals. A first goal is to show how the quasispecies equation is
naturally linked with classical population models. This is essentially a mathematical
formalization of one of the key points exposed in Wilke’s paper [86]. A second goal
is to study the quasispecies equation itself. Obviously, this equation is extremely
complex and a rigorous mathematical analysis can be conducted only in specific
cases. We discuss first the case of a finite genotype space, then we move on to the
sharp peak landscape and finally to the case of class-dependent fitness landscapes.
While studying theMoranmodel,we obtained an explicit formula for the quasispecies
distribution on the sharp peak landscape [17], which appeared again for the Wright–
Fisher model [20] and the Galton–Watson process [22]. We finally understood that
this formula was in fact a solution of the limiting quasispecies equation, as we show
in this text. A third goal is to show how the quasispecies and the error threshold
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phenomenon emerge in finite population models (which was in fact the original
motivation of the works [15, 16, 17, 20, 22]). We tried to streamline the different
proofs of our previous works in order to present a more general robust approach to
these apparently similar results. To this end, we relied on ideas coming from the
theory of random perturbations of dynamical systems of Freidlin and Wentzell [38].

At the end of the day, one may wonder whether it is worth developing all these
mathematical techniques to prove facts which were certainly well known by theoret-
ical biologists. On one hand, the mathematics associated to these apparently simple
models is rich and beautiful, and certainly deserves to be investigated, in order to
give precise answers to the previous questions. For instance, a delicate point, which
is also raised by Wilke [86], is to understand the dependence of the error threshold
on the population size. The approach presented here shows that, for a quasispecies
to be formed, the population size has to be at least of the same order as the genotype
length. On the other hand, these investigations lead to the development of new simple
formulas for the quasispecies distributions. Because of the simplicity of the models,
these formulas will not help directly to check the validity of the models, yet we
believe they constitute a small modest step in this direction. Indeed, deep sequencing
techniques yield a huge amount of data on the genotype of the viruses, and we need
theoretical models to explain the structure of these data. For instance, in the case
of class-dependent fitness landscapes, we have obtained a formula which allows us
to recover the fitness landscape if we are given the concentration of each Hamming
class at equilibrium. Unfortunately, because of all the simplifying features that lead
to it, this formula is unlikely to be realistic. Nevertheless, we hope that it is a good
starting point for theoretical discussions, and that it will be extended in due time
when operational models of real fitness landscapes will be available.

Of course, the results presented here are not valid for anymodel of mutation selec-
tion. The formula for the quasispecies distribution seems to depend on some specific
assumptions, for instance it is crucial that mutations occur only during a reproduc-
tion event. In the well-studied Crow–Kimura model, mutations and reproduction
events are decoupled, and the equilibrium quasispecies equation is different from the
one we consider here, so we choose not to speak about this class of models. How-
ever, several very interesting mathematical works have investigated the quasispecies
theory within the framework of the Crow–Kimura model with the aim of finding
formulas for the quasispecies. An important mathematical contribution is the papers
[8, 45], where general criteria for the existence of an error threshold are discussed.
In [8], the quasispecies equilibrium is characterized with the help of an approximate
variational principle, under adequate approximation hypothesis on the mutation and
reproduction rates, both for the Crow–Kimura and the Eigen model. These results
are more general and robust than the results we present here. However, as noted in
[12, 13], one has to check carefully the limiting procedures required to apply these
results. In a series of recent works, Bratus, Novozhilov and Semenov [12, 13, 78] and
Novozhilov and Semenov [79, 80, 81] study the quasispecies equation. They derive
many interesting properties of the solutions under some symmetry assumptions on
the fitness landscape, using a spectral approach. Their framework is also more gen-
eral than ours. In the case of the sharp peak landscape for the Crow–Kimura model,
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they manage in [12, 79] to obtain exact expressions of the quasispecies distribution,
with a wealth of additional information concerning the speed of convergence and
the error threshold. We believe that the work we do here for Eigen’s model can also
be done for the Crow–Kimura model. More precisely, each finite population model
considered here has its counterpart, in the form of a model where the mutations and
the reproduction events are decoupled, and the equilibrium equation of the Crow–
Kimura model should be recovered in some adequate asymptotic regime. In this
scheme, the counterpart to the combinatorial formulas for the asymptotic quasis-
pecies distribution are to be found in [12, 79]. Finally, the papers [78, 80] implement
an approach similar to [12, 79] in order to solve the quasispecies equation of Eigen’s
model with various fitness landscapes. In the case of the sharp peak landscape, they
also obtain a beautiful exact formula for the solution to the quasispecies equation,
valid for any genotype length.

Let us finally describe the structure of the text. The quasispecies equation consti-
tutes the backbone of the exposition, it is introduced in part I and all the subsequent
parts are closely related to it. The central results are presented in parts II and III.
In part II, the sharp peak landscape is introduced. We explain the error threshold
phenomenon and we give an explicit formula for the quasispecies distribution. While
part II deals with Eigen’s model, in part III we present the counterpart of the error
threshold in classical finite population models, namely theWright–Fisher model and
the Moran model. A full detailed proof of the main result for the Wright–Fisher
model is given in part IV. In part V, we consider class-dependent fitness landscapes,
which give rise to generalized quasispecies distributions. Part VI deals with the
dynamical aspects of the models.



Part I
Finite Genotype Space



Overview of Part I

Instead of starting by introducing the different models, we begin by giving the
equilibrium equation or quasispecies equation right away, which can be derived in
a very simple manner, just by thinking about what mutation-selection equilibrium
must mean. Our first chapter focuses on solving the equilibrium equation, that is, on
characterizing it as a function of the selection and mutation parameters. Chapters 3
and 4 introduce the different models we will deal with in the rest of the text. In
chapter 3, we introduce three models, the common feature of all these models being
that the different generations do not overlap, in particular the time is discrete. The
first of them is the Moran–Kingman model, where the population is taken to be
infinite. The second model is the Galton–Watson model, where the population is
finite, but varies over time, while the third is the Wright–Fisher model, where the
population is also finite, but constant over time. In chapter 4, we introduce three
continuous time models with overlapping generations, namely: Eigen’s model for
an infinite population, the continuous branching process for a finite population with
variable size, and the Moran model for a finite and constant-size population. The
common features shared by all the models we consider are:
• The population is well mixed, that is, there is no geographical structure, and
the proportions of the different genotypes suffice to give a full description of a
population.
• Individuals die at reproduction, either their own, or some other individuals’.
•Mutations happen during reproduction.
In addition to introducing the models, we also show in chapters 3 and 4 how the
quasispecies equation arises in all of these models.



Chapter 2
The Quasispecies Equation

In this chapter, we first introduce the general quasispecies equation. We then present
the classical Perron–Frobenius theorem and apply it to solve the quasispecies equa-
tion in the case where the set of genotypes is finite, under some additional assump-
tions.

2.1 The Equilibrium Equation

We consider a population of individuals evolving under the conjugate effects of
mutation and selection. Individuals reproduce, yet the reproduction mechanism is
error-prone, and mutations occur constantly. These mutations drive the genotypes
away from the current equilibrium.

Let us introduce some notation in order to describe the model precisely. We
denote by E the set of the possible genotypes (the set E might be finite of infinite).
Generic elements of E are denoted by the letters u, v. The Darwinian fitness of an
individual having genotype u is denoted by A(u), and can be thought of as its mean
number of offspring. Let us denote by c(u), u ∈ E, the fraction of individuals of type
u in the population at equilibrium. Without mutations, the quantity c(u) would be
proportional toA(u).Whenmutations occur in each reproduction cycle, an individual
of type u might appear as the result of mutations from offspring of other types. Let
us denote by M(v, u) the probability that the offspring of an individual of type v is of
type u. We call (M(u, v), u, v ∈ E) the mutation matrix. Of course, we have

∀ v ∈ E
∑
u∈E

M(v, u) = 1 .

At equilibrium, the fraction c(u) of individuals of type u in the population has to be
proportional to the mean production of individuals of type u, that is, there exists an
α > 0 such that
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∀ u ∈ E c(u) = α
∑
v∈E

c(v)A(v)M(v, u) .

Summing these equations over u, we get

1 = α
∑
v∈E

c(v)A(v) .

The sum on the right-hand side represents the mean fitness of the population at
equilibrium. Therefore α has to be equal to the inverse of the mean fitness of
the population at equilibrium, and we conclude that the fractions c(u) satisfy the
following set of equations:

∀ u ∈ E c(u)
∑
v∈E

c(v)A(v) =
∑
v∈E

c(v)A(v)M(v, u) (2.1)

subject to the constraint

∀ u ∈ E c(u) ≥ 0 ,
∑
u∈E

c(u) = 1 . (2.2)

In chapters 3 and 4, we will show how these equations characterize the equilibrium
in several classical models in population genetics and mathematical biology. One
of these models is Eigen’s model [31], who studied the equilibrium equations in
detail, and found that for certain choices of the selection and mutation parameters
A and M, the above equilibrium has the following feature: the fittest genotype has
a positive but possibly low concentration, and the mutants that are close to the
fittest genotypes have positive concentrations too. Eigen and Schuster [33] coined
the term quasispecies in order to describe this kind of equilibrium, as opposed to
a species, where the fittest genotype would have a proportion close to 1. Due to
the relevance of the concept of quasispecies in several areas of biology, we shall
refer to the system of equations (2.1) as the quasispecies equation or the equilibrium
equation. From part II onwards, we focus on the particular choices of A and M that
are more pertinent from the quasispecies perspective, but before doing so we make
an attempt at solving the equilibrium equation for arbitrary A and M. Unfortunately,
the quasispecies equation cannot be solved analytically in general. We shall therefore
focus on a more specific framework. Throughout this chapter, we consider the case
where the space of genotypes E is a finite set. The case where E is infinite is much
more delicate and mathematically challenging, and it cannot be analyzed in full
generality.

2.2 The Perron–Frobenius Theorem

When the space of genotypes is finite, the key tool to solve the quasispecies equa-
tion (2.1) is the famous Perron–Frobenius theorem [82]. We state here a simplified
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version for symmetric matrices, which will be enough for our purposes, and for
which the proof is considerably simpler than for the general case.

Proposition 2.1 Let B be a square matrix, which is symmetric, and whose entries are
all positive. Then its eigenvalues are real, the largest eigenvalue λ is positive, and the
corresponding eigenspace has dimension one. Moreover there exists an eigenvector
associated to λ whose coordinates are all positive. Finally any eigenvector of B
whose coordinates are all non-negative is associated to λ.

Proof Since B is symmetric and real, all its eigenvalues are real. The sum of its
eigenvalues is equal to its trace, which is positive, thus the largest eigenvalue of B is
positive, let us call it λ. Let y = (y(u))u∈E be an eigenvector associated to λ:

∀ u ∈ E λy(u) =
∑
v∈E

B(u, v)y(v) .

We can assume that the Euclidean norm of y is 1, i.e., 〈y, y〉 = 1, where 〈·, ·〉 denotes
the standard scalar product in RE. Multiplying the previous equation by y(u) and
summing over u ∈ E, we get

λ =
∑
u,v∈E

y(u)B(u, v)y(v) = 〈y, By〉 .

Let us denote by |y | the vector (|y(u)|)u∈E. Since the entries of B are positive, we
deduce from the previous identity that

λ = 〈y, By〉 ≤ 〈|y |, B |y |〉 ≤ sup
z:〈z,z 〉=1

〈z, Bz〉 .

However, since B is symmetric and real, the last supremum is precisely equal to λ.
Therefore all the previous inequalities were in fact equalities. Since all the entries
of B are positive, we conclude that all the entries of y have the same sign. The
eigenvector identity implies furthermore that no entry of y is null. So far, we have
proved that an eigenvector associated to λ has all its entries positive, or all negative,
and none of them is zero. Let y, z be two eigenvectors associated to λ. We choose
a real number α so that the first coordinate of y − αz vanishes. Since we have
B(y − αz) = λ(y − αz), necessarily y − αz = 0. Thus the eigenspace associated to
λ has dimension one. Finally, let y be an eigenvector associated to λ with positive
coordinates and let z be another eigenvector of B with non-negative coordinates,
associated to an eigenvalue µ. The eigenvalue identity implies that µ is positive and
that all the coordinates of z are positive as well. We can then find α > 0 sufficiently
small so that z(u) ≥ αy(u) for u ∈ E. We have then, for any n ≥ 1,

〈z, Bnz〉 = µn〈z, z〉 ≥ 〈αy, Bnαy〉 = α2λn〈y, y〉 .

Sending n to infinity, we conclude that µ ≥ λ, therefore µ = λ. �
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2.3 Solutions

We shall now use the Perron–Frobenius theorem to solve the quasispecies equation
in the case where the set of genotypes is finite, and under some additional hypoth-
esis. Suppose that (c(u))u∈E is a solution to the system (2.1) which satisfies the
constraint (2.2). Let λ be the mean fitness, given by

λ =
∑
v∈E

c(v)A(v)

and let us set d(v) =
√

A(v)c(v) for v ∈ E. These new variables satisfy

∀ u ∈ E λd(u) =
∑
v∈E

d(v)
√

A(v)M(v, u)
√

A(u) . (2.3)

Therefore (d(u))u∈E is an eigenvector of thematrix
√

A(v)M(v, u)
√

A(u). The question
of the existence and uniqueness of the solutions will be settled with the help of a
result from linear algebra and the following hypothesis.
Hypothesis 2.2 We suppose that the genotype space E is finite, that the fitness
function A is positive, that the mutation matrix M is symmetric and that all its entries
are positive.
Suppose that hypothesis 2.2 holds. We can apply proposition 2.1 to the matrix

B(u, v) =
√

A(v)M(v, u)
√

A(u) .

If (d(u))u∈E is a solution to (2.3) with non-negative entries, then λ has to be the
largest eigenvalue of B and (d(u))u∈E is an eigenvector associated to λ. Since the
corresponding eigenspace has dimension one, there is a unique choice satisfying the
constraint (2.2). Therefore, under hypothesis 2.2, the system (2.1) admits a unique
solution satisfying the constraint (2.2). In fact, this result still holds if we relax the
hypothesis that the mutation matrix M is symmetric. We would then make appeal to
the general Perron–Frobenius theorem [82] to get the conclusion.

Notation. Throughout part I, we assume that hypothesis 2.2 holds. We define the
matrix W by setting

∀ u, v ∈ E W(u, v) = A(u)M(u, v) . (2.4)

We call thematrixW themean reproductionmatrix. For u, v ∈ E, the quantityW(u, v)
represents the mean number of offspring of type v produced by an individual of type
u. We denote by λ the Perron–Frobenius eigenvalue of the matrix W and by c∗ the
associated positive left eigenvector, normalized so that the sum of its components
is equal to 1. The vector c∗ is the unique solution of the quasispecies equation (2.1)
which satisfies the constraint (2.2). The link between the quasispecies equation and
the Perron–Frobenius eigenvector has been known for a long time and it is used in
many works, for instance [77, 78, 86].



Chapter 3
Non-Overlapping Generations

In this chapter, we present three models of population genetics, namely the Moran–
Kingman model, the Galton–Watson model, and theWright–Fisher model. We show
how to relate them with the quasispecies equation. A fundamental feature shared by
these three models is that their successive generations are non-overlapping, meaning
that the whole population is fully resampled from one generation to the next.

3.1 The Moran–Kingman Model

Webegin by introducing the linearmodel, one of the simplestmodels for the evolution
of a population with selection and mutation. Let us denote by Nn(u) the number of
individuals of type u in the generation n. The linear model assumes that an individual
of type v produces offspring at a rate proportional to its fitness A(v), and that a
proportion M(v, u) of the offspring mutates and becomes of type u, thus Nn+1(u) is
given by the formula

∀ u ∈ E Nn+1(u) =
∑
v∈E

Nn(v)A(v)M(v, u) .

The trouble with this formula is that the sum is not necessarily an integer. To get
around this problem, a natural approach is to develop stochastic population models,
in such a way that the above formula describes the evolution of the mean number
of individuals. The archetype of this kind of model is the Galton–Watson branching
process, which is the object of the next section 3.2. If we introduce in addition
a constraint on the total size of the population, then we would get the classical
Wright–Fisher model, which is introduced in section 3.3. Yet the randomness adds
an extra layer of complexity and stochastic models are considerably harder to study.
Another simpler possibility is to consider the proportions of each type of individual
in the population, instead of their numbers, as Moran and Kingman did in the late
seventies [57, 65, 66]. Let us denote by cn(u) the proportion of individuals of type u
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in the generation n. The model proposed by Moran is given by

∀ u ∈ E cn+1(u) =
∑
v∈E cn(v)A(v)M(v, u)∑

v∈E cn(v)A(v)
. (3.1)

We call this model the Moran–Kingman model; it is not to be confused with the
well-known Moran model, which is a stochastic model for the evolution of a finite
population. Let us introduce an adequate framework to study this model.We consider
the finite-dimensional simplex S,

S =
{

c ∈ [0, 1]E :
∑
u∈E

c(u) = 1
}
,

and we define a map Φ from S to S by

∀ u ∈ E Φ(c)(u) =
∑
v∈E c(v)A(v)M(v, u)∑

v∈E c(v)A(v)
. (3.2)

The Moran–Kingman model is the dynamical system on S defined by the iteration
of the map Φ:

∀ n ≥ 0 cn+1 = Φ(cn) . (3.3)

The main result concerning the Moran–Kingman model is given in the following
theorem.
Theorem 3.1 The dynamical system (3.1) has a unique fixed point, which coincides
with c∗. Moreover, for every c ∈ S, the dynamical system (3.1) with initial condition
c0 = c converges to c∗, i.e.,

lim
n→∞

cn = c∗ .

Proof The equilibrium equation for the dynamical system (3.1) is the fundamental
equation (2.1), and, as we have seen, it has a unique solution on the simplex S, given
by the vector c∗. Using the mean reproduction matrix W defined in (2.4), we have

∀ n ≥ 1 ∀ u ∈ E cn(u) =
(c0Wn)(u)
|c0Wn |1

,

where |c |1 is the sum of the absolute values of the components of the vector c, i.e.,

∀c ∈ RE |c |1 =
∑
u∈E
| c(u) | .

The asymptotic behavior of the powers of the matrix W is given by

∀ u, v ∈ E lim
n→∞

1
λn

Wn(u, v) = d∗(u) c∗(v) ,

where λ is the Perron–Frobenius eigenvalue of the matrix W , and d∗ the right
eigenvector associated to it, normalized so that the scalar product of d∗ and c∗ is
equal to 1. For a proof of this result, see for instance theorem 1.2 in [82]. We deduce


