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Preface

This volume is a selection of peer-reviewed papers presented at the 10th
International Conference on Soft Methods in Probability and Statistics, SMPS
2022, held in Valladolid (Spain) during September 14–16, 2022. The series of
biannual international conferences on Soft Methods in Probability and Statistics
(SMPS) started in Warsaw in 2002 and continued in Oviedo (2004), Bristol (2006),
Toulouse (2008), Oviedo/Mieres (2010), Konstanz (2012), Warsaw (2014), Rome
(2016) and Compiègne (2018), progressively consolidating itself in the interna-
tional agenda of events in Probability, Statistics and Soft Computing.

The 10th edition of the SMPS conference was initially scheduled for 2020,
however, the SARS-COV-2 pandemic obligated to postpone twice the event.
Although it could have been held on the initially scheduled date through an online
modality, organizers have decided to wait for having a face-to-face activity. For
sure, the warm atmosphere associated with the close exchange of scientific dis-
cussions is one of the best assets of this conference.

SMPS 2022 has been organized by the Departamento de Estadística e
Investigación Operativa and the Instituto de Investigación en Matemáticas
(IMUVA) of the University of Valladolid, Spain. Valladolid has a long tradition in
research in the field of Probability and Statistics and has successfully welcomed
important national and international events in this area, such as the Spanish
Conference on Statistics an Operations Research (SEIO 2007), the International
Conference on Robust Statistics (ICORS 2011) or the recent conference New
Bridges between Mathematics and Data Science (NBMDS 2021). We are con-
vinced that this event will also be a success, thanks to the effort and good work
of the entire local committee. We have done our best in order to guarantee the
participants in the conference have a comfortable stay in Valladolid. Thus, this will
meet their expectations both scientifically and personally and will allow them to
enjoy our rich culture and history.

We are grateful to the Executive Board of this conference for allowing us to have
the opportunity to hold the event in Valladolid. We are also grateful to the Program
Committee members for their support on the scientific aspects of the conference,
specifically to all the session organizers. We are grateful to the keynote speakers
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of the conference, Christophe Croux (EDHEC Business School, France), Francisco
Herrera (University of Granada, Spain) and Frank Klawonn (Helmholtz Centre for
Infection Research, Germany) for accepting our invitation. We would also like to
thank the members of the Local Committee for their valuable contribution to the
logistics of the event.

In recent years, we are experiencing a revolution around data analysis motivated
by the emergence of new data collection sources due to great technical develop-
ments. A by-product of this enormous availability of data is the appearance of a
myriad of new data typologies that need to be analyzed. The complexity of these
data sets requires the development of new probabilistic and statistical approaches
capable of dealing with the difficulties associated with them. Different communities
of experts, with very different origins, including mathematicians, statisticians,
engineers, computer scientists, biotechnologists, econometricians and psychologists
try to respond to these challenges with tools based on their own background. All
these varied origins and different approaches motivate the importance of building
bridges between all these fields for Data Science.

Soft methods are designed either to address, among others, difficulties related to
imprecise or other complex data, or to create/combine alternatives to deal with
traditional data. Consequently, they will certainly play an important role in the near
future to cope with these current challenges. Furthermore, contaminated data are
ubiquitous, and therefore, robust methodologies are required when certain degree of
inaccuracy and noise are present in data.

The volume contains more than fifty selected contributions that are clearly useful
in establishing those important bridges between soft and statistical methodologies
for Data Science. These contributions cover very different and relevant aspects such
as imprecise probabilities, information theory, random sets and random fuzzy sets,
belief functions, possibility theory, dependence modeling and copulas, clustering,
depth concepts, dimensionality reduction of complex data and robustness. The
editors are grateful to all the contributing authors, Program Committee members
and additional referees who made it possible to put together this interesting volume
and preparing such attractive program for the SMPS 2022 conference. The priceless
effort and good work of M. Asunción Lubiano as Publication Chair deserve our
sincere recognition. Without her excellent work, this publication would not have
been possible.

We would like to thank Publishing Editor of the Springer Series of Advances in
Intelligent Systems and Computing, Dr. Thomas Ditzinger, as well as Series Editor,
Professor Janusz Kacprzyk, and Springer for their dedication to the production of
this volume.

Luis A. García-EscuderoMay 2022
Alfonso Gordaliza

Agustín Mayo
María Asunción Lubiano Gomez

Maria Angeles Gil
Przemyslaw Grzegorzewski

Olgierd Hryniewicz
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Multi-dimensional Maximal Coherent
Subsets Made Easy: Illustration

on an Estimation Problem

Löıc Adam and Sébastien Destercke(B)

UMR CNRS 7253 Heudiasyc, Sorbonne Université, Université de Technologie
de Compiègne, CS 60319, 60203 Compiègne Cedex, France

{loic.adam,sebastien.destercke}@hds.utc.fr

Abstract. Fusing uncertain pieces of information to obtain a synthetic
estimation when those are inconsistent is a difficult task. A particularly
appealing solution to solve such conflict or inconsistency is to look at
maximal coherent subsets of sources (MCS), and to concentrate on those.
Yet, enumerating MCS is a difficult combinatorial task in general, making
the use of MCS limited in practice. In this paper, we are interested in
the case where the pieces of information are multi-dimensional sets or
polytopes. While the problem remains difficult for general polytopes, we
show that it can be solved more efficiently for hyperrectangles. We then
illustrate how such an approach could be used to estimate linear models
in the presence of outliers or in the presence of misspecified model.

1 Introduction

This paper deals with the problem of fusing multiple pieces of information
(Dubois et al. 2016). In this problem, handling conflict between contradicting
sources of information is one of the most difficult tasks. This is often a manda-
tory task, including in situations where we want a synthetic estimation from
all the sources. Moreover, analyzing the reasons of the contradiction and trying
to explain its appearance can be of equal importance, as it can give important
insights about the situation.

Dubois et al. (1999) reviewed different methods for aggregating conflict, some
requiring additional data like the reliability of the different sources. Yet, having
additional data is sometimes difficult or even impossible. A quite appealing way
for dealing with contradiction, requiring no additional information, is based on
maximal coherent subsets (MCS), which are groups of consistent sources that
are as big as possible. MCS have been used in the past both in logic (Manor
and Rescher 1970) and in numerical settings (Destercke et al. 2008). Here, we
illustrate their application to estimation problems.

Detecting and enumerating MCS are NP-hard problems, with intervals being
a well-known exception (Dubois et al. 2000). In this paper, we show that we

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. A. Garćıa-Escudero et al. (Eds.): SMPS 2022, AISC 1433, pp. 1–8, 2023.
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2 L. Adam and S. Destercke

can extend this exception to hyperrectangles, which can in turn be used as
approximations of polytopes.

In Sect. 2 we further introduce maximal coherent subset and explain the
difficulty of enumerating them. We then show in Sect. 3 that it is easy to list
the MCSs of a set of axis-aligned hyperrectangles. Lastly, Sect. 4 illustrates our
approach on linear regression problems.

2 Maximal Coherent Subsets

As mentioned previously, maximal coherent subsets are in theory a nice solution
to manage conflict between information sources. Moreover, they can be used
with different structures of information, like polytopes. However, we will show
that listing the different MCSs is usually a difficult combinatorial problem.

General Definition: Let us suppose we have a set S = {S1, ..., SN} of sources
of information providing a subset Si ⊆ X of some space X of information, for
which intersection ∩ is well-defined. A maximal coherent subset c ⊆ {1, . . . , N}
is a list of source indices such that ∩i∈cSi �= ∅, and for any j �∈ c, ∩i∈cSi∩Sj = ∅,
i.e., the subset c of sources is consistent and is maximal with this property.

Example 1. Let us suppose we have a set of sources S = {S1, ..., S4} as shown
on Fig. 1. As we can see, {1, 2} is a coherent subset, but not a maximal coherent
subset, as it is possible to add S3 and have a non-empty intersection. {1, 2, 3} is
a maximal coherent subset, as S4 is contradicting S3 (empty intersection).

Fig. 1. Visualization of not fully consistent sources Si ∈ [0, ..., 1]

MCSs of Polytopes: When considering sources of information in the d-
dimensional Euclidean space Rd, polytopes are a quite versatile tool to model
set-valued information. Such shapes can either be defined through their vertices
or extreme points (V-representation) or through a system of linear constraints
defining intersections of half-planes (H-representation).

While finding whether two polytopes given by their V-representation inter-
sect is a NP-hard problem (Tiwary 2008), the same problem can be solved easily
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in H-representation through linear programming. Switching between represen-
tations is a NP-complete problem,1 with some efficient algorithms for specific
H-polytopes (Khachiyan et al. 2009).

Finding a single MCS in H-representation is thus easy: we add polytopes
one by one, and we have a MCS when it is not possible to add another polytope
without having an empty intersection. Checking if a set is a MCS is also easy: we
check that the intersection of the corresponding H-polytopes is not empty and
maximal. However, listing all the MCSs of a set of polytopes P = {P1, ..., PN}
requires in the worst case to consider all the subsets of P, thus at most 2N sets
for which we need to check if the intersection is not empty. When the number
of polytopes is important, it becomes impossible to list all the MCSs. In Sect. 3,
we propose an efficient algorithm to list all the MCSs through an approximation
of the polytopes with minimum bounding axis-aligned hyperrectangles.

3 Enumerating the MCSs of Axis-Aligned
Hyperrectangles

Enumerating all the MCS of a set of polytopes is a difficult problem in the
general case. However, polynomial algorithms (Dubois et al. 2000) exist in the
case of intervals. We will show in this section that such results can also be used
in the case where we consider a set H of axis-aligned hyperrectangles, in order
to efficiently determine the set of MCS CH.

We denote by IdHi
∈ R the projection of Hi onto the dth dimension of the

space R
D. We have an important equivalence between the intersection of hyper-

rectangles and the intersection of their projections:

Proposition 1. Given a set H = {H1, ...,HN} of axis-aligned hyperrectangles
in the space R

D, and their projections IdHi
∈ R onto the different dimensions

d ∈ {1, ...,D}, we have:
⋂

Hi∈H

Hi �= ∅ ⇐⇒
⋂

H

IdHi
�= ∅ ∀d ∈ {1, ...,D}. (1)

Proof. To see the equivalence, it is sufficient to observe that ×D
d=1 ∩N

i=1 IdHi
=⋂

Hi∈H Hi. This means in particular that any point x ∈ R
D such that its pro-

jection xd ∈ ∩N
i=1I

d
Hi

for all d ∈ {1, . . . , D} will also be in
⋂

Hi∈H Hi. Note that
this is only true for axis-aligned hyperrectangles. 
�
The following corollary, which is merely the negation of Proposition 1, will be
useful in further demonstrations.

Corollary 1
⋂

H

Hi = ∅ ⇐⇒ ∃d ∈ {1, ...,D} s.t.
⋂

H

IdHi
= ∅. (2)

1 Otherwise the two problems would have the same complexity.
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In the next proof, we show that the MCS of axis-aligned hyperrectangles can
be found exactly by combining the MCS of their projections, which we recall
can be found in polynomial time.

Proposition 2. Given a set H = {H1, ...,HN} of axis-aligned hyperrectangles
in the space R

D, its set of MCSs CH and the sets of MCSs Cd on their projection
on the d-dimension, we have:

CH =
{∩D

d=1cd | cd ∈ Cd ∀d ∈ {1, ...,D},∩D
d=1cd �= ∅}

. (3)

Proof. We proceed by showing a double inclusion for a given MCS ch ∈ CH:

• Let us first show that there exists ci ∈ {∩D
d=1cd | cd ∈ Cd

}
s.t. ch ⊆ ci, i.e.

ci is an outer approximation of ch. Because ∩i∈chHi �= ∅ (it being a MCS),
Proposition 1 tells us that for any dimension d, ∩i∈chIdHi

�= ∅, meaning that
there will be a MCS cd ∈ Cd such that ch ⊆ cd. Since this is true for all
d ∈ {1, . . . , D}, this means that ch ⊆ ∩D

d=1cd for some collection of cd, showing
the inclusion.

• To show the other inclusion, we consider a set cd, d ∈ {1, . . . , D} of MCSs
on dimension d which outer-approximate ch ⊆ cd, that we know exists from
the first part of the proof. We will then demonstrate that j �∈ ch implies
j �∈ ∩D

d=1cd, therefore ∩D
d=1cd ⊆ ch. To see this, simply consider the set

of hyperrectangles Hk, k ∈ ch ∪ {j}, then by Corollary 1, there will be a
dimension d such that ∩k∈ch∪{j}IdHk

= ∅, yet ∩k∈chIdHk
�= ∅ (ch being a

MCS). This shows that j �∈ ch implies j �∈ ∩D
d=1cd. 
�

Proposition 2 provides us with an easy approach to get MCS: we start by
projecting the hyperrectangles onto the different dimensions, in order to obtain
intervals. Then we enumerate the MCS on each dimension, which is polynomial.
Lastly we determine CH as the set of common sources among all the enumera-
tions, i.e., the conjunctive combination (i.e., intersection) of the different sources
such that for each element ch of CH. By Proposition 2 and Eq. (3), this gives us
exactly the set of MCS.

4 Illustration on Linear Estimation

In this section, we illustrate our method on small imprecise linear regression
problems with only two dimensions. Note that the purpose of this section is
purely illustrative, so as to show the potential usefulness of our result when
performing estimation from a logical, set-theoretic standpoint.

Given a data set {yi, xi}Ni=1 with a single input and a single output, a linear
model assumes that the relationship between the response variable yi and the
input variable xi is linear:

yi = β0 + β1xi (4)
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Usually, the yi are considered to be observed with a (normal) noise ε, and a
statistical regression is performed. In our case, we will adopt a more logical,
version space point of view (Mitchell 1982): we assume that data is set-valued,
and will consider the linear models consistent with it.

4.1 Estimating Possible Linear Models with MCS and Rectangles

In our setting, we assume that we observe imprecise data points Ri = ([yi, yi], [xi,
xi]). Given the Cartesian equation of a line L = {(x, y) | ax + by = c} and two
imprecise points Ri and Rj , finding all the lines that intersect both rectangles
is formalized as:

Lij = {(a, b) |(L ∩ Hi �= ∅) ∧ (L ∩ Hj �= ∅)} (5)

n points can be intersected by a single line if and only if all the corresponding
Lij (

(
n
2

)
) in total) have a non-empty intersection, i.e., their indices belong to a

single coherent subset. It is maximal if no other points can be intersected by the
same line. Listing all the MCSs is hard, as mentioned in Sect. 2, but our results
tell us that if we approximate the different Lij with minimum bounding axis-
aligned rectangles, minimal outer approximations of the Lij with axis-aligned
rectangles, then enumerating their MCSs is easily done as shown in Sect. 3.

Determining the minimum axis-aligned bounding rectangle Hij = [y
i
, yi] ×

[xi, xi] of Lij , i.e., the minimal volume that is fully enclosing Lij , is equivalent
to finding the minimum and maximum values of the parameters a and b. It can
be done quite easily, as maximizing (respectively minimizing) a is equivalent to
minimizing (respectively maximizing) b.

4.2 Application

We first start with the case where the model is indeed linear, but where one data
point is an outlier (box 2), as pictured on Fig. 2. As we can see, the statistical
regression model, due to the outlier, does not capture the true model. In contrast,
Fig. 3 shows the 5 different MCS (and their intersection) obtained using axis-
aligned rectangle approximations. We can see that the biggest MCS is c3, and
it includes the true parameters, while the other MCSs are smaller and point out
possible model outliers (i.e., observation 2 is in all the remaining MCSs, but not
in the biggest one). Note that such an approach is quite different from standard
imprecise regressions, that still uses least-square inspired approaches (Ferraro et
al. 2010).

The second illustration considers the case where the observations are not
faulty (the model goes through all observations), but where the model assump-
tion is wrong, as we have a piecewise linear regression as shown on Fig. 4, but not
a linear one. We have two partitions over x: [0, 0.5] and [0.5, 1]. The two ground
truths are very different, and a single statistical linear regression (in dotted blue)
over the whole domain of x fits poorly to the data.
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Fig. 2. Example of an imprecise linear regression problem. The dotted line corresponds
to the linear regression including the outlier. The continuous line corresponds to the
ground truth

Fig. 3. Approximation with rectangles of the different Lij from the example shown on
Fig. 2

Fig. 4. Example of an imprecise piecewise linear regression problem. The dotted line
corresponds to the full linear regression. The continuous lines correspond to the piece-
wise ground truths
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Figure 5 shows what happens when we consider a MCS approach in this case.
Instead of having one large MCS and quite smaller ones, we have now two quite
large MCSs c1 and c2, along with other isolated ones. Those two distinct MCSs
indicates that the error is likely in the model, that may only be locally valid. It
also shows that it is not clear whether observation 3 belongs to one line or the
other, being in both MCS. This ambiguity also cause c1 to not include the true
parameter (a∗

2, b
∗
2).

Fig. 5. Approximation with rectangles of the different Lij from the example shown on
Fig. 4

5 Conclusion

MCS is a theoretically very interesting notion for handling conflicting observa-
tions or pieces of information, but hard to enumerate in practice. We showed
that such an enumeration was easier with hyperrectangles, as we can use known
polynomial algorithms on their interval-valued projection to perform it. We illus-
trated their possible use on estimation problems, showing that their different
behaviors could provide useful information (erroneous observations vs erroneous
models).

In the future, we plan to perform some comparisons of such estimation
approaches with Bayesian approaches in case of model misspecification, simi-
larly to previous works intending to solve inverse problems (Shinde et al. 2021).
Another case where our results may be useful is in the repair of inconsistent
preference information (Adam and Destercke 2021).

Acknowledgements. This work was done within the PreServe Project, funded by
grant ANR-18-CE23-0008 of the national research agency (ANR).
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Escuela Politécnica de Ingenieŕıa, Departamento de Estad́ıstica e I.O. y D.M.,
Universidad de Oviedo, Oviedo, Spain

{alonsofmiriam,teranpedro}@uniovi.es

Abstract. We study whether convergence in distribution of fuzzy ran-
dom variables, defined as the weak convergence of their probability dis-
tributions, is consistent with the additional structure of spaces of fuzzy
sets. Positive results are obtained which reinforce the viability of that
definition.

1 Introduction

Convergence in distribution is one of the most useful notions of convergence for
random variables, notably because of its role in the central limit theorem. It is
typically defined as follows: ξn → ξ in distribution when Fξn (x) → Fξ (x) (where
Fξn and Fξ are the respective cumulative distribution functions) for each point
of continuity x of Fξ .

Throughout the years, a number of proposals trying to extend the notion of
a cumulative distribution function to fuzzy random variables have been made.
Without judging their usefulness for specific problems, it is fair to say (Terán
2012) that they fail to have the theoretical properties that make the cumulative
distribution function important in the case of random variables and random vec-
tors. Specifically, they do not determine the probability distribution of the fuzzy
random variable. Thus they are not useful to study convergence in distribution
of fuzzy random variables.

Since a fuzzy random variable can be equivalently described (Krätschmer
2001) as a random element of a metric space of fuzzy sets (endowed with any of
the dp-metrics), it is possible to study probability distributions of fuzzy random
variables using the general theory of probability distributions in metric spaces
(e.g., Billingsley 1968). This approach was taken by the authors in recent papers
(Alonso de la Fuente and Terán 2022a,b). In particular, it provides a way to
define convergence in distribution as being tantamount to weak convergence of
the probability distributions (since the Helly–Bray theorem and its converse
establish the equivalence of those two notions for ordinary random variables).

The theoretical properties of weak convergence are well understood (see
Billingsley 1968). But spaces of fuzzy sets have more structure than a generic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. A. Garćıa-Escudero et al. (Eds.): SMPS 2022, AISC 1433, pp. 9–15, 2023.
https://doi.org/10.1007/978-3-031-15509-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15509-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-15509-3_2
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metric space, which raises the question whether defining convergence in distri-
bution via weak convergence works well with that additional structure.

In this contribution, we show that convergence in distribution of fuzzy ran-
dom variables with convex values can be studied using the support function
embedding into an Lp-type space (i.e., convergence in distribution of the fuzzy
random variables and of their support functions are equivalent). We also show
that this type of convergence is consistent with some known structures in the
space of fuzzy sets. A sequence of trapezoidal fuzzy random variables converges
in distribution if and only if the vertices of the trapezoid converge jointly as a
4-dimensional random vector. A sequence of random vectors converges in distri-
bution if and only if their indicator functions converge as fuzzy random variables.
Finally, we show a consistency result between convergence and the sum and prod-
uct by scalars which parallels the corresponding property of ordinary random
variables.

2 Preliminaries

Let Fc(R
d
) be the space of fuzzy sets U : Rd

→ [0, 1] whose α-cuts Uα are non-
empty compact convex subsets of Rd. Every fuzzy set U ∈ Fc(R

d
) is uniquely

determined by its support function

sU : [0, 1] × S
d−1

→ R

(r, α) �→ sU (r, α) = sup
x∈Uα

〈r, x〉

where S
d−1 denotes the unit sphere in R

d.
For each p ∈ [1,∞), the metric dp in Fc(R

d
), introduced by Klement et al.

(1986) and Puri and Ralescu (1986), is defined by

dp(U,V) =

[∫
[0,1]

(dH (Uα,Vα))
p dα

]1/p
.

The metric ρp is defined by

ρp(U,V) =

[∫
[0,1]

∫
Sd−1

|sU (r, α) − sV (r, α)|
pdrdα

]1/p
.

Denote by Kc(R
d
) the space of non-empty compact convex subsets of R

d.
Given a probability space (Ω,A, P), a mapping X : Ω→ Kc(R

d
) is called random

set (also a random compact convex set in the literature) if X is measurable
with respect to the Borel σ-algebra BKc (R

d
)

generated by the topology of the
Hausdorff metric.

Definition 1. A mapping X : (Ω,A, P) → Fc(R
p
) is called a fuzzy random

variable if Xα : ω �→ X(ω)α is a random compact set for each α ∈ [0, 1].
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Denote by σL the smallest σ-algebra that makes the mappings U ∈ Fc(R
d
) �→

Uα ∈ Kc(R
d
) measurable. Thus a fuzzy random variable is the same thing as a

(A, σL)-measurable mapping. A sequence of probability measures {Pn}n on σL
is said to converge weakly in dp to a probability measure P if

∫
f dPn →

∫
f dP

for every f : Fc(R
d
) → R which is dp-continuous and bounded. A sequence {Xn}n

of fuzzy random variables converges weakly or in distribution in dp to a fuzzy
random variable X if their distributions PXn converge weakly to PX , namely

E[ f (Xn)] → E[ f (X)]

for each bounded dp-continuous function f : Fc(R
d
) → R.

The Lebesgue measure in [0, 1] will be denoted by �. The following results
will be used in the sequel.

Lemma 1 (Billingsley 1968, Theorem 2.1). Let E be a metric space, P a
probability measure and {Pn}n a sequence of probabilities in (E,BE). Then Pn →

P weakly if and only if for every open set G we have lim infn→∞ Pn(G) ≥ P(G).

Lemma 2 (Alonso de la Fuente and Terán 2022a, Theorem 3.5). Let
p ∈ [1,∞). Let Pn, P be probability measures on σL, such that Pn → P weakly.
Then there exist fuzzy random variables Xn, X : ([0, 1],B

[0,1], P) → (Fc(R
d
), dp),

such that

(a) The distributions of Xn and X are Pn and P, respectively.
(b) Xn(t) → X(t) in dp for every t ∈ [0, 1].

Lemma 3 (Alonso de la Fuente and Terán 2022a, Theorem 5.1). Let Xn

and X be fuzzy random variables such that Xn → X in distribution in dp. If f :
Fc(R

d
) → Fc(R

d
) is a PX-almost surely continuous function, then f (Xn) → f (X)

weakly in dp.

Lemma 4 (Parthasarathy 1967, Corollary 3.3, p. 22). If E is a Borel subset
of a complete separable metric space X and ϕ is a one-one measurable map of E
into a separable metric space Y , then ϕ(E) is a Borel subset of Y , E and ϕ(E) are
isomorphic as measurable spaces and ϕ is an isomorphism.

Recall that a trapezoidal fuzzy number Tra(a, b, c, d) has the following expres-
sion:

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a
x−a
b−a if a ≤ x < b

1 if b ≤ x ≤ c
d−x
d−c if c < x ≤ d

0 if x > d

We will denote the space of trapezoidal fuzzy numbers by Ftra
c (R).
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3 Main Results

Our first result states that dp-convergence in distribution of fuzzy random vari-
ables is equivalent with the convergence obtained by embedding them into an
Lp-type space. Note that this is not an immediate consequence of the embedding.

Theorem 1. Let p ∈ [1,∞). Let Xn, X be fuzzy random variables. Then the
following conditions are equivalent.

1. Xn → X in distribution in (Fc(R
d
), dp).

2. sXn → sX in distribution in Lp
(S

d−1
× [0, 1], λ ⊗ �),

where λ denotes the uniform measure in S
d−1.

Proof. Denote by ϕ the mapping given by

ϕ : (Fc(R
d
), ρp) → Lp

(S
d−1

× [0, 1], λ ⊗ �)
U �→ sU .

By, e.g., Krätschmer (2006, p. 444), ϕ is an isometry.
Let Yn,Y : ([0, 1],B

[0,1], �) → (Fc(R
d
), dp) be the fuzzy random variables given

by Lemma 2. We have Yn(t) → Y (t) in dp for all t ∈ [0, 1], PXn = �Yn and PX =

�Y . Since dp and ρp are topologically equivalent (Diamond and Kloeden 1994,
Proposition 7.4.5, p. 65), ρp(Yn(t),Y (t)) → 0 for every t ∈ [0, 1].

Set sYn = ϕ ◦Yn and sY = ϕ ◦Y . Since ϕ is an isometry, we have sYn (t) → sY (t).
By Alonso de la Fuente and Terán (2022a, Proposition 5.4), (Fc(R

d
), dp) is a

Lusin space, hence it is Borel measurable in every metric space it embeds into
(see Froĺık 1970, Proposition 7.11). There follows that ϕ is Borel measurable and
thus sYn and sY are random elements of Lp

(S
d−1

× [0, 1], λ ⊗ �).
We need to check �sYn = PsXn

. For any measurable subset A of Lp
(S

d−1
×

[0, 1], λ ⊗ �),

PsXn
(A) = P({ω ∈ Ω : sXn (ω) ∈ A}) = P({ω ∈ Ω : (ϕ ◦ Xn)(ω) ∈ A})

= P({ω ∈ Ω : Xn(ω) ∈ ϕ
−1
(A)}) = �({t ∈ [0, 1] : Yn(t) ∈ ϕ−1(A)})

= �({t ∈ [0, 1] : (ϕ ◦ Yn)(t) ∈ A}) = �({t ∈ [0, 1] : sYn (t) ∈ A}) = �sYn (A).

Analogously, �sY = PsX . Since sYn → sY almost surely, by Kallenberg (2002,
Lemma 4.2) almost sure convergence implies convergence in probability and by
Kallenberg (2002, Lemma 4.7) convergence in probability implies weak conver-
gence �sYn → �sY . In conclusion, PsXn

→ PsX weakly, that is, sXn → sX in
distribution.

For the converse, notice that PXn = PsXn
◦ ϕ and PX = PsX ◦ ϕ. Since ϕ

is an isometry, for any open set G of Fc(R
d
) there exists an open set G of

Lp
(S

d−1
× [0, 1], λ ⊗ �) such that ϕ(G) = G ∩ ϕ(Fc(R

d
)). Then

lim inf
n→∞

PsXn
◦ ϕ(G) = lim inf

n→∞

PsXn
(ϕ(G)) = lim inf

n→∞

PsXn
(G ∩ ϕ(Fc(R

d
)))
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= lim inf
n→∞

PsXn
(G) ≥ PsX (G) = PsX (G ∩ ϕ(Fc(R

d
))) = PsX (ϕ(G)) = PsX ◦ ϕ(G)

by Lemma 1 and knowing that sXn and sX take on values in ϕ(Fc(R
d
)). Again

by Lemma 1, lim infn→∞ PXn ◦ ϕ(G) ≥ PX ◦ ϕ(G) yields Xn → X in distribution in
dp. �

Therefore this type of convergence can indeed be studied using support func-
tions. Another question concerns the relationship between convergence of fuzzy
random variables taking on values in parametric families of fuzzy sets (in this
case, trapezoidal fuzzy sets but the study could be extended to other families)
and convergence in distribution of their defining parameters. The content of the
following lemma is intuitively clear although its proof is not trivial. For space
reasons we skip the proof, which may appear elsewhere.

Lemma 5. Let p ∈ [1,∞). Let Un,U ∈ Ftra
c (R). If Un → U in dp, then the

sequence {‖(Un)0‖}n is bounded.

Theorem 2. Let p ∈ [1,∞). Let Xn be Tra(Xn,1, Xn,2, Xn,3, Xn,4) where Xn,1 ≤

Xn,2 ≤ Xn,3 ≤ Xn,4 are random variables, and analogously X = Tra(X1, X2, X3,
X4). Then Xn → X in distribution in dp if and only if, as random vectors in R

4,
(Xn,1, Xn,2, Xn,3, Xn,4) → (X1, X2, X3, X4) in distribution.

Proof. Set A = {(u1, u2, u3, u4) ∈ R
4 : u1 ≤ u2 ≤ u3 ≤ u4}. The mapping

ϕ : A → (Fc(R), dp)

(u1, u2, u3, u4) �→ Tra(u1, u2, u3, u4)

is injective. Let us show that ϕ is continuous. Let (un,1, un,2, un,3, un,4) →

(u1, u2, u3, u4) in R
4. Denote by Un the fuzzy set Tra(un,1, un,2, un,3, un,4) and by U

the fuzzy set Tra(u1, u2, u3, u4).
Now let α ∈ [0, 1],

dH (Unα,Uα) = max{| inf(Un)α − inf Uα |, | sup(Un)α − supUα |}

= max{|(1 − α) inf(Un)0 + α inf(Un)1 − (1 − α) inf U0 − α inf U1 |,

|α sup(Un)1 + (1 − α) sup(Un)0 − α supU1 − (1 − α) supU0 |}

= max{|(1 − α)(un,1 − u1) + α(un,2 − u2)|, |α(un,3 − u3) + (1 − α)(un,4 − u4)|}

≤ max{|un,1 − u1 |, |un,2 − u2 |, |un,3 − u3 |, |un,4 − u4 |}.

Since the last term is the max distance between both vectors in R
4 and is inde-

pendent of α, indeed it bounds dp(Un,U), making ϕ be dp-continuous.
We will establish now two further facts which will be used in the proof.

Firstly, since A is closed in R
4, it is complete and separable. Moreover (Fc(R), dp)

is separable, hence by Lemma 4 the image ϕ(A) = Ftra
c (R) is Borel measurable.

Secondly, set

Aa,b = {(u1, u2, u3, u4) ∈ R
4 : a ≤ u1 ≤ u2 ≤ u3 ≤ u4 ≤ b} ⊆ A
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for each a, b ∈ R. Since Aa,b is compact, ϕ is continuous and ϕ(A) = Ftra
c (R)

is a Hausdorff space, the restriction ϕ|Aa,b
is a homeomorphism (Joshi 1983,

Corollary 2.4, p. 169).
(⇒) By Lemma 2, there exist fuzzy random variables Yn,Y such that Yn(t) →

Y (t) in dp for each t ∈ [0, 1], �Yn = PXn and �Y = PX . Since

�Yn (F
tra
c (R)) = PXn (F

tra
c (R)) = 1,

Yn and Y are almost surely trapezoidal fuzzy sets. For clarity, we assume with-
out loss of generality that all Yn(t),Y (t) are trapezoidal fuzzy sets (otherwise
it would suffice to modify the value of those variables in a null set, which
would not change their probability distributions). Set Tra(Yn,1,Yn,2,Yn,3,Yn,4) = Yn,
Tra(Y1,Y2,Y3,Y4) = Y and let us show that (Yn,1,Yn,2,Yn,3,Yn,4) converges in distri-
bution to (Y1,Y2,Y3,Y4).

By Lemma 5, each sequence {‖(Yn)0(t)‖}n is bounded by some constant Mt .
Therefore (Yn,1(t),Yn,2(t),Yn,3(t),Yn,4(t)) ∈ A−Mt,Mt for all t ∈ [0, 1]. By the home-
omorphism between A−Mt,Mt and ϕ(A−Mt,Mt ), the 4-dimensional vector con-
verges to (Y1(t),Y2(t),Y3(t),Y4(t)). Almost sure convergence of those vectors implies
their convergence in distribution. To finish the proof, we just need to check
�
(Y1n ,...,Y4n )

= P
(X1n ,...,X4n )

. For any Borel subset B ⊆ R
4,

�Y1,n,...,Y4,n (B) = �({t ∈ [0, 1] : (Y1,n, ...,Y4,n)(t) ∈ A ∩ B})

= �({t ∈ [0, 1] : Yn(t) ∈ ϕ(A ∩ B)}) = P({ω ∈ Ω : Xn(ω) ∈ ϕ(A ∩ B)})

= P({ω ∈ Ω : (X1,n, ..., X4,n)(ω) ∈ A ∩ B}) = PX1,n,...,X4,n (B).

Analogously, �Y1,...,Y4 = PX1,...,X4 .
(⇐) By the Skorokhod representation theorem in R

4, there exist random vec-
tors (Yn,1,Yn,2,Yn,3,Yn,4), (Y1,Y2,Y3,Y4) such that �

(Yn,1,Yn,2,Yn,3,Yn,4)=P
(Xn,1,Xn,2,Xn,3,Xn,4),

�
(Y1,Y2,Y3,Y4) = P

(X1,X2,X3,X4) and (Yn,1,Yn,2,Yn,3,Yn,4) converges to (Y1,Y2,Y3,Y4) point-
wise. Set

Yn = Tra(Yn,1,Yn,2,Yn,3,Yn,4),Y = Tra(Y1,Y2,Y3,Y4).

By the continuity of ϕ, Yn(t) → Y (t) in dp for each t ∈ [0, 1]. By Lemmas 4.2
and 4.7 in Kallenberg (2002), almost sure convergence implies convergence in
distribution. Finally, one shows like before �Yn = PXn and �Y = PX , whence
Xn → X in distribution in dp. �

Since a random variable ξ can be identified with the trapezoidal fuzzy set
Tra(ξ, ξ, ξ, ξ), which is the indicator function I

{ξ }, the following corollary holds.

Corollary 1. Let ξn, ξ be random variables. Then ξn → ξ in distribution if and
only if I

{ξn } → I
{ξ } in distribution in dp.

The following proposition is analogous to an important property of conver-
gence in distribution for random variables. It states that convergence is compat-
ible with the operations in Fc(R

d
).
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Proposition 1. Let Xn, X be fuzzy random variables such that Xn → X in dis-
tribution in dp. Then

1. For every U ∈ Fc(R
d
), we have Xn +U → X +U in distribution in dp.

2. For every a ∈ R, we have aXn → aX in distribution in dp.

Proof. Since the mappings V ∈ Fc(R
d
) �→ V +U and V ∈ Fc(R

d
) �→ aV are dp-

continuous, we obtain the result with an application of the continuous mapping
theorem (Lemma 3). �

Remark 1. It is not true, in general, that Xn + Y → X + Y in distribution in dp
provided Xn → X in distribution. That fails even for random variables.

We close the paper by pointing out another parallel with ordinary random
variables: if the limit is a degenerate fuzzy random variable U, then Xn → U in
distribution in dp if and only if Xn → U in probability in dp (by an application
of Kallenberg 2002, Lemma 4.7).

Acknowledgements. Research in this paper was partially funded by grants and fel-
lowships from Spain (PID2019-104486GB-I00), the Principality of Asturias (SV-PA-21-
AYUD/2021/50897 and PA-21-PF-BP20-112), and the University of Oviedo (PAPI-20-
PF-21). Their contribution is gratefully acknowledged.

References

Alonso de la Fuente, M., Terán, P.: Some results on convergence and distributions of
fuzzy random variables. Fuzzy Sets Syst. 435, 149–163 (2022)

Alonso de la Fuente, M., Terán, P.: Convergence theorems for random elements in
convex combination spaces (2022b, submitted for publication)

Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific, Singapore

(1994)
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Abstract. A fuzzy survival tree (FST) is introduced as an alternative
proposal for survival tree learning. Fuzzy logic theory and Harrell’s index
(c-index) are combined as a new rule in node splitting. The introduction
of fuzzy sets in tree learning improves FST performance and provides
robustness to the algorithm when data are missing. FST performance
improves significantly over other tree-based machine learning algorithms
as demonstrated in public clinical datasets.

1 Introduction

Right-censored data have been commonly analysed using the Cox regression
model (Cox 1972) under the proportional hazards assumption. Recently, stud-
ies have used algorithms such as the random survival forest (RSF). It’s pro-
posed by Ishwaran et al. (2008) as an extension of the random forest algorithm
(Breiman 2001) to the right-censored survival problem. In the learning pro-
cess at each tree, the maximization of the log-rank statistical test is used for
nodes splitting. Ishwaran et al. (2008) demonstrates that the RSF performance
is higher than the Cox model and its use is recommended when the assumptions
of proportional risks are not met (Omurlu et al. 2009) or when the effect of the
explanatory variables is nonlinear.

In decision trees for classification and regression problems, Ferri et al. (2002)
and Lee (2019) proposed including the performance metric, the area under the
curve (AUC), in the base learner. In trees for right-censored data analysis, the
inclusion of the c-index (the AUC equivalent) is proposed by Schmid et al. (2016)
with good results.

Recently, fuzzy set theory has been included in learning decision trees (Zhai
et al. 2018; Mitra et al. 2002; Olaru and Wehenkel 2003, etc.) because datasets
can contain missing values, noise in the class or outlier elements, etc. Fuzzy logic
provides the flexibility to deal with these types of datasets without affecting the
performance of the algorithm.

This article introduces fuzzy survival tree (FST). This new algorithm presents
as a novelty the inclusion of fuzzy logic in combination with the c-index in the
learning process of survival trees for splitting at each node.
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