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Nano and biotechnology are two of the 21st century’s most promising technologies.
Nanotechnology is demarcated as the design, development, and application of
materials and devices whose least functional make up is on a nanometer scale (1 to
100 nm). Meanwhile, biotechnology deals with metabolic and other physiological
developments of biological subjects including microorganisms. These microbial
processes have opened up new opportunities to explore novel applications, for
example, the biosynthesis of metal nanomaterials, with the implication that these
two technologies (i.e., thus nanobiotechnology) can play a vital role in developing
and executing many valuable tools in the study of life. Nanotechnology is very
diverse, ranging from extensions of conventional device physics to completely new
approaches based upon molecular self-assembly, from developing new materials
with dimensions on the nanoscale, to investigating whether we can directly control
matters on/in the atomic scale level. This idea entails its application to diverse fields
of science such as plant biology, organic chemistry, agriculture, the food industry,
and more.

Nanobiotechnology offers a wide range of uses in medicine, agriculture, and the
environment. Many diseases that do not have cures today may be cured by
nanotechnology in the future. Use of nanotechnology in medical therapeutics needs
adequate evaluation of its risk and safety factors. Scientists who are against the use
of nanotechnology also agree that advancement in nanotechnology should continue
because this field promises great benefits, but testing should be carried out to ensure
its safety in people. It is possible that nanomedicine in the future will play a crucial
role in the treatment of human and plant diseases, and also in the enhancement of
normal human physiology and plant systems, respectively. If everything proceeds as
expected, nanobiotechnology will, one day, become an inevitable part of our
everyday life and will help save many lives.
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Chapter 1
Introduction

Abstract This chapter illustrates a brief introduction of nanomaterials and their
prominence particularly in plant systems. The distinct features of nanomaterials
includes quantum effect, surface area, exceptional thermal and electrical conductiv-
ity, support for catalysts, and excellent antimicrobial activity. However, various
critical challenges including defects, cost-effective synthesis methods, agglomera-
tion, aging, stability of two-dimemsional ultra-thin slabs, reproduciblity need to be
addressed prior to utilization of these materials. Further, the significance of engi-
neered nanomaterials particularly quantum dots has been highlighted.

Keywords Nanomaterials - Quantum dots - Plant systems - Applications -
Challenges

1.1 Nanomaterials

Nanomaterials have come up as an outstanding class of materials with wide-range
practical applications. The nanomater length can be understood through an example
of 10 hydrogen atoms or 5 silicon atoms lined up that is equivalent to one nanome-
ter. Their size distinguishes the nanomaterials or having at least one dimension in
1-100 nm range. The utilization of objects in nano-meter range is not exactly
known, but a long time ago these materials were used unknowingly. For example,
about 4500 years ago, asbestos nanofibers were used to reinforce ceramic mixtures
[1]. Egyptain were used PbS nanoparticles in hair-dyeing formula [2, 3]. In the
fourth century, the Romans have introduced dichroic cup which shows translucent
ruby colour for transmitted light and jade for direct light. The variation in colour
depends on incident light and appears because of the presence of silver and gold
nanoparticles [4].

Richard Adolf Zsigmondy introduced the word ‘nanometer’ [5]. Richard
Feynman introduced the concept of nanotechnology in 1959 in first academic talk
about nanotechnology [5]. The motive was the development of machines at a molec-
ular level [6]. In his talk, he explained that our ability to work at atomic/molecular
level is limited because of inappropriate equipment and technologies [7]. Till 1980s,
nanotechnology endured for discussion only, but its concept was implanted for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
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researcher to use it for different potentials. Then, nanotechnology is emerged as an
excellent technology, contributing engineered materials at nano-scale for potential
applications with upgraded execution. At present, materials at nano-scale find
industrial roles in energy storage devices, sensors, electronics, surface coating, cos-
metics, sports equipment and environmental remediation [8]. Figure 1.1 showed the
schematic representation for captivating domains of nanomaterials.

1.1.1 Silent Feature of Nanomaterials

Matter at the nano-scale has distinct properties as compared to the bulk materials.
At nano-scale, size-dependent effects become more notable. For instance, Au solu-
tion at nano-scale appears to be red or purple but yellow in the bulk. The properties
of nanomaterials can be tuned by changing their size [10, 11]. The electronic prop-
erties of nanomaterials at nano-scale are dominantly changed compared to bulk
counterpart and are controlled by quantum mechanical deliberations. For example,
two-dimensional (2D) network of boron, i.e. borophene, is considered as 2D metal
where boron in bulk isn’t considered as metal [12]. The distinct mechanical proper-
ties at nano-scale have been improved by minimizing the defects or enhancing the
crystal perfection [13]. The materials having a diameter between 1 and 10 nm are
named as quantum dots. Further, the properties of such materials have a strong
dependence on size and shape [14]. A photo-generated electron-hole pair has the
same diameter as an exciton between 1 and 10 nm. Therefore, absorption/emission
of light through semiconductors can be controlled by size-variation in this range.

Among various unique properties of nanomaterials, following are some key
properties, which can be acquired by shape and/or size variations

* Quantum effects: At nano-scale, quantum effects become highly prominent and
the range at which these effects will appear strongly depends on characteristics
of semiconductor material [15]

e Surface area: Nanomaterials have substantially high surface areas in contract
with bulk materials, and these properties applied to all nanomaterials [16]

* High thermal & electrical conductivity: Nanomaterials have high electrical and
thermal conductivity in comparison with bulk materials. For example, graphene
achieved from graphite [17]

» Exceptional mechanical properties: In contract with bulk counterparts, nanoma-
terials have extra-ordinary mechanical properties [18]

e Support for Catalysts: The functionality of catalysts can be substantially
enhanced via good dispersion of nanomaterials of active catalyst. For example,
atomic dispersion of catalyst on two-dimensional sheets of nanomaterials has
enhanced performance [19, 20].

* Antimicrobial Activity: Various nanomaterials have been used for anti-bacterial,
anti-fungal and anti-viral properties and have distinct capabilities against
pathogen-related diseases [21, 22]
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Fig. 1.1 Schematic Representation of various nanomaterials and their applications. (Reprinted
with permission from Baig et al. [9])

1.1.2 Challenges for Nanomaterials

Many nanomaterial-based studies have been reported to date. The effectual manipu-
lation of materials at nano-scale can be used for different industrial applications.
However, the evolution and potent exertion of nano-based materials may encompass
many challenges. Few critical challenges have been stated below:
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* The defects in nanomaterials can affect their intrinsic properties and their perfor-
mance. For example, impurities, random orientation, discontinuous length of
carbon nanotubes can significantly lessen their tensile strength [23].

e The economical route for the production of nanomaterials is another contend.
The finest nanomaterials have been synthesized in harsh environments and
urbane instrumentation, thus limiting their extensive production as for the syn-
thesis of 2D nanomaterials. For large-scale production, low-cost methods have
been acquired, which results in the synthesis of defect-containing materials.
Therefore, the controlled synthesis of materials at nano-scale is still an arduous
task. For example, attaining chiral conductivity, selectivity, and accurately con-
trolled diameters for carbon nanotube synthesis [24, 25]. Theoretically calcu-
lated properties have only got the structurally pure nanomaterials. So, additional
dedicated efforts are required to introduce cost-effective and efficient methods
that overwhelmed insufficiencies in conservative synthesis procedures.

* At nano-scale, agglomeration of particles is a key problem, which considerably
affects the functionality of the material. Nanomaterials agglomerate when com-
ing across each other. This may be because of the electrostatic interaction, physi-
cal entanglement, or high surface energy [26]. For instance, carbon nanotubes
experience van der walls interaction and make bunches, thus finding difficulty in
alignment and/or properly dispersion in polymer matrices [27].

* The development of three-dimensional (3D) architectures can tune the efficiency
of nanomaterials. Porous architectures of nanomaterials have been advanced for
enhancing their functionality through interior availability. For instance, the 3D
architectures of 2D graphene have provided fast mass, high specific surface area,
and electron transport kinetics. It happened because of the combination of 3D
porous structures and inherent characteristics of graphene [28]. The amalgama-
tion of carbon nanotubes assemblies and graphene in 3D architectures has been
the most studied research area.

* Experimental evolution of 2D ultra-thin materials is required, as these materials
representing outstanding theoretical characteristics. The major challenges asso-
ciated with 2D ultra-thin materials are their stability and synthesis. Therefore,
more focused studies are needed for their preparation and industrial utilization.

e The utilization of nanomaterials in the industry has been raised, and large-scale
material synthesis is in demand. Although nano-based materials have vast sky-
lines, there is a need to explore new materials with captivating features and thus
introduce new research areas. As the toxicity of nanomaterials is still a major
concern for domestic, industrial, and environmental utilization. For instance, the
range in which nanoparticle-based materials cause cellular toxicity is quite blurr
[29]. Therefore, a proper understanding of materials is much needed to promote
their industrial usage.

The industrial revolution has also been linked to the advancement in nanomaterials.
The development of clean energy production was possible with the innovation in
nanomaterial-based engineering strategies. Researchers widely used the nanomate-
rials for a new generation of solar and hydrogen fuel cells, efficient catalysts for



