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Preface

This volume is dedicated to VadimYankov (Jankov1), the Russian logician, historian
and philosopher of mathematics and political activist who was prosecuted in the
former USSR.

In 1964, he defended his dissertationFinite implicative structures and realizability
of formulas of propositional logic under the supervision of A. A. Markov. In the
1960s, Yankov published nine papers dedicated to non-classical propositional logics,
predominantly to intermediate logics. Even today, these publications—more than
fifty years later—still hold their place among the most quotable papers in logic.
The reason for this is very simple: not only Yankov obtained significant results in
propositional logic, but he also developed a machinery that has been successfully
used to obtain new results up until our days.

Yankov studied the class of all intermediate logics, as well as some particular
intermediate logic. He proved that the class of all intermediate logic ExtInt is not
denumerable, and that there are intermediate logics lacking the finite model property,
and he had exhibited such a logic. In addition, he proved that ExtInt contains infinite
strongly ascending, strongly descending and independent (relative to set inclusion)
subclasses of logics, each of which is defined by a formula on just two variables.
Thus, it became apparent that ExtInt as a lattice has a quite a complex structure.

In 1953, G. Rose gave a negative answer to a hypothesis that the logic of realiz-
ability, introduced by S. Kleene in an attempt to give precise intuitionistic semantics
to Int, does not coincide with Int. In 1963, Yankov constructed the infinite series of
realizable formulas not belonging to Int.

In his 1968 paper, Yankov studied the logic of the weak law of excluded middle,
and the logic defined relative to Int by a single axiom ¬p ∨ ¬¬p. Nowadays, this
logic is often referred to as a Yankov (or Jankov) logic. In particular, Yankov has
discovered that this logic has a very special place in ExtInt: it is the largest logic,

1 In Russian, the last name is �nkov. In the translations of papers of the 1960s by the American
Mathematical Society, the last name was transliterated as “Jankov,” while in the later translations,
the last name is transliterated as “Yankov,” which perhaps is more correct. In this volume, the reader
will see both spellings.
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vi Preface

a positive fragment of which coincides with the positive fragment of Int, while all
extensions of the Yankov logic have distinct positive fragments.

In his seminal 1969 paper, Yankov described in detail the machinery mentioned
above. The reader can find more on Yankov’s achievements in intermediate logics in
the exposition included in this volume.

However, not only Yankov’s results in studying intermediate logics are important.
His papers instigate the transition from matrix to algebraic semantics. Already in his
1963 papers, he started to use what is now known as Heyting or pseudo-Boolean
algebras. At the same time, H. Rasiowa and R. Sikorski’s book, The Mathematics
of Methamatematics, was published, in which the pseudo-Boolean algebras were
studied. Yankov made the Russian translation of this book (published in 1972), and
it greatly influenced the researchers in the former Soviet Union. Besides, Yankov
was one of the pioneers who studied not only intermediate logics—extensions of Int,
but also extensions of positive and minimal logics and their fragments. It would not
be an overstatement to say that Yankov is one of the most influential logicians of his
time.

At the end of the 1960s and in the 1970s, Yankov got more involved in the political
activities. In 1968, he joined other prominent mathematicians and co-signed the
famous letter of the 99 Soviet mathematicians addressed to the Ministry of Health
and the General Procurator of Moscow asking for the release of imprisoned Esenin-
Vol’pin. As a consequence, Yankov lost his job at the Moscow Institute of Physics
and Technology (MIPT), andmost of themathematicians who signed this letter faced
severe troubles.

Since 1972, he started to publish abroad, for instance, in the dissident journal
Kontinent, founded in 1974 by writer Vladimir Maximov that was printed in Paris
and focused on the politics of the Soviet Union. In issue 18, he published the article
“On the possible meaning of the Russian democratic movement.” In 1981–1982 he
wrote a “Letter to Russian workers on the Polish events,” on the history and goals
of the “Solidarity” trade union. Following these events, he was arrested in August
1982, and on January 21, 1983, theMoscowCity Court sentenced him to four years in
prison and three years in exile for anti-Soviet agitation and propaganda. He served his
term in the Gulag labor camp, called “Dubravny Camp” in Mordovia, near Moscow,
and exile in Buryatia in south-central Siberia. He was released in January 1987 and
rehabilitated in 1991.

Despite his hard life in the Camp and the exile, Yankov started to study philosophy
and the classic Greek language. The second editor was impressed when he visited
him at home in Dolgoprudnyj, near Moscow, in 1990, and Yankov started to analyze
the syntax of a passage from Plato’s Parmenides in classic Greek. When he asked
him where he studied classical Greek so competently, he was stunned Yankov’s
unexpected answer: “In prison”!

Thus, Yankov’s philosophical concerns were shaped while he was imprisoned.
His first, possibly philosophical publication was printed abroad in issue 43 (1985)
of the journal Kontinent, entitled “Ethical-philosophical treatise,” where he outlines
his philosophical conception of existential history. A publication on the same theme
in Russia was made possible only ten years later, in the journal Voprosy Filosofii
(1998, 6).



Preface vii

After Yankov’s acquaintance with the second editor’s Ph.D. Thesis, he agreed to
become a member of the Committee of Reviewers and then started to examine the
history of Greekmathematics systematically but from a specific logical point of view.
He was primarily concerned about the ontological aspects of Greek mathematical
theories and the relevant ontological theories in pre-Socratic philosophy. He stated
a hypothesis on the rise of mathematical proof in ancient Greece, which integrated
into the broader context of his inquiry of the pre-Socratic philosophy.

This volume is a minimal appreciation to a mathematician and scholar who
deserves our respect and admiration.

New York, USA
Hagen, Germany

Alex Citkin
Ioannis M. Vandoulakis
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Chapter 1
Short Autobiography

Vadim A. Yankov

My full name is Vadim Anatol’evich Yankov. I was born on February 1st 1935, in
Taganrog, Russia. During the Second World War, I was evacuated to Sverdlovsk.
In 1952, I enrolled in the Department of Philosophy of Moscow State University.
Faced with the “troubles” related to the ideologization in the humanities fields in
the Soviet time, in 1953 I decided to transfer to the Department of Mechanics and
Mathematics. In 1956, Iwas expelled from theUniversity. The reasons givenweremy
sharp criticism of the Komsomol, participation in a complaint against the conditions
at the University students’ cafeteria, and publication of an independent students’
newspaper. Later, I was accepted into the University’s distance remote program and
obtained my diploma in 1959.

Since 1958, I have been employed in the Programming Department at the Steklov
Institute of Mathematics (later, the Programming Department of the Institute of
Mathematics of the Siberian Branch of the USSRAcademy of Sciences). I worked in
the research group developing one of the first programming languages, the ALPHA,
an extension of ALGOL. After my graduation in 1959, I became a post-graduate
student at the Department of Mathematics of the Moscow State University. Under
the supervision ofAndreyMarkov, I preparedmy thesis “Finite implicative structures

Editors’ Note. In the book series “Outstanding Contributions to Logic” it is customary to include a
scientific autobiography of the person the volume is dedicated to. Unfortunately, V. A. Yankov is not
in a position to write his scientific autobiography, so we included a translation of his very brief and
formal autobiography written a long time ago for the human resources department, and translated
from Russian by Fiona Citkin. His scientific biography can be found in the overview papers by
Citkin, Indrzejczak, Denisova, and Vandoulakis, which have been included in this volume.

V. A. Yankov (B)
Volokolamskoe shosse 7a, apt.37, Moscow, Russia
e-mail: kirill_yankov@mail.ru

© Springer Nature Switzerland AG 2022
A. Citkin and I. M. Vandoulakis (eds.), V. A. Yankov on Non-Classical Logics, History
and Philosophy of Mathematics, Outstanding Contributions to Logic 24,
https://doi.org/10.1007/978-3-031-06843-0_1
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2 V. A. Yankov

and realizability of formulas of propositional logic,”1 for which I was awarded my
PhD Degree in 1964. Since 1963, I have been an Assistant Lecturer at the Moscow
Institute of Physics and Technology. In 1968, I was dismissed after co-signing the
letter ofmy colleagues addressed to theMinistry ofHealth and theGeneral Procurator
of Moscow asking for the release of Aleksandr Esenin-Volpin.2

From 1968 to 1974, I worked as a Senior Lecturer at the Moscow Aviation Insti-
tute. Due to teaching overload during this period, my scientific achievement was
substantially reduced.3 Moreover, I was fired by the Institute’s administration for
my dissent views and discussions concerning the Soviet intervention in Czechoslo-
vakia in 1968. During 1974–1982 I worked at the Enterprise Resource Planning
Department of the Moscow Institute for Urban Economics.

From 1982 to 1987, I was imprisoned and exiled; the official reason for my arrest
was anti-Soviet propaganda found in my publications on Soviet politics in foreign
political journals.4 During my confinement, I started studying Classic Greek by
comparing Thucydides’ works in the original and its Russian translation.

After my release in 1987, I worked in the Institute of Thermal Metallurgical Units
and Technologies “STALPROEKT” until 1991.

Since 1991, I have been an Associate Professor at the Department of Mathe-
matics, Logic and Intellectual Systems, Faculty of Theoretical and Applied and the
Department of Logical and Mathematical Foundations of Humanitarian Knowledge,
Institute of Linguistics of theRussian StateUniversity for theHumanities inMoscow.
During this period, my research interests shifted to philosophy, history of philosophy
and history of mathematics. I started lecturing regular courses on philosophy and the
history of philosophy at the Russian State University of the Humanities, delivered
a series of lectures in the Seminar of Philosophy of Mathematics of the Moscow

1 Editors’ Note. In Plisko’s paper in this volume, the reader can find more information on Yankov’s
results in realizability.
2 Editors’ Note. The letter was signed by 99 prominent mathematicians. As a consequence, many of
them had been compelled to leave their positions in academia. For more details, see Fuchs D.B. “On
Soviet Mathematics of the 1950th and 1960th” in Golden Years of Soviet Mathematics, American
Mathematical Society, 2007, p. 221.
3 Editors’ Note. In the early 1960s, Yankov published a series of papers dedicated to propositional
logic, especially, intermediate propositional logics. In these papers he announced the results which
were further developed and published with proofs in 1968–1969 (cf. the complete list of papers at
the end of this volume). At this time, Yankovmentioned (in a letter toA. Citkin) that “the focus ofmy
research interests has been shifted.” More about Yankov’s contribution to the theory of intermediate
logics can be found in Citkin’s expository paper in this volume.
4 Editors’ Note. During this period, Yankov published abroad some papers in which he criticized
the Soviet regime. In November 1981 – January 1982 he published a “Letter to Russian workers
about the Polish events” in which he expressed his support to the Polish workers that struggled for
freedom. On the 9th of August 1982, when Yankov left his apartment to go to the office, he was
arrested. In January 1983, he was sentenced to four years in prison and three years of exile. During
the Perestroika, in January 1987, he was released, and then rehabilitated on the 30th of October
1991 from all charges against him.
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State University and published papers in the history of mathematics. This activity
culminated in the publication of my book Interpretation of Early Greek Philosophy
in 2011.5
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Chapter 2
V. Yankov’s Contributions
to Propositional Logic

Alex Citkin

Abstract I give an exposition of the papers by Yankov published in the 1960s in
which he studied positive and some intermediate propositional logics, and where he
developed a technique that has successfully been used ever since.

Keywords Yankov’s formula · Characteristic formula · Intermediate logic ·
Implicative lattice · Weak law of excluded middle · Yankov’s logic · Positive
logic · Logic of realizability · Heyting algebra

2020 Mathematics Subject Classification: Primary 03B55 · Secondary 06D20 ·
06D75

2.1 Introduction

V. Yankov started his scientific career in early 1960s while writing his Ph.D. thesis
under A. A. Markov’s supervision. Yankov defended thesis “Finite implicative lat-
tices and realizability of the formulas of propositional logic” in 1964. In 1963, he
published three short papers Jankov (1963a, b, c) and later, in Jankov (1968a, b, c, d,
1969), he provided detailed proofs together with new results. All these papers are
primarily concerned with studying super-intuitionistic (or super-constructive, as he
called them) propositional logics, that is, logics extending the intuitionistic proposi-
tional logic Int. Throughout the present paper, the formulas are propositional formu-
las in the signature →,∧,∨, f, and as usual, ¬p denotes p → f and p ↔ q denotes
(p → q) ∧ (q → p); the logics are the sets of formulas closed under the rulesModus
Ponens and substitution.

A. Citkin (B)
Metropolitan Telecommunications, New York, USA
e-mail: acitkin@gmail.com

© Springer Nature Switzerland AG 2022
A. Citkin and I. M. Vandoulakis (eds.), V. A. Yankov on Non-Classical Logics, History
and Philosophy of Mathematics, Outstanding Contributions to Logic 24,
https://doi.org/10.1007/978-3-031-06843-0_2
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To put Yankov’s achievements in a historical context, we need to recall that Int
was introduced by Heyting (cf. Heyting 19301), who defined it by a calculus denoted
by IPC as an attempt to construct a propositional logic addressing Brouwer’s critique
of the law of excluded middle and complying with intuitionistic requirements. Soon
after, Gödel (cf. Gödel 1932) observed that Int cannot be defined by any finite set
of finite logical matrices and that there is a strongly descending (relative to set-
inclusion) set of super-intuitionistic logics (si-logics for short); thus, the set of si-
logics is infinite. Gödel also noted that IPC possesses the following property: for
any formulas A, B, if IPC � (A ∨ B), then IPC � A, or IPC � B—the disjunction
property, which was later proved by Gentzen.

Even though Int cannot be defined by any finite set of finite matrices, it turned
out that it can be defined by an infinite set of finite matrices (cf. Jaśkowski 1936),
in other words, Int enjoys the finite model property (f.m.p. for short). This led to a
conjecture that every si-logic enjoys the f.m.p., which entails that every si-calculus
is decidable.

At the time when Yankov started his research, there were three objectives in the
area of si-logics: (a) to find a logic that has semantics suitable from the intuitionistic
point of view, (b) to study the class of si-logics in more details, and (c) to construct
a convenient algebraic semantics.

By the early 1960s the original conjecture that Int is the only si-logic enjoying
the disjunction property and that the realizability semantics introduced by Kleene is
adequate for Int were refuted: in Kreisel and Putnam (1957), it was shown that the
logic of IPC endowed with axiom (¬p → (q ∨ r)) → ((¬p → q) ∨ (¬p → r))

is strictly larger than Int, and in Rose (1953), a formula that is realizable but not
derivable in IPC was given. Using the technique developed by Yankov, Wroński
proved that in fact, there are continuum many si-logics enjoying the disjunction
property (cf. Wroński 1973).

In Heyting (1941), Heyting suggested an algebraic semantics, and in 1940s,McK-
insey and Tarski introduced an algebraic semantics based on topology. In his Ph.D.
(Rieger 1949), which is not widely known even nowadays, Rieger essentially intro-
duced what is called a “Heyting algebra,” and in Rieger (1957), he constructed an
infinite set of formulas on one variable that are mutually non-equivalent in IPC. It
turned out (cf. Nishimura 1960) that every formula on one variable is equivalent in
IPC to one of Rieger’s formulas.We need to keep inmind that the book (Rasiowa and
Sikorski 1963) was published only in 1963. In 1972, this book had been translated
into Russian by Yankov, and it greatly influenced the studies in the area of si-logics.

By the 1960s, it also became apparent that the structure of the lattice of the si-
logics is more complex than expected: in Umezawa (1959) it has was observed that
the class of si-logics contains subsets of the order type of ωω; in addition, it contains
infinite subsets consisting of incomparable relative to set-inclusion logics.

Generally speaking, there are twoways of defining a logic: semantically by logical
matrices or algebras, and syntactically, by calculus. In any case, it is natural to ask
whether two given logical matrices, or two given calculi define the same logic. More

1 The first part was translated in Heyting (1998).
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precisely, is there an algorithm that, given two finite logical matrices decides whether
their logics coincide, and is there an algorithm that given two formulas A and B
decides whether calculi IPC + A and IPC + B define the same logic? The positive
answer to the first problem was given in Łoś (1949). But in Kuznetsov (1963), it was
established that in a general case (in the case when one of the logics can be not s.i.),
the problem of equivalence of two calculi is unsolvable. Note that if every si-logic
enjoys the f.m.p., then every si-calculus would be decidable and consequently, the
problem of equivalence of two calculi would be decidable as well.

In Jankov (1963a), Yankov considers four calculi:

(a) CPC = IPC + (¬¬p → p)—the classical propositional calculus;
(b) KC = IPC + (¬p ∨ ¬¬p)—the calculus of the weak law of excluded middle

(nowadays the logic of KC is referred to as Yankov’s logic);
(c) BD2 = IPC + ((¬¬p ∧ (p → q) ∧ ((q → p) → p)) → q);
(d) SmC = IPC + (¬p ∨ ¬¬p) + ((¬¬p ∧ (p → q) ∧ ((q → p) → p)) → q)—the

logic of SmC is referred to as Smetanich’s logic and it can be also defined
by IPC + ((p → q) ∨ (q → r) ∨ (r → s))

and he gives a criterion for a given formula to define it relative to IPC (cf. Sect. 2.7). In
Jankov (1968a), Yankov studied the logic of KC, and he proved that it is the largest
si-logic having the same positive fragment as Int. Moreover, in Jankov (1968d),
Yankov showed that the positive logic, which is closely related to the logic of KC,
contains infinite sets of mutually non-equivalent, strongly descending, and strongly
ascending chains of formulas (cf. Sect. 2.6).

Independently, a criterion that determines by a given formula A whether Int + A
defines Clwas found in Troelstra (1965). In Jankov (1968c), Yankov gave a proof of
thiscriterionaswell asaproofofasimilarcriterionfor Johansson’s logic (cf.Sect. 2.5).

In Jankov (1963b), Yankov constructed infinite sets of realizable formulas that
are not derivable in IPC and that are not derivable from each other. Moreover, he
presented the seven-element Heyting algebra in which all realizable formulas are
valid (cf. Sect. 2.8).

Jankov (1963c) is perhaps the best-known Yankov’s paper, and it is one of the
most quoted papers even today. In this paper, Yankov established a close relation
between syntax and algebraic semantics: with every finite subdirectly irreducible
Heyting algebra A he associates a formula XA—a characteristic formula of A, such
that for every formula B, the refutability of B in A (i.e. A �|= B) is equivalent to
IPC + B � XA. Jankov (1963c) is a short paper and does not contain proofs. The
proofs and further results in this direction are given in Jankov (1969), and we discuss
them in Sect. 2.3. Let us point out that characteristic formulas in a slightly different
form were independently discovered in de Jongh (1968).

Applying the developed machinery of characteristic formulas, Yankov proved (cf.
Jankov 1968b) that there are continuummany distinct si-logics, and that among them
there are logics lacking the f.m.p. Because the logic without the f.m.p. presented by
Yankov was not finitely axiomatizable, it left a hope that perhaps all si-calculi enjoy
the f.m.p. (this conjecture was refuted in Kuznetsov and Gerčiu 1970.)

Let us start with the basic definitions used in Yankov’s papers.
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2.2 Classes of Logics and Their Respective Algebraic
Semantics

2.2.1 Calculi and Their Logics

Propositional formulas are formulas built in a regular way from a denumerable set
of propositional variables V ar and connectives.

Consider the following six propositional calculi with axioms from the following
formulas:

p → (q → p); (p → (q → r)) → ((p → q) → (p → r)); (I)
(p ∧ q) → p; (p ∧ q) → q; p → (q → (p ∧ q)); (C)
p → (p ∨ q); q → (p ∨ q); (p → r) → ((q → r) → ((p ∨ q) → r)); (D)
f → p. (N)

they have inference rules Modus Ponens and substitution:

Calculus Connectives Axioms Description Logic
IPC →,∧,∨, f I,C,D,N intuitionistic Int
MPC →,∧,∨, f I,C,D minimal or Johansson’s Min
PPC →,∧,∨ I,C,D positive Pos
IPC− →,∧, f I,C,N {→,∧, f} − fragment of IPC Int−

MPC− →,∧, f I,C {→,∧, f} − fragment of MPC Min−

PPC− →,∧ I,C {→,∧, } − fragment of PPC Pos−

If � ⊆ {→,∧,∨, f}, by a �-formula we understand a formula containing con-
nectives only from� and in virtue of the Separation Theorem (cf., e.g., Kleene 1952,
Theorem 49): for every � ∈ {{→,∧,∨}, {→,∧, f}, {→,∧}}, if A is a C-formula
{→,∧}-formula, IPC � A if and only if PPC � A or IPC− � A, or PPC− � A.

By a C-calculus we understand one of the six calculi under consideration, and a
C-logic is a logic of the C-calculus. Accordingly, C-formulas are formulas in the

signature of the C-calculus. For C-formulas A and B, by A
C� B we denote that

formula B is derivable in the respective C-calculus extended by axiom B; that is,

C + A
C� B.

The relation between PPC and MPC (or between PPC− and MPC−) is a bit
more complex: for any formula {→,∧,∨, f}-formula A (or any {→,∧, f}-formula
A),MPC � A (orMPC− � A) if and only if PPC � A′ (or PPC− � A′), where A′
is a formula obtained from A by replacing all occurrences of f with a propositional
variable not occurring in A (cf., e.g., Odintsov 2008, Chap. 2). In virtue of the
Separation Theorem, in the previous statement, PPC or PPC− can be replaced with
IPC or IPC−, respectively.

Figure2.1 shows the relations between the introduced logics: a double edgedepicts
an extension of the logic without any extension of the language (e.g., Min ⊂ Int),
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Fig. 2.1 Logics

while a single edge depicts an extension of the language but not of the class of
theorems (e.g., if A is a {→,∧,¬}-formula, then A ∈ Int if and only if A ∈ Int−).

Let us observe that ((p → ¬q) → (q → ¬p)) ∈ Min− ⊆ Min. Indeed, formula
(p → (q → r)) → (q → (p → r)) can be derived from the axioms (I). Hence,
formula (p → (q → f)) → (q → (p → f)) is derivable too, that is, (p → ¬q) →
(q → ¬p) is derivable inMPC−.

We use ExtInt, ExtMin, ExtPos, ExtInt−, ExtMin−
, ExtPos− to denote classes

of logics extending, respectively, Int,Min,Pos, Int−,Min−, andPos−. Thus,ExtInt
is a class of all si-logics.

2.2.2 Algebraic Semantics

As pointed out in the Introduction, the first Yankov papers were written before the
book by Rasiowa and Sikorski (1963) was published, and the terminology used by
Yankov in his early papers was, as he himself admitted in Jankov (1968b), mis-
leading. What he then called an “implicative lattice”2 he later called a “Brouwerian
algebra,” and then he finally settled with the term “pseudo-Boolean algebra”. We use
a commonly accepted terminology, which we clarify below.

2.2.2.1 Correspondences Between Logics and Classes of Algebras.

In a meet-semilattice A = (A; ∧) an element c is a complement of element a relative
to element b if c is the greatest element of A such that a ∧ c ≤ b (e.g. Rasiowa
1974a). If a semilattice A for any elements a and b contains a complement of a
relative to b, we say that A is a semilattice with relative pseudocomplementation,
and we denote the relative pseudocomplementation by →.

2 In some translations of the Yankov paper, this term was translated as “implicative structure” (e.g.
Jankov 1963a).
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Proposition 2.1 Suppose that A is a meet-semilattice and a,b, c ∈ A. If a → b and
a → c are defined in A, then a → (b ∧ c) is defined as well and

a → (b ∧ c) = (a → b) ∧ (a → c).

Proof Suppose that A is a meet-semilattice in which a → b and a → c are defined.
We need to show that (a → b) ∧ (a → c) is the greatest element of A′ := {d ∈ A |
a ∧ d ≤ b ∧ c}.

First, we observe that (a → b) ∧ (a → c) ∈ A′:

(a → b) ∧ (a → c) ∧ a = (a ∧ (a → b)) ∧ (a ∧ (a → c)) ≤ b ∧ c,

because by the assumption, a ∧ (a → b) ≤ b and a ∧ (a → c) ≤ c.
Next, we show that (a → b) ∧ (a → c) is the greatest element of A′. Indeed,

suppose that d ∈ A′. Then, a ∧ d ≤ b ∧ c and consequently,

a ∧ d ≤ b and a ∧ d ≤ c.

Hence, by the definition of relative pseudocomplementation,

d ≤ a → b and d ≤ a → c,

which means that d ≤ (a → b) ∧ (a → c).

By an implicative semilattice we understand an algebra (A;→,∧, 1), where
(A; ∧) is a meet-semilattice with the greatest element 1 and → is a relative pseu-
docomplementation and accordingly, an algebra (A;→,∧,∨, 1) is an implicative
lattice if (A; ∧∨, 1) is a lattice and (A;→,∧, 1) is an implicative semilattice (cf.
Rasiowa 1974a). In implicative lattices, 0 denotes a constant (0-ary operation) that
is the smallest element.

The logics described in the previous section have the following algebraic seman-
tics:

Logic Signature Algebraic semantic Denotation
Pos− {→,∧, 1} implicative semilattices BS
Pos {→,∧,∨, 1} implicative lattices BA
Min− {→,∧, f, 1} implicative semilattices with constant JS
Min {→,∧,∨, f, 1} implicative semilattices with constant JA
Int− {→,∧, 0, 1} bounded implicative semilattices HS
Int {→,∧,∨, 0, 1} bounded implicative lattices HA

Asusual, in JS and JA, we let¬a = a → f, while inHS andHA,¬a = a → 0. Also,
we use the following denotations: L := {Pos−

,Pos,Min−
,Min, Int−, Int} and

A := {BS, BA, JS, JA, HS, HA}. For each L ∈ L, Mod(L) denotes the respective
class of algebras. By a C-algebra we shell understand an algebra in the signature
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� ∪ {1}, and we assume that � is always a signature of one of the six classes of
logics under consideration.

Every class from A forms a variety. Moreover, HS and HA are subvarieties of,
respectively, JS and JA defined by the identity f → x = 1.

Remark 2.1 Let us observe thatBS is a variety of all Brouwerian semilattices, and it
was studied in detail in (cf. Köhler 1981); BA is a variety of all Brouwerian algebras
(cf. Galatos et al. 2007); JA is a variety of all Johansson’s algebras (j-algebras; cf.
Odintsov 2008); and HA is a variety of all Heyting or pseudo-Boolean algebras (cf.
Rasiowa and Sikorski 1963).

Let us recall the following properties of C-algebras.

Proposition 2.2 The following holds:

(a) every Brouwerian algebra forms a distributive lattice;
(b) every finite distributive lattice forms a Brouwerian algebra, and because it

always contains the least element, it forms a Heyting algebra as well;
(c) every finite BS-algebra forms a Brouwerian algebra.

(a) and (b) were observed in Rasiowa and Sikorski (1963) and Birkhoff (1948). (c)
follows from the observation that in any finite BS-algebra A, for any two elements
a,b ∈ A, a ∨ b can be defined as a meet of {c ∈ A | a ≤ c,b ≤ c}.

As usual, given a formula A and a C-algebra, a map ν : V ar −→ A is called
a valuation in A, and ν allows us to calculate a value of A in A by treating the
connectives as operations of A. If ν(A) = 1 for all valuations, we say that A is valid
in A, in symbols, A |= A. If for some valuation ν, ν(A) �= 1, we say that A is refuted
in A, in symbols, A �|= A, in which case ν is called a refuting valuation. For a class
of algebras K, K |= A means that A is valid in every member of K. Given a class of
C-algebras K, K f in is a subclass of all finite members of K.

For every logicL ∈ L, a respective class fromA is denoted byMod(L). A class of
models M of logic L forms an adequate algebraic semantics of L if for each formula
A, A ∈ L if and only if A is valid in all algebras from M.

Proposition 2.3 For everyL ∈ L classMod(L) forms an adequate algebraic seman-
tics. Moreover, each logic L ∈ L enjoys the f.m.p.; that is, A ∈ L if and only if
Mod(L) f in |= A.

Proof The proofs of adequacy can be found in Rasiowa (1974a). The f.m.p. for Int
follows from Jaśkowski (1936). The f.m.p. for Int−,Pos,Pos− follows from the
f.m.p. for Int and the Separation Theorem.

Aswementioned earlier, for any formula A, A ∈ Min (or A ∈ Min−) if and only if
A f ∈ Int (or A ∈ I nt−), where A f is a formula obtained from A by replacing every
occurrence of f with a new variable p. Because Int (and Int−) enjoys the f.m.p., if
A /∈ Min (or A /∈ Min−), there is a finite Heyting algebra A refuting A f (finite HS-
algebra refuting A f ). If ν is a refuting valuation, we can convert A into a JA-algebra
(or into a JS-algebra) by regarding A as a Brouwerian algebra (or a Brouwerian
semilattice) with f being ν(A). It is clear that A is refuted in such a JA-algebra
(JS-algebra).
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2.2.2.2 Meet-Irreducible Elements

Let A = (A; ∧) be a meet-semilattice and a ∈ A. Element a is called meet-
irreducible, if for every pair of elements b, c, a = b ∧ c entails that a = b or a = c.
And a is called meet-prime if a ≤ b ∧ c entails that a = b or a = c. For formu-
las where ∧ is a conjunction, instead of meet-irreducible or meet-prime we say
conjunctively-irreducible or conjunctively-prime.

If A is a semilattice, then elements a,b of A are comparable if a ≤ b or b ≤ a,
otherwise these elements are incomparable. A set ofmutually incomparable elements
is called an antichain. It is not hard to see that a meet of any finite set of elements is
equal to a meet of a finite subset of mutually incomparable elements.

It is clear that every meet-prime element is meet-irreducible. In the distributive
lattices, the converse holds as well.

The meet-irreducible elements play a role similar to that of prime numbers: every
positive natural number is a product of primes. As usual, if a is an element of a
semilattice, the representation a = a1 ∧ · · · ∧ an of a as a meet of finitely many
meet-prime elements ai , i ∈ [1, n] is called a finite decomposition of a. This finite
decomposition is irredundant if no factor can be omitted.

It is not hard to see that because the factors in a finite decomposition are meet-
irreducible, the decomposition is irredundant if and only if the elements of its factors
are mutually incomparable.

Proposition 2.4 In any semilattice, if element a has a finite decomposition, a has
a unique (up to an order of factors) irredundant finite decomposition. Thus, in finite
semilattices, every element has a unique irredundant finite decomposition.

Proof Indeed, if element a has two finite irredundant decompositions a = a1 ∧
· · · ∧ an and a = a′

1 ∧ · · · ∧ a′
m , then a1 ∧ · · · ∧ an = a′

1 ∧ · · · ∧ a′
m and

(a1 ∧ · · · ∧ an) → (a′
1 ∧ · · · ∧ a′

m) = 1.

Hence, for each j ∈ [1, m],

(a1 ∧ · · · ∧ an) → a′
j = 1; that is, (a1 ∧ · · · ∧ an) ≤ a′

j .

Because a′
j is meet-prime, a′

j ∈ {a1, . . . ,an} and thus, {a′
1, . . . ,a

′
m} ⊆ {a1, . . . ,an}.

By the same reason, {a1, . . . ,an} ⊆ {a′
1, . . . ,a

′
m} and therefore,

{a1, . . . ,an} = {a′
1, . . . ,a

′
m}.

Proposition 2.5 (Jankov 1969). If a meet-semilattice A has a top element and all
its elements have a finite irredundant decomposition, then A forms a Brouwerian
semilattice.

Proof We need to define on semilattice A a relative pseudocomplement→. Because
every element of A has a finite irredundant decomposition, for any two elements
a,b ∈ A one can consider their finite irredundant decompositions a = a1 ∧ · · · ∧ an
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andb = b1 ∧ · · · ∧ bm . Now,we can definea → c, where c is ameet-prime element,
and then extend this definition by letting

a → (b1 ∧ · · · ∧ bm) = (a → b1) ∧ · · · ∧ (a → bm). (2.1)

Proposition2.1 ensures the correctness of such an extension.
Supposec ∈ A ismeet-prime anda = a1 ∧ · · · ∧ an is a finite irredundant decom-

position of a. Then we let

a → c =
{

1, if ai ≤ c for some i ∈ [1, n];
c, otherwise.

Let us show that a → c is a pseudocomplement of a relative to c, that is, we need
to show that a → c is the greatest element of A′ := {d ∈ A | a ∧ d ≤ b}.

Indeed, if ai ≤ c for some i ∈ [1, n], then

1 ∧ a = a = a1 ∧ · · · ∧ an ≤ ai ≤ c,

and obviously, 1 is the greatest of A′.
Suppose now that ai � c for all i ∈ [1, n]. In this case, a → c = c, it is clear that

a ∧ c ≤ c (i.e., a ∈ A′), and we only need to verify that d ≤ c for every d ∈ A′.
Indeed, suppose that a ∧ d ≤ c; that is, a1 ∧ · · · ∧ an ∧ d ≤ c. Then, d ≤ c

because c is meet prime and ai � c for all i ∈ [1, n].
Immediately from Propositions2.5 and 2.2(c), we obtain the following statement.

Corollary 2.1 Every finite meet-semilattice A with a top element in which every
element has an irredundant finite decomposition forms a Brouwerian algebra. And
because A is finite and has a bottom element, A is a Heyting algebra.

2.2.3 Lattices DedC and Lind(C,k)

On the set of all C-formulas, relation
C� is a quasiorder and hence, the relation

A
C≈ B

def⇐⇒ A
C� B and B

C� A

is an equivalence relation. Moreover, the set of all C-formulas forms a semilattice

relative to connecting formulas with ∧. It is not hard to see that equivalence
C≈ is a

congruence and therefore, we can consider a quotient semilattice which is denoted
by DedC .
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For each k > 0, we consider the set of all formulas on variables p1, . . . , pk . This
set formulas a semilattice relative to connecting two given formulas with ∧. It is not
hard to see that relation

A
C∼ B

def⇐⇒ C� A ↔ B

is a congruence, and by Lind(C,k) we denote a quotient semilattice.

Theorem 2.1 (Jankov 1969) For any C and k > 0, semilattices Lind(C,k) and DedC

are distributive lattices.

Proof ForC ∈ {PPC,MPC, IPC}, it was observed in Rasiowa and Sikorski (1963).
If C ∈ {PPC−

,MPC−
, IPC−}, by the Diego theorem (cf., e.g., Köhler 1981), lattice

Lind(C,k) is a finite implicative semilattice and, hence, a distributive lattice.
To convert DedC into a lattice we need to define a meet. Given two formulas A

and B, we let
A ∨′ B = (A → p) ∧ ((B ′ → p) → p),

where formula B ′ is obtained from B by replacing the variables in such a way that
formulas A and B have no variables in common, and p is a variable not occurring
in formulas A and B ′. If C ∈ {PPC,MPC, IPC}, one can take

A ∨′ B = A ∨ B ′.

A proof that DedC is indeed a distributive lattice can be found in Jankov (1969).

Meet-prime and meet-irreducible elements in Lind(C,k) and DedC are called con-
junctively prime and conjunctively irreducible, and because these lattices are dis-
tributive, every conjunctively irreducible formula is conjunctively prime and vice
versa.

2.2.3.1 Congruences, Filters, Homomorphisms

Let us observe that every C-algebra A has a {→,∧, 1}-reduct that is a Brouwerian
semilattice, and therefore, any congruence on A is at the same time a congruence on
its {→,∧, 1}-reduct. It is remarkable that the converse is true too: every congruence
on a {→,∧, 1}-reduct can be lifted to the algebra.

Any congruence on aC-algebraA is uniquely defined by the set 1/θ := {a ∈ A |
(a, 1) ∈ θ}: indeed, it is not hard to see that (b, c) ∈ θ if and only if (b ↔ c, 1) ∈ θ

(cf. Rasiowa 1974a). A set 1/θ forms a filter of A: a subset F ⊆ A is a filter if 1 ∈ F
and a,a → b ∈ F yields b ∈ F. The set of all filters of C-algebra A is denoted by
Flt(A). It is not hard to see that a meet of an arbitrary system of filters is a filter and
hence, Flt(A) forms a complete lattice. A set-join of two filters does not need to be
a filter, but a join of any ascending chain of filters is a filter.

As we saw, every congruence is defined by a filter. The converse is true too: any
filter F of a C-algebra A defines a congruence
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(a,b) ∈ θF ⇐⇒ (a ↔ b) ∈ F.

Moreover, the map F −→ θF is an isomorphism between complete lattices of filters
and complete lattice of congruences (cf. Rasiowa 1974a). It is clear that any nontrivial
C-algebra has at least two filters: {1} and the set of all elements of the algebra. The
filter {1} is called trivial, and the filters that do not contain all the elements of the
algebra are called proper. In what follows, by A/F and a/F we understand A/θF
and c/θF.

If A is a C-algebra and B ⊆ A is a subset of elements, there is the least filter
[B) of A containing B: [B) = ⋂{F ∈ Flt(A) | B ⊆ F}, and we write [a) instead
of [{a}). The reader can easily verify that for any element a of a C-algebra A,
[a) = {b ∈ A | a ≤ b}.

Immediately from the definitions of a filter and a homomorphism, the following
holds.

Proposition 2.6 Suppose that A and B are C-algebras and ϕ : A −→ B is a homo-
morphism of A onto B. Then

(a) If F is a filter of A, then ϕ(F) is a filter of B;
(b) If F is a filter of B, then ϕ−1(F) is a filter of A.

A nontrivial algebra A is called subdirectly irreducible (s.i. for short) if the meet
of all nontrivial filters is a nontrivial filter; or, in terms of congruences, the meet
of all congruences that are distinct from the identity is distinct from the identity
congruence.

Because every element a of a C-algebra A defines a filter [a), the meet of all
nontrivial filters of A coincides with

⋂{[a),a ∈ A | a �= 1} and consequently, A
is s.i. if and only if the set {a ∈ A | a �= 1} contains the greatest element which is
referred to as a pretop element or an opremum and is denoted bymA.

Let us observe that immediately from the definition of a pretop element, ifmA is
a pretop element of a C-algebra A and F is a filter of A, then,mA ∈ F if and only if
F is nontrivial. In terms of homomorphism, this can be stated in the following way.

Proposition 2.7 Suppose that A is an s.i. C-algebra and ϕ : A −→ B is a homomor-
phism of A into C-algebra B. Then ϕ is an isomorphism if and only if ϕ(mA) �= 1B.

The following simple proposition was observed in Jankov (1969) and it is very
important in what follows.

Proposition 2.8 Let A be a nontrivial C-algebra, a,b ∈ A and a � b. Then, there
is a maximal (relative to ⊆) filter F of A such that a ∈ F and b /∈ F. Furthermore,
A/F is an s.i. C-algebra with b/F being the pretop element.

Proof First, let us observe that the condition a � b is equivalent to b /∈ [a). Thus,
F := {F ∈ Flt(A) | a ∈ F,b /∈ F} �= ∅.

Next, we recall that the joins of ascending chains of filters are filters and therefore,
F enjoys the ascending chain condition. Thus, by the Zorn Lemma, F contains a
maximal element.
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Let F be a maximal element of F . We need to show that b/F is a pretop element
of A/F.

Because b /∈ F (cf. the definition of F ), we know that b/F �= 1A/F.
Let ϕ : A −→ A/F be a natural homomorphism. By Proposition2.6, for every

filter F′ of A/F, the preimage ϕ−1(F′) is a filter of A. Because 1A/F ∈ F′,

F = ϕ−1(1A/F) ⊆ ϕ−1(F′).

Hence, if F′
� 1A/F, then b ∈ ϕ−1(F′) (because F is a maximal filter not containing

b), and consequently, b/F ∈ F′. Thus, b/F is in every nontrivial filter of A/F, which
means that A/F is s.i. and that b/F is a pretop element of A/F.

Corollary 2.2 Suppose that A → B is a C-formula refuted in a C-algebra A. Then
there is an s.i. homomorphic image B of algebra A and a valuation ν in B such that

ν(A) = 1B and ν(B) = mB.

Proof Suppose that ξ is a refuting valuation in A; that is, ξ(A → B) �= 1A. Let
ξ(A) = a and ξ(B) = b. Then, a � b and by Proposition2.8, there is a filter F of A
such that a ∈ F, b /∈ F and A/F is subdirectly irreducible with b/F being a pretop
element of A/F. Thus, one can take a natural homomorphism η : A −→ A/F and
let ν = η ◦ ξ .

pi

ai ai/F

ξ

η

ν

It is not hard to see that ν is a desired refuting valuation.

Suppose that L is an extension of one of the logics from L and A is a formula in
the signature of L. We say that a C-algebra A in the signature of L separates A from
L if all formulas from L are valid in A (i.e., A ∈ Mod(L)), while formula A is not
valid in A, that is, if A |= L and A �|= A.

Corollary 2.3 Suppose that L is a C-logic and A is a C-formula. If a C-algebra A
separates formula A from L, then there is an s.i. homomorphic image B of A and a
valuation ν in B such that ν(A) = mB.

Proof If formula A is invalid in A, then there is a refuting valuation ξ in A such
that ξ(A) = a < 1. By Proposition2.8, there is a maximal filter F of A such that
a /∈ F. Then, B := A/F is an s.i. algebra, and ν = η ◦ ξ , where ν is a natural
homomorphism, is a desired refuting valuation.

Let us note that becauseB is a homomorphic image ofA, the finiteness ofA yields
the finiteness of B.
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Remark 2.2 In Jankov (1969), Corollary2.3 (the Descent Theorem) is proved only
for finite algebras. Yankov, being a disciple of Markov and sharing the constructivist
view onmathematics, avoided using the Zorn Lemmawhich is necessary for proving
Proposition2.8 for infinite algebras.

2.3 Yankov’s Characteristic Formulas

One of the biggest achievements of Yankov, apart from the particular results about
si-logics, is the machinery that he had developed and used to establish these results.
This machinery rests on the notion of a characteristic formula that he introduced in
Jankov (1963c) and studied in detail in Jankov (1969).

2.3.1 Formulas and Homomorphisms

With each finite C-algebra A in the signature � we associate a formula DA on
variables {pa,a ∈ A} in the following way: let �2 ⊆ � be a subset of all binary
operation and �0 ⊆ � be a subset of nullary operations (constants); then

DA =
∧
◦∈�2

(pa ◦ pb ↔ pa◦b) ∧
∧
c∈�0

(c ↔ pc).

Example 2.1 Let 3 = ({a,b, 1};→,∧, 1) be a Brouwerian semilattice, a ≤ b ≤ 1,
and the operations are defined by the Cayley tables:

→ a b 1
a 1 1 1
b a 1 1
1 a b 1

∧ a b 1
a a a a
b a b b
1 a b 1

Then, in the Cayley tables, we replace the elements with the respective variables:

→ pa pb p1

pa p1 p1 p1

pb pa p1 p1

p1 pa pb p1

∧ pa pb p1

pa pa pa pa

pb pa pb pb

p1 pa pb p1

and we express the above tables in the form of a formula:
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D3 = (pa → pa) ↔ p1 ∧ (pa → pb) ↔ p1 ∧ (pa → p1) ↔ p1 ∧
(pb → pa) ↔ pa ∧ (pb → pb) ↔ p1 ∧ (pb → p1) ↔ p1 ∧
(p1 → pa) ↔ pa ∧ (p1 → pb) ↔ pb ∧ (p1 → p1) ↔ p1 ∧
(pa ∧ pa) ↔ pa ∧ (pa ∧ pb) ↔ pa ∧ (pa ∧ p1) ↔ pa ∧
(pb ∧ pa) ↔ pa ∧ (pb ∧ pb) ↔ pb ∧ (pb ∧ p1) ↔ pb ∧
(p1 ∧ pa) ↔ pa ∧ (p1 ∧ pb) ↔ pb ∧ (p1 ∧ p1) ↔ p1 ∧
1 ↔ p1.

Let us note that formula D3 is equivalent in Pos
− to a much simpler formula,

D′ = ((pb → pa) → pb) ∧ p1.

The importance of formula DA rests on the following observation.

Proposition 2.9 Suppose that A and B are C-algebras. If for valuation ν in B,
ν(DA) = 1B, then the map

η : a �→ ν(pa)

is a homomorphism.

Proof Indeed, for any a,b ∈ A and any operation ◦, formula pa ◦ pb ↔ pa◦b is a
conjunct of DA and hence, ν(pa ◦ pb) = ν(pa◦b), because ν(DA) = 1b. Thus,

η(a ◦ b) = ν(pa◦b) = ν(pa ◦ pb) = ν(pa) ◦ ν(pb) = η(pa) ◦ η(pb).

It is not hard to see that η preserves the operations and therefore, η is a homomor-
phism.

Let us note that using any set of generators of a finite C-algebra A, one can con-
struct a formula having properties similar to DA. Suppose that elements g1, . . . ,gn

generate algebra A. Then, each element a ∈ A can be expressed via generators, that
is, there is a formula Ba(pg1 , . . . , pgn ) such that a = Ba(g1, . . . ,gn). If we substitute
in DA each variable pa with formula Ba, we obtain a new formula D′

A(pg1 , . . . , pgn ),
and this formula will posses the same property as formula DA. Because D′

A depends
on the selection of formulas Ba, we use the notation DA[Ba1 , . . . , Bam ], provided
that a1, . . . ,am are all elements of A.

Proposition 2.10 Suppose that A and B are C-algebras. If ν is a valuation in B and
ν(DA[Ba1 , . . . , Bam ]) = 1B, then the map

η : a �→ ν(Ba)

is a homomorphism.

Example 2.2 Let 3 be a three-element Heyting algebra with elements 0,a, 1. It is
clear that A is generated by element a:


