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Foreword 

Although mining industry has been the cornerstone for global economic growth, 
numerous mine-related geo-environmental issues have become a great concern for 
many countries. The so-called mine geo-environment refers to the environmental 
system encompassing the range of mineral deposits (mined or under mining or to 
be mined) which consists of the ore bodies, the host rocks, the groundwater, and the 
soils. During and after mining activities, the system experiences dynamic changes 
both in structure and in function. Therefore, it is critical to strengthen the monitoring 
of the mine geo-environment to better characterize the changes and thus find out 
best solutions to sustainable mining with minimal impact on the environment and 
the health of a livable Earth. 

Remote sensing (RS) technology has been widely used in various areas and 
sectors, mainly by combining interactive human–computer visual interpretations 
and field verifications. The traditional RS technology is characterized by low effi-
ciency, strong subjectivity, and a low degree of intelligence. In recent decades, the 
advancement of Earth Sciences has become increasingly dependent on technolog-
ical innovation. The paradigm of scientific research is undergoing profound changes, 
and transdisciplinary integration has become increasingly important for innovations. 
This is particularly the case for the fields of observation, detection, and simulation 
technologies for high-precision, multi-scale, and big data. The integration of new 
generation artificial intelligence techniques in Earth Sciences has generated new 
research methods and technical tools for geoscientists. The intelligent interpretation 
of remote sensing data of the mine geo-environment involves convergent research of 
four different disciplines: geoscience, remote sensing science, computer science, and 
intelligence science, promoting development of “intelligence + geoscience” studies, 
with a broad range of content and multiple challenges. 

The lead author of this book, Prof. Weitao Chen, my former Ph.D. student, has 
been actively involved in RS studies, and this book was designed to summarize the 
results of his group’s recent work on mine geo-environment. This book takes the 
multi-level interpretation task of “pixel, target, and scene primitives” as the main 
objective, focusing on problems related to the mine geo-environment, with a close 
focus on land use and land cover issues within a mining area. Additionally, the
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vi Foreword

book offers a detailed presentation of the principles and methods of deep learning 
technology, constructs a multi-scale mining area dataset, and establishes a theoretical 
framework for the intelligent interpretation of remote sensing data for land use and 
land cover in mining areas. 

This book adds new ideas and tools to theoretical framework of the intelligent 
interpretation of remote sensing for complex geological settings. It also improves 
our understanding of the artificial intelligence techniques in Earth Science, accel-
erates the application of results from theoretical research on in-depth learning, and 
promotes the process of the “intelligence + geoscience” transdisciplinary integra-
tion. I sincerely congratulate the publication of the book and look forward to reading 
the authors’ forthcoming publications in “intelligence + geoscience” studies. 

Yanxin Wang 
Professor 

China University of Geosciences 
Wuhan, China 

Member 
Chinese Academy of Sciences 

Wuhan, China



Preface 

Mining exploitation significantly alters both natural and anthropogenic systems, 
which has been considered one of the most intensive forms of terrestrial landscape 
change mediated by humans. Although remote sensing technique has been widely 
used in mining information extraction in the past two decades, there are multiple chal-
lenges associated with the spatial, temporal, and spectral characteristics of mining 
land covers that need to be addressed, such as creating effective remote sensing 
features and improving the ability of intelligent interpretation and so on. 

Based on mine geological environment effect, this book constructs a set of 
systematic remote sensing dataset focusing on the multi-level task with the system 
of “mine remote sensing target detection→scene classification→semantic segmen-
tation”, and carries out the research on the theory and method of remote sensing 
intelligent interpretation based on deep learning. 

Taking Hubei Province of China as an example, this book focuses on four aspects: 
1. construct the multiscale remote sensing dataset of mining area, including mine 
target remote sensing dataset, mining (including non-mining areas) remote sensing 
scene dataset, and semantic segmentation remote sensing dataset of mining area 
land cover. The three datasets are the basis of intelligent interpretation based on deep 
learning; 2. research on mine target remote sensing detection method based on deep 
learning; 3. research on remote sensing scene classification method of mine and non 
mine areas based on deep learning; 4. research on the fine-scale classification method 
of mining land cover based on semantic segmentation. 

Chapter 1 was written by Weitao Chen and Lizhe Wang and assisted by Gaodian 
Zhou. Chapter 2 was written by Weitao Chen and Xianju Li, with the assistance of 
Jiahui Xu and Peiwen Ye. Chapter 3 was written by Xianju Li and Weitao Chen and 
assisted by Jingyan Zhang and Qian Hu. Chapter 4 was written by Weitao Chen and 
Shubing Ouyang and assisted by Min Liu and Cong Wang. Chapter 5 was written by 
Weitao Chen, Xianju Li, and Lizhe Wang, with the assistance of Gaodian Zhou, Min 
Liu, Cong Wang, Haoyi Wang, and Wei Qin. Chapter 6 was written by Weitao Chen 
and Xianju Li and assisted by Min Liu and Jiaxuan Zheng. Chapter 7 was written by 
Weitao Chen and Xianju Li and assisted by Cong Wang. Chapter 8 was written by 
Xianju Li and Weitao Chen, with the assistance of Gaodian Zhou, Haoyi Wang, and
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Wei Qin. The experiments of the book were designed by Weitao Chen, Xianju Li, 
and Lizhe Wang and completed by Min Liu , Jiaxuan Zheng, Cong Wang, and Qin 
Wei. The work of the whole book was completed by Weitao Chen, Xianju Li, and 
Lizhe Wang. 

This book was jointly supported by the Natural resources research project of 
China’s Hubei Province (no. ZRZY2021KJ04) and the Fundamental Research Funds 
for the Natural Science Foundation of China (no. U1803117, no. 42071430, and no. 
U21A2013). 

The book is intended for undergraduate and graduate students who are interested 
in mine environment, remote sensing, and artificial intelligent. It can also be used as 
a reference book for relevant scientific and technological workers. 

Wuhan, China Weitao Chen 
Xianju Li 

Lizhe Wang
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Chapter 1 
Mine Geo-Environment: An Overview 

1.1 Definition of Mine Geo-Environment 

The geo-environment is an important part of the human environment, and includes 
the geological background, processes, and space; as such, it is also referred as the 
geological environment system (Eremenko et al. 2018; Frye  1967; Arias-Maldonado 
and Trachtenberg 2019). The geo-environment is the product of the Earth’s evolu-
tion. Following a lengthy geological evolution, the lithosphere, hydrosphere, and 
atmosphere have reached a relatively stable state through material exchange and 
energy transfer (Guo et al. 2013; Robertson and Dixon 1984; Bai et al. 2007). This 
stable natural system is the basis for the survival and development of humans and 
other organisms. During the evolution of life, the geo-environment also underwent 
continuous changes (Powell and McKirdy 1973; Judd et al. 2002). 

The mine geo-environment includes all natural geological conditions, geographic 
and topographic conditions, social and cultural conditions, and other factors in mining 
areas that have been discontinued, are being produced, or will be produced in future. 
The mine geo-environment is based on the lithosphere; during mine operation, this 
environment continuously affects the balance between soil, water, atmosphere, and 
lithosphere (Xu 2005, 2008; Cao et al. 2007; Hai-qing and Chen 2011). 

1.2 Issues in the Geo-Environment Related to Mining 

The non-standard exploitation and utilization of mineral resources induces various 
problems in the mine geo-environment (Marschalko et al. 2012; Ogola et al. 2002). 
These problems involve different types of pollution, damage, and geological disas-
ters caused by mining on the surrounding geo-environment, mainly manifesting as 
soil erosion, water and soil losses, and desertification. Other notable issues include 
land cracking, subsidence, collapse, mountain collapse, landslide and debris flow, 
pollution of the surrounding water and soil owing to the discharge of waste residues
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and wastewater, the destruction of wildlife habitats and the natural landscape, and 
harm or risks to human health and property (Kondolf 1997; Sengupta 2021; Plumlee  
1999; Zhao et al. 2008). 

1.3 Mine Geo-Environment of Open-Pit Mining 

In general, the mining techniques utilized include open-pit, underground, and 
combined open-pit and underground mining. Different types of minerals are associ-
ated with various mining techniques. As tectonic positions vary, the same minerals 
experience variations in the tectonic uplift amplitude after mineralization, resulting 
in different levels of mining difficulty and applications of different mining techniques 
(Zhengfu et al. 2010; Langer 2013; Hustrulid et al. 2001). 

Non-metallic mines largely adopt the open-pit mining technique because of the 
wide distribution of these resources and the high surface exposure. The key non-
metallic minerals include limestone, granite, bentonite, quartzite for glass, and sand-
stone for construction. Although various mining techniques are used for metal ores, 
open-pit mining is adopted for rare earth metals, a few tungsten placers, and for some 
iron and manganese ores (Schippers et al. 2013; Spitz and Trudinger 2019). Several 
lead–zinc mining areas also adopt open-pit mining during the early stages, before 
converting to underground mining. Prior to the 1980s, nickel mainly relied on open-
pit mining; afterwards, underground mining techniques became more popular. There 
are various types of gold deposits and associated mining techniques; open-pit mining 
is mainly used for placer gold deposits, while rock gold deposits are extracted using 
the combined open-pit and underground mining technique (Brierley 1982; Aryee 
et al. 2003; Weige 1998; Crowson  2012; Hartman and Mutmansky 2002). 

Although the elements of the geo-environment of open-pit mines for various 
mineral resources differ, they all include a ground transportation system, waste 
disposal system, production workshop, office and living buildings, buildings for 
crushing, beneficiation, and smelting, and a tailings pond (Monjezi et al. 2009; 
Karavaeva et al. 2019; Galperin et al. 2017). The key difference between open-pit 
and underground mining is that the developed mining area is above the surface for 
the former, while the surface system for the latter only consists of wellhead buildings 
and facilities (Triantafyllidis and Psarraki 2020; Xuan et al. 2013; Pan et al. 2017). 

Based on the rapid development and wide application of remote sensing tech-
nology, the modern mine remote sensing survey technology has gradually been 
developed on the basis of traditional mine surveys. Compared with traditional mine 
surveys, mine remote sensing is able to survey target objects within a short time 
and can rapidly provide survey results. Additionally, the available tools, wide area 
of application, and comprehensiveness of remote sensing technology ensures that 
the comprehensive survey of an area does not include the errors that often occur in 
traditional mine surveys. Mine remote sensing also ensures the objectivity and impar-
tiality of survey results, and remote monitoring reduces or eliminates laborious field 
investigations, with greater resolution and timeliness (Mallupattu and Sreenivasula
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Reddy 2013; Tong et al. 2015; Francioni et al. 2015; Schmidt and Glaesser 1998; 
Thompson 1996). 

Remote sensing surveys of the geo-environment of open-pit mines have been 
conducted owing to these advantages, aimed at the above-ground content within the 
mine geo-environment, utilizing one or more types of remote sensing data (Francion 
et al. 2015; Schmidt and Glaesser 1998; Thompson 1996; Cai et al. 2009). 

The issues related to the geo-environment of open-pit mines can be categorized 
into three major groups. First, geological disasters and potential hazards caused by 
mineral production, including landslides, debris flows, and ground collapses and 
fissures. Second, the destruction of landforms and landscapes largely caused by 
changes to the original landform and the geomorphic characteristics of the mining 
area, which can result in mountain damage, rock exposure, vegetation damage, and 
other phenomena. Third, the destruction of land resources mainly caused by changes 
to the land use, soil pollution status, land cover, and other phenomena (Fleurisson 
2012; Lesin et al. 2015; Monjez et al. 2009; Kahriman 2002; Wang et al. 2018). 
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Chapter 2 
Multimodal Remote Sensing Science 
and Technology 

2.1 Multimodal Remote Sensing Data Sources 

2.1.1 High-Resolution Optical Satellite Remote Sensing 
Images 

With the development of remote sensing sensor technology, many satellites can 
provide high-resolution images, wherein the resolution may reach the sub-meter 
level. These high-resolution data allow the opportunity to observe the Earth’s surface, 
and offer data support for various remote sensing-related research fields. 

High-resolution data generally refers to images with a spatial resolution exceeding 
10 m, which are clear, detailed, and textured. This means that information on a small-
scale ground object can be collected accurately. As the details of ground objects can 
be clearly visualized in high-resolution images, this technology has been widely used 
for image interpretation, urban planning, disaster relief, mapping, and other fields. 
High-resolution data generally includes the red, green, and blue bands of visible light. 
With the development of technology, current high-resolution satellites can acquire 
data for even more wavebands while ensuring a high spatial resolution. Table 2.1 
presents parameter information for specific high-resolution satellites. 

2.1.2 High-Resolution Radar Satellite Remote Sensing Data 

Radars are often used in active remote sensing methodology. It is advantageous as 
radars have a specific degree of penetration and are able to acquire high-resolution 
ground images without being affected by weather. Radar satellites are also able to 
provide multiple polarization images such as single, double, and full polarization 
images. By combining and processing different polarization methods, rich ground 
feature information can be extracted. Moreover, radar images provide clear textural
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Table 2.1 Parameters for specific high-resolution satellites 

Satellite Band (µm) Spatial resolution 
(m) 

Wide width (km) Visit cycle (days) 

SPOT5 Pan: 0.49–0.69 5 or 2.5 60 * 60 26 

G: 0.49–0.61 
R: 0.61–0.68 
NIR: 0.78–0.89 

10 

SWIR: 1.58–1.78 20 

FORMOSAT II Pan: 0.45–0.90 2 24 * 24 1 

B: 0.45–0.52 
G: 0.52–0.60 
R: 0.63–0.69 
NIR: 0.76–0.90 

8 

EROS-B Pan: 0.50–0.90 0.7 7 * 7  
7 * 140 

5 

CartoSAT-1(P5) Pan: 0.50–0.85 2.5 30 * 30 5 

KOMPSAT-2 Pan: 0.50–0.90 1 15 * 15 3 

B: 0.45–0.52 
G: 0.52–0.60 
R: 0.63–0.69 
NIR: 0.76–0.90 

4 

WorldView-1, -2 Pan: 0.45–0.80 0.5 30 * 30 
or 60 * 60 

1.1–3.7 

B: 0.45–0.51 
G: 0.51–0.58 
R: 0.63–0.69 
NIR: 0.77–0.895 
COAST: 
0.40–0.45 
YELLO: 
0.585–0.625 
RED EDGE: 
0.705–0.745 
NIR2: 0.86–1.04 

2.4 

RapidEye B: 0.44–0.51 
G: 0.52–0.59 
R: 0.63–0.685 
RED EDGE: 
0.69–0.73 
NIR: 0.76–0.85 

5.8 77 * 77 Every day 

Pleiades-1A, 1B Pan: 0.48–0.83 0.5 20 * 20 
100 * 100 
20 * 280 

Every day 

B: 0.43–0.55 
G: 0.49–0.61 
R:0.60–0.72 
NIR: 0.75–0.95 

2 

SPOT6, SPOT7 Pan: 0.455–0.745 1.5 60 * 60 2–3

(continued)
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Table 2.1 (continued)

Satellite Band (µm) Spatial resolution
(m)

Wide width (km) Visit cycle (days)

B: 0.455–0.525 
G: 0.53–0.59 
R: 0.625–0.695 
NIR: 0.76–0.89 

6 

WorldView-3 Pan: 0.45–0.80 0.31 

B: 0.45–0.51 
G: 0.51–0.58 
R: 0.63–0.69 
NIR: 0.77–0.895 
COAST: 
0.40–0.45 
YELLO: 
0.585–0.625 
RED EDGE: 
0.705–0.745 
NIR:0.86–1.04 

1.24 

SWIR 3.7 

CAVIS 30 

KOMPSAT-3A Pan: 0.40–0.90 0.31 

B: 0.45–0.52 
G: 0.52–0.60 
R: 0.63–0.69 
NIR: 0.76–0.90 

2.2 

MWIR 5.5 

Beijing II Pan: 0.50–0.80 1 

B: 0.45–0.52 
G: 0.52–0.59 
R: 0.63–0.69 
NIR: 0.77–0.89 

4 

Gaojing I Pan: 0.45–0.89 0.5 12 * 12 4 

Pan panchromatic, NIR near-infrared, SWIR short-wave infrared, CAVIS atmospheric instrument 
which stands for cloud, aerosol, water vapor, ice, snow, MWIR middle-wave infrared

information and are sensitive to small changes in specific parameters related to ground 
objects. In summary, radar data plays an important role in various qualitative and 
quantitative remote sensing techniques. Table 2.2 provides examples of radar satellite 
parameters.
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Table 2.2 Parameters for some radar satellites 

System Band Polarrization Wide width 
(km) 

Resolution 
(m) 

Period 
(days) 

Orbital 
(cm) 

Acceptance 
mode 

ERS-2 C VV 100 25 35 30 Stripmap 

RADASAT1 C VV 10–500 10–30–100 24 > 100 Stripmap 
ScanSAR 

TerraSAR-X X Full 5–10–30–100 1–3–16 11 10 Spotlight 
Stripmap 
ScanSAR 

Cosmo-skymed X, L Full 10–30–200 1–3–15 1–16 10 Spotlight 
Stripmap 
ScanSAR 

RADASAT2 C Full 10–500 3–100 1–24 10 Spotlight 
Stripmap 
ScanSAR 

ALOS-2 L Full 25 × 25 
50 
50 
70 
350 
490 

1 × 3 
3 
6 
10 
60 
100 

14 Spotlight 
Stripmap 
ScanSAR 

Sentinel-1A 
Sentinel-1B 

C Full 250 
20 × 20 
80 
400 × 400 

5 × 20 
5 × 5 
5 × 5 
20 × 40 

12 Wideswath 
Wave 
Strip map 
Extra 
wide-swath 

GF-3 C Full 10–650 1–500 12 imaging 
models 

2.1.3 Hyperspectral Satellite Remote Sensing Data 

Hyperspectral remote sensing overcomes the limitations associated with traditional 
single band, multispectral remote sensing in terms of band number, band range, and 
fine information expression. It is able to utilize a very narrow electromagnetic wave 
segment to acquire relevant data from research objects. Table 2.3 provides some 
hyperspectral satellites and their parameters. 

Data Features 

The data features of hyperspectral remote sensing include: 

(1) Provision of numerous bands: the imaging spectrometers provide data on tens 
and potentially hundreds of bands in the visible and near-infrared (NIR) spectral 
regions;
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Table 2.3 Some hyperspectral satellites and their parameters 

Satellite Sensor Band (number/range) Spatial resolution (m) 

EOS AM-1 Modis 2/620–890 nm 250 

5/459–2155 nm 500 

29/405–14,385 nm 1000 

EO-1 Hyperion 35/VIS 30 

35/NIR 

172/SWIR 

GF-5 AHSI 330/400–2500 nm 30 

PRISMA PRISMA HSI 239/400–2500 nm 30 

HysIS HysIS 70/VIS ~ NIR 30 

256/SWIR 

ADEOS-2 GLI 34/380–11,950 nm 250, 1000 

PROBA-1 CHRIS 80/400–1050 nm 17, 34 

HJ-1A HSI 115/450–950 nm 100 

(2) High spectral resolution: the imaging spectrometer sampling interval is gener-
ally < 10 nm, and this fine spectral resolution reflects the subtle characteristics 
of ground matter spectra; 

(3) Large amount of data: the data acquired exponentially increase with the number 
of bands; 

(4) Increased information redundancy: the high correlation of adjacent bands 
increases information redundancy; 

(5) Provision of spatial and spectral domain information (i.e., “atlas in one”): 
spectral profiles obtained from imaging spectrometers may be compared to 
those of congeners measured at the ground level. 

Application Areas 

The application areas of hyperspectral remote sensing include: 

(1) Geology 

The diagnostic characteristics of hyperspectral remote sensing, such as absorption 
and the reflection of rocks and minerals, are often exploited in geological research The 
application of hyperspectral data in geology largely includes lithology mapping, the 
identification and exploration of mineral resources, and environmental monitoring 
of the mining area (Peyghambari and Zhang 2021). 

Hyperspectral data has a high spectral resolution; hundreds of continuous spectral 
bands may be used to extract pixel spectral features and identify minerals and rocks. 
The spectral absorption characteristics of different minerals are mainly related to 
the vibration of chemical bonds and ionic components in visible, NIR, and short-
wave infrared bands. As such, these spectral differences can be used to analyze
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the lithology and create a lithology composition map. Each lithologic unit itself is 
composed of non-linear, micro-scale mixtures of different minerals with varying 
spectral characteristics. Additionally, the rock surface of the survey area may be 
partially covered by soil, weathered layers, and vegetation, increasing the complexity 
and difficulty of lithology mapping via remote sensing (Pal et al. 2020). 

Minerals are a precious geological resource. Hyperspectral remote sensing 
provides a method to identify and explore mineral resources by retrieving data on the 
object surface composition, mineral types, and abundance distribution, and offering 
guidance for mining work (Van der Meer et al. 2012). For instance, Carrino et al. 
(2018) used hyperspectral data for mineral exploration in southern Peru. Bishop 
et al. (2011) carried out mineral exploration in Pulang of Yunnan Province, China 
by combining ASTER and Hyperion data. 

However, mining activities also cause serious pollution in the environment 
surrounding the mine. Lead, zinc, cadmium, and specific toxic minerals, alongside the 
waste generated by mining, pollute the surrounding water and soil, poison flora and 
fauna, affect human health, and ultimately cause major ecosystem damage. Hyper-
spectral data could potentially be used to monitor the content of mineral elements 
in the mine, and then evaluate and prevent pollution. As such, these data assist 
in locating pollution in the surrounding environment in a timely manner, identi-
fying the source, and facilitating its rapid treatment, thereby ensuring the health of 
the ecosystem while allowing the continuation of mining work (Pour et al. 2021). 
Martín-Crespo et al. (2020) found that mine tailings cause toxic metal pollution in 
riverbed alluvium. Ma et al. (2020) investigated the dust diffusion characteristics of 
the Kuancheng mining area in Hebei Province, analyzed the impact of dust on the 
canopy spectrum in surrounding vegetation, and provided decision-making support 
for dust management. 

(2) Agriculture 

Remote sensing is a useful tool to monitor the spatio-temporal changes in crop 
morphology and physiological state, and to support precision agricultural practices. 
Compared with multispectral imaging, hyperspectral imaging purports to be a more 
advanced technique for acquiring detailed spectral responses of target features. The 
application of hyperspectral imaging in agriculture mainly manifests in the rapid and 
precise acquisition of a range of information on crop growth status and environmental 
stresses. These data may be used to adjust the volume of input materials to reduce 
waste, increase yield, and protect agricultural resources and environmental quality. 

Hyperspectral remote sensing has been utilized in five key research areas related 
to agriculture. First, spectral characteristics have been extracted from multi-temporal 
hyperspectral data to identify and classify different vegetation and crops. Second, 
hyperspectral remote sensing has been used to estimate the leaf area index (LAI), 
biomass, total nitrogen, total phosphorus, and other biophysical parameters of vege-
tation. Third, hyperspectral imaging has been used in research on various remote 
sensing information models including those for clarifying the heat diffusion coeffi-
cient, soil water content, crop drought estimates, soil erosion, and land production 
potential. Fourth, hyperspectral imaging has been used alongside vegetation indices
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to analyze land cover or monitor crop growth. For example, using the National 
Oceanic and Atmospheric Administration (NOAA)-Advanced Very High Resolu-
tion Radiometer (AVHR) data and normalized vegetation index (NDVI), the land 
cover index model was established to regionally differentiate land cover and its 
seasonal variations. Fifth, hyperspectral remote sensing has been used to monitor 
crop growth. Based on the large amount of data generated by remote sensing and 
the use of advanced computer and network technology, remote sensing informa-
tion systems have been applied in many fields. These systems are able to monitor 
crop growth regularly. They can also rapidly monitor and evaluate flood and drought 
disasters that may affect regional grain production. 

To summarize, hyperspectral imaging has been widely used in agriculture, 
with applications including the estimation of crop biochemical (e.g., chlorophyll, 
carotenoids, and water content) and biophysical properties (e.g., LAI and biomass). 
This information can help understand the physiological state of vegetation, predict 
yield, assess crop nutritional status (e.g., nitrogen deficiency), monitor crop diseases, 
and investigate soil properties (e.g., soil moisture, organic matter content, and 
carbon). 

(3) Atmosphere and the environment 

Atmospheric molecular and particulate components strongly respond to the solar 
reflectance spectrum; these components include water vapor, carbon dioxide, oxygen, 
ozone, clouds, and aerosols. Water vapor is the main absorption component. A narrow 
hyperspectral band can identify spectral differences from changes in atmospheric 
composition, allowing the detection of fine atmospheric absorption characteristics. 

The application of hyperspectral remote sensing in the atmosphere has two main 
aspects. First, the determination of greenhouse gases in the Earth’s atmosphere, 
including carbon dioxide, ozone, methane, and pollutant gas compositions. Second, 
the determination of atmospheric temperature and the vertical distribution of water 
and air, the study of atmospheric processes, and analysis of the Earth’s surface compo-
sition, which mainly apply to meteorology. Atmospheric detection requires a high 
spectral resolution, and hyperspectral remote sensing provides clear advantages in 
this regard. 

Based on the spectral characteristics of the ocean, the environmental protection 
departments of countries can effectively conduct marine resource exploration and 
detect changes in the marine environment. This could be carried out while concur-
rently identifying the inputs of harmful wastewater, crude oil leakage, and other 
marine pollutants across a large spatial range, rapidly and accurately. 

As environmental problems have become increasingly important, research on 
this aspect is also developing. For example, in coastal and terrestrial water bodies, 
hyperspectral imaging has been used to detect chlorophyll, phytoplankton, dissolved 
organic matter, and the local or distant transport of suspended matter. In terms of 
environmental monitoring, surface components that directly or indirectly harm the 
environment (e.g., acid rain and heavy metals), can be detected, and the migration 
of harmful minerals can be monitored.
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Hyperspectral imaging may also be used for the quantitative analysis of the 
surrounding environment (e.g., for environmental pollution), and to investigate envi-
ronmental risk factors (e.g., precisely identify hazardous waste minerals, compile 
unique alteration mineral distribution maps, evaluate wildfire risk, and identify and 
probe combustion areas). 

(4) Vegetation 

Once corresponding technological treatments are adopted for vegetation hyperspec-
tral remote sensing data from different sources, they could be used for vegetation 
parameter estimation and analysis, and potential long-range vegetation monitoring 
and estimation. 

Hyperspectral data is rich in spectral information, which may be used for vege-
tation classification and mapping. For example, in some areas with rich vegetation 
types [e.g., coastal wetlands and mountains (Marcinkowska-Ochtyra et al. 2018)], 
hyperspectral data is essential for vegetation classification (Adam et al. 2010; Liu  
et al. 2020). Some studies have also been conducted on the fine classification of 
surface vegetation using unmanned aerial vehicle (UAV) hyperspectral data (Ishida 
et al. 2018; Yan et al. 2019). 

Some scholars have used specific band combinations to construct vegetation 
indices in various studies; this has largely been conducted for vegetation growth 
monitoring and the quantitative inversion of vegetation parameters. 

Gao et al. (2020) used the NDVI and other vegetation indices to extract vegetation 
areas and investigate vegetation coverage. This coverage provides an indirect evalu-
ation of ecological health from the perspective of forest land distribution. Pettorelli 
et al. (2005) found that NDVI may be used to predict the ecological impact of environ-
mental changes on ecosystem function, animal population dynamics and distribution, 
and to better understand the impact of humans on the environment. 

Tan et al. (2020) combined the NDVI and Beer–Lambert Law to quantitatively 
invert the wheat LAI and monitor wheat growth. Blackburn (2007) identified that 
vegetation pigment could be quantitatively detected by hyperspectral imaging, and 
the vegetation pigment concentration may be used to diagnose various physiological 
processes of vegetation. This is significant for monitoring vegetation health, the 
broader ecosystem, and climate change. 

Xue and Su (2017) reviewed more than 100 vegetation indices, analyzed their 
applicability, and stated that new indices could be established with the development of 
hyperspectral technology. This will broaden the research field, making hyperspectral 
technology one of the most important fields of aerospace remote sensing for the near 
future. 

2.1.4 Survey Satellite Remote Sensing Data 

Survey satellites investigate and monitor the Earth’s resources and environment 
using remote sensing technology. Different types of sensors are utilized on satellites


