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Introduction 

Quantitative Reasoning in Mathematics and Science 
Education in the Digital Era 

The digital era is a period beginning in the mid-20th century and leading its way into 
the 21st century. Technology characterizes this era as it provides access to widespread 
information in various electronic forms; therefore, it “increases the speed and breadth 
of knowledge turnover within the economy and society” (Shepherd, 2004, p. 1). 
The digital era demands specific 21st-century skills and abilities such as critical 
thinking, creativity, collaboration, communication, and flexibility. These skills are 
central to STEM disciplines (Beswick & Fraser, 2019), with which the teachers and 
learners need to be equipped. Even though technology is a crucial driver for such 
a “skills agenda, simply assisting students to develop up-to-date technology skills 
is not sufficient” (Beswick & Fraser, 2019, p. 958) to promote such an agenda. 
This is where we believe quantitative reasoning comes to the fore as it lays the 
foundation for developing these skills within STEM subjects. This book focuses on 
quantitative reasoning as an orienting framework to analyze learning, teaching, and 
curriculum. Different chapters of the book delve into quantitative reasoning related 
to the learning and teaching diverse mathematics and science concepts, conceptual 
analysis of mathematical and scientific ideas, and analysis of school mathematics 
(K-16) curricula in different contexts. 

Quantitative reasoning is “an individual’s analysis of a situation into a quantita-
tive structure” (Thompson, 1990, p. 13) such that it entails “the mental actions of an 
individual conceiving a situation, constructing quantities of his or her conceived 
situation, and both developing and reasoning about relationships between these 
constructed quantities” (Moore et al., 2009, p. 3). Thompson and Carlson (2017) 
point out that envisioning a situation in terms of a quantitative structure is advan-
tageous for students’ positioning “to propagate information about how to calculate 
values of quantities in the structure in terms of arithmetic or algebraic expressions that 
are implied by the structure” (p. 440). Particularly, quantitative reasoning provides 
“content and meaning for numerical and symbolic expression and computation”

v
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(Smith III & Thompson, 2008, p. 41). Envisioning a situation in terms of quanti-
ties and relationships among quantities is important to establish a foundation for 
reasoning about covariation, which plays a crucial role in learners’ development 
of more complex mathematical and scientific ideas in critical ways (Thompson & 
Carlson, 2017). These suggest that quantitative reasoning is a key in education, and 
the proposed book unveils its particulars. In this regard, Johnson’s chapter focuses on 
the “relationships” as an intellectual need and uses mathematizing to describe a cate-
gory of a way of thinking emerging from that need. These relationships are essential 
in both mathematics and science. Gonzales’ chapter uses quantitative reasoning to 
develop an understanding of the energy budget as a system of interrelated quantities 
and utilizes covariational reasoning to investigate climate change with a critical lens. 
In addition, Brahmia and Olshon’s chapter discusses physics quantitative literacy as 
the blending of conceptual and procedural mathematics to generate and apply models 
relating physics quantities to each other. 

The relevant literature suggests that quantitative reasoning supports the learning 
of arithmetic and algebra and plays a vital role in learning concepts foundational to 
calculus, geometry, trigonometry, physics, and so on. The literature studies provided 
detailed accounts of how quantitative reasoning can play an essential role in learning 
and teaching different mathematical and scientific concepts. In this book, Moore et al. 
chapter provides an analysis of concept construction from a quantitative reasoning 
perspective. In addition, Paoletti et al. chapter further describes a task sequence to 
construct covariational relationships among quantities and distinguish nonlinear and 
linear relationships. Moreover, based on a 15-year research program, Carlson et al. 
chapter explores how to support instructors in making their precalculus teaching more 
engaging, meaningful, and coherent using quantitative relationships symbolically 
and graphically. 

Quantitative reasoning also provides a propitious arena for the conceptual analysis 
of mathematical and scientific ideas. Thompson (2008) defined conceptual analysis 
of mathematical ideas as a method “to describe ways of understanding ideas that 
have the potential of becoming goals of instruction or of being guides for curric-
ular development” (p. 58). Conceptual analyses are “extremely powerful” because 
they offer concrete examples of learning trajectories (Thompson, 2008). The book 
gives examples of such analyses from different areas of mathematics. For instance, 
Akar, Zembat, Arslan, and Belin’s chapter provides such analysis of isometries 
and their conceptualization. Nunes and Bryant’s chapter considers numbers and 
number systems as models of quantitative relations and investigates how action 
schemas used in different situations support students’ understanding of quantities 
and numbers. Ellis et al. chapter provides examples from linear and quadratic func-
tions by identifying a sequence of conceptual activities and examples of associated 
student reasoning and task design principles to guide curricular decisions. 

The use of quantitative reasoning in the development of ideas in curricula has also 
been given prominence since 2010 in Common Core State Standards for Mathematics 
(CCSSM) (Johnson, 2016). However, Johnson argued that despite greater inclusion 
of quantity and quantitative reasoning in CCSSM, a lack of emphasis on forming
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and interpreting relationships between quantities that change together remains a chal-
lenge. Thompson and Carlson (2017) proposed researching the systematic analysis 
of different curricular approaches that support students in developing quantitative 
and covariational reasoning. Akar, Watanabe, and Turan’s chapter exemplifies such 
systematic analysis based on quantitative reasoning for a Japanese textbook series 
and curricular resources. 

Quantitative reasoning is also crucial for other disciplines, including science. 
Duschl and Bismack (2013) stated, “quantitative reasoning is represented as a compo-
nent of model-based reasoning that bridges the divide between mathematics and 
science” (p. 122). Similarly, further elaborating on quantitative reasoning, Thompson 
(2011) offered a detailed definition of quantification as “the process of conceptual-
izing an object and an attribute of it so that the attribute has a unit of measure, 
and the attribute’s measure entails a proportional relationship (linear, bi-linear, or 
multi-linear) with its unit” (p. 37). Thompson considered this definition as a link 
between mathematics and science education. One can undoubtedly establish such 
connections between mathematics and other disciplines, and this book contributes 
to such an initiative. For example, Jin et al. chapter uses the mathematization of 
science dwelling on quantitative reasoning to quantify phenomena and construct 
knowledge and as a cross-cutting theme to build curricular coherence in physical 
and life sciences. 

Although not exhausting all quantitative reasoning work, we point to the impor-
tance of quantitative reasoning and its crucial role in mathematics and science educa-
tion with this book. Thompson’s introductory chapter highlights that many scholars 
have based their work on quantitative reasoning as a framework to investigate and 
think about learning and teaching, conceptual analyses, curricular efforts, and links 
to other disciplines for decades. However, there seems to be a void in collecting 
this work together and pondering quantitative reasoning from different angles. This 
book provides ways to cluster the work established so far and can be considered as a 
reference book to be used by researchers, teacher educators, curriculum developers, 
and pre- and in-service teachers. We hope that it finds its place in the mathematics 
and science education literature within the digital era. 
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Quantitative Reasoning 
as an Educational Lens 

Patrick W. Thompson 

I must begin by thanking Gülseren Karagöz Akar, Ismail Özgür Zembat, and Sela-
hattin Arslan for including me in their effort to produce this book. While I am listed 
as an editor, they did the heavy lifting of conceptualizing the book and working with 
authors. My role was more as a consultant than an editor. I am nevertheless grateful 
they thought to include me. 

1 Origins of a Theory of Quantitative Reasoning and Its 
Applicability 

Humans have been reasoning quantitatively for thousands of years. I did not invent 
quantitative reasoning. I developed a theory of quantitative reasoning—a theory 
with the aim of explaining how individuals might come to reason about the world as 
they see it through a measurement lens (including not seeing it through a measure-
ment lens) and implications for students’ mathematical learning. My early work 
was motivated by wanting to understand students’ difficulties with story problems— 
descriptions of settings designed by textbook authors that included a question about 
the setting. This interest was sparked in the spring of 1985 by James Greeno in 
his presentation of Valerie Shalin’s work (Shalin, 1987; Shalin & Bee, 1985) to  
the mathematics education faculty at San Diego State University. Shalin designed a 
computer interface of notecards to represent quantities and arrows among notecards 
to show relationships. I realized Shalin had devised a way to represent relationships 
among quantities without having to rely on formulas or expressions. Shalin had not, 
however, explicated what she meant by quantity or quantitative relationship, nor did
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2 P. W. Thompson

she include a theory of how relationships among quantities imply methods for eval-
uating them. However, I immediately saw the theoretical power of having a way to 
represent quantities and relationships without formulas or expressions. 

In 1986 I was invited to contribute a chapter on artificial intelligence (AI) in 
mathematics education to an NCTM publication on learning and teaching algebra 
(Thompson, 1989). I wanted to include a discussion of Shalin’s and Greeno’s 
computer program, but was unsuccessful in obtaining more information about it. 
I therefore decided to write an AI program, Word Problem Analyst (WPA), inspired 
by Shalin’s interface and discuss the aspects of quantitative reasoning as I conceived 
it embodied in the program. I will not recap all the insights I gained from writing 
WPA (and revising it over the next four years) except to say writing it, with support 
from the US National Science Foundation, provided a testbed for creating a scheme 
theory for ideas of quantity and the development of mathematical reasoning from 
quantitative reasoning (Thompson, 1990, 2011). 

The following problem and Figs. 1, 2, 3, 4, 5, 6 and 7 illustrate the use of WPA to 
model someone conceptualizing a problem in terms of quantities and relationships 
among quantities and the algebra that can be inferred from this structure. 

MEA Export is to deliver an oil valve to Costa Rica. The valve’s price is $5000. Freight 
charges to Costa Rica are $100. Insurance is 1.25% of Costa Rica’s total cost. Costa Rica’s 
total cost includes the costs of the valve, insurance, and freight. What is Costa Rica’s total 
cost? (Thompson, 1990, p. 39) 

Figure 1 shows a person’s (say, José’s) conception that there are six quantities 
involved in this situation: Total Cost to Costa Rica, the costs of Freight, Valve, and 
Insurance, the Insurance Rate, and the cost of Insurance and Freight together. At

Fig. 1 José’s understanding of quantities involved in the situation 
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Fig. 2 José’s conception of relationships among quantities in the situation 

this moment José has not conceptualized any relationships among quantities. Each 
notecard reflects the schematic nature of a conceived quantity—a natural language 
description of an object’s attribute, a unit in which the attribute is measured, and a 
potential value for the quantity’s measure. Each notecard also has a “Formula Cell”. 
This represents José’s anticipation that a quantity’s value might be calculated from 
relationships with other quantities. 

Figure 2 shows the relationships José envisioned among quantities: Total Cost is 
made by an additive combination of Insurance and Freight and the cost of the Valve. 
Insurance and Freight is made by an additive combination of the cost of Insurance 
and the cost of Freight. The cost of Insurance is made by instantiating the Insurance 
Rate with the Total Cost to Costa Rica. Notice that at this moment, José has not 
thought about any calculations. 

Figure 3 shows that José has now attended to the information given in the problem 
statement. Freight has a value of $100, Valve Cost has a value of $5000, and Insurance 
Rate has a value of $1.25/100 of insurance per dollar of cost. Notice that, at this 
moment, José cannot make any inferences about values of other quantities.

Figure 4 shows José’s decision to let C stand for the value of Total Cost to Costa 
Rica. Figure 5 shows an immediate consequence of letting C stand for the value of 
Total Cost—since Total Cost is made by an additive combination of Insurance & 
Freight and Valve Cost, and Valve Cost has a value of 5000, the value of Insurance 
and Freight must be C—5000$.

Figure 6 shows the next propagation. Since Insurance is made by instantiating 
Insurance Rate with the value of Total Cost, the  value of  Insurance will be C*  0.0125 
dollars. Figure 7 reflects José’s openness to deriving a formula for a quantity for which 
he already knows a value. Insurance & Freight is made by an additive combination
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Fig. 3 Adding information given in the problem to José’s conception of the situation

Fig. 4 Using “C” to stand for the value of total cost

of Insurance and Freight, and since its value is C – 5000 and Freight’s value is 100, 
José infers that a formula to compute Freight’s value is C – 5000 – 0.0125C. But  the
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Fig. 5 Inferring a formula to compute the value of insurance and freight

Fig. 6 Inferring a formula to calculate the value of insurance

value this formula must yield is the value of Freight, which is 100.1 In other words, 
by reasoning quantitatively, José ended with the equation C – 5000 – 0.125C = 100. 

1 The brackets in the Freight notecard indicate that José ignored the fact he already knows a value 
of Freight in order to infer a formula to compute Freight’s value. 
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Fig. 7 Inferring a formula for the value of freight even though it has a known value of 100 

José’s conceptualization of the Costa Rica situation is not unique. It can be concep-
tualized in many ways. Indeed, in Thompson (1990) I illustrate how even simple prob-
lems can have very different underlying conceptualizations in terms of quantities and 
relationships composing it yet yield the same arithmetic or algebra. 

There are three significant differences between Shalin’s model and the theory I 
developed. First, Shalin’s model did not have an underlying theory of quantity or 
quantification, except for the arithmetic or units developed by Schwartz (1988). An 
arithmetic of units, such as cm · cm = cm2, or (ft/s)/s = ft/s2,conflates arithmetic 
operations and quantitative operations. It is not a theory of quantitative reasoning. 
Rather, units are treated as if they are numbers or variables. An arithmetic of units 
is implied by quantitative reasoning, but it is not a theory of it. Second, the theory 
addressed how one propagates information throughout a quantitative structure when 
knowing only partial information about the context. The theory of propagation is 
the foundation of the model’s hypotheses about students’ transitions from quantity-
based arithmetic to quantity-based algebra (and beyond). Third, Shalin did not make a 
distinction between quantitative operations and arithmetic operations, which resulted 
in confounding type of quantity with an arithmetic operation to calculate its value, 
such as describing a quantity as a difference simply because, in a particular situation, 
subtraction is used to calculate its value (see Greeno, 1987, p. 77). 

Finally, the WPA model of José’s conception of the Costa Rica situation presumed 
he had mature schemes for the quantities and quantitative operations depicted 
therein. WPA was meant to model implications of reasoning quantitatively for alge-
braic reasoning. It did not address ways learners construct quantities and quanti-
tative operations. The theory I expressed in Thompson (1990) provided a founda-
tion for later studies that brought coherence to understanding the development of
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students’ schemes for quantitative comparisons, variation and covariation, ratio and 
rate, geometric and exponential growth, uses of notation, function, probability and 
statistics, and many ideas specific to calculus. 

2 Chapters in This Book 

I am surprised and gratified that many people found this early work, and later expan-
sions of it, useful in their research. The chapters in this book show creative uses 
of quantitative reasoning as a lens for making sense of students’ reasoning, for 
design of instruction, for curriculum design and evaluation, for teacher professional 
development, and for design of assessments. Johnson’s use of Harel’s notion of 
intellectual need as a motive for why students might seek relationships between 
quantities whose values vary is novel and powerful. Moore et al.’s focus on students’ 
creation of abstract quantitative structures addresses the question of how students 
might generalize their quantitative reasoning in specific contexts to broader areas of 
application. Karagöz Akar, Watanabe and Turan created a novel way of examining 
mathematics textbooks by the criterion of ways they support or inhibit students’ 
quantitative reasoning. Paoletti extends a framework for thinking about students’ 
variational and covariational reasoning by filling a gap in it, while Ellis et al. build 
a learning progression based in variational and covariational reasoning to address 
students’ development over early grades of schemes for function. Karagöz Akar, 
Zembat, Arslan and Belin leverage quantitative reasoning to address the issue of 
students’ difficulties in conceiving motions in the plane as functions mapping R2 

to R2. Carlson et al. leverage quantitative reasoning to address the question of how 
to support teachers in transitioning from speaking to students as if to themselves to 
engaging students in reflective discourse aimed at students’ construction of coherent 
systems of mathematical meanings. I am especially gratified to see three chapters 
by science educators leveraging a theory originally aimed to support learning and 
teaching mathematics to address issues within science education. Jin et al. apply 
quantitative reasoning as a theme to enhance curricular coherence across grade levels 
and across a broad array of scientific concepts. González uses quantitative reasoning, 
especially distinctions between ratio as a quantity and rate as a quantity, to examine 
students’ meanings for ideas central to understanding climate change. White Brahmia 
and Olsho turn the lens around. Instead of using quantitative reasoning as a lens on 
students’ reasoning in physics, they use physics as a context to assess students’ quan-
titative reasoning. Nunes and Bryant take an approach to quantitative reasoning more 
in line with Schwartz (1988), in which numbers represent quantities and arithmetic 
operations imply operations on quantities. 

I suspect one reason quantitative reasoning has found such broad applicability is 
its fundamental stance that quantities are in a mind, not in the world. This stance 
forces anyone adopting it to examine ways learners understand situations presented 
to them. It forces us to ask, “What is this situation to the learner?” As Carlson 
et al. (this volume) document, adopting this stance is nontrivial for instructors who
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are accustomed to apply criteria of coherence only to their own understandings, not 
to ways their students might understand the situations presented to them or might 
understand their instructor’s actions and utterances regarding a situation. 

Another possible reason quantitative reasoning has been found broad applicability 
is that using it forces one to employ a level of qualitative precision that is uncommon 
in mathematics instruction, yet beneficial for students’ learning. Distinctions among 
object, attribute, and measure are often unaddressed by mathematics teachers—as 
witnessed by the common proclivity among teachers and students to write statements 
like “D = distance”. Carlson et al. (this volume) document difficulties precalculus 
instructors create for themselves and their students by their lack of precision about 
contextual meanings of numbers, variables, and expressions. 

3 Conceptualizing Units and Conceptualizing 
Quantification: Aspects of Quantitative Reasoning 
Needing Greater Attention 

Early on in developing this theory of quantitative reasoning I proposed that a quantity 
is a scheme—someone’s conception of an object and an attribute of it the person 
has conceived as measurable in an appropriate unit. I also spoke repeatedly of the 
synergy among a person’s conceptions of object, attribute, and measurability—they 
each mature as the person gains clarity on the others. In Thompson (2011) I gave  
a brief recount of 8th-graders’ construction of “explosiveness of a grain silo” as a 
quantity. They engaged in extended discussions of just what was it that was explosive: 
The silo? The grain in the silo? Dust in the silo? Dust in the air within the silo? They 
also had to settle on a mechanism for explosions, eventually settling on oxidation at 
the surface of grain dust particles. This led them eventually to a unit of grain silo 
explosiveness: cm2 of “dust surface area” per cm3 of “dust volume” per ft3 of “silo 
volume” in which the dust is dispersed. 

I offered the example of grain silo explosiveness to illustrate the messiness of 
quantitative reasoning that often is unaddressed in studies employing a quantitative 
reasoning lens. But we need not go to uncommon quantities like “grain silo explo-
siveness” to see the interdependence among conceptualizations of object, attribute, 
and unit. In Thompson (2000) I spoke of ways students often understand area and 
volume as one-dimensional quantities. Area is one-dimensional when one conceives 
the unit as having one dimension—a square region of a particular size. Then all areas 
are just counts of that one-dimensional unit. Similarly, volume is one-dimensional 
when one conceives the unit as having one dimension—a cubic object of a partic-
ular size. Then all volumes are just counts of that one-dimensional unit. Brady and 
Lehrer (2020) clarified that a unit of area is conceived as two-dimensional when one 
conceives it as generated by two segments, one being swept along the other. This 
is the imagistic equivalent of understanding the interior of a rectangle being formed 
by the cross product of two perpendicular lines viewed as sets of points. Karagöz
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Akar et al.’s chapter on isometries makes a similar point with respect to conceptual-
izing the Cartesian plane as R2 = R × R You obtain a two-dimensional object by the 
quantitative operation of multiplicative combination of two one-dimensional objects. 
Area and volume are just two instances of quantities teachers and researchers take 
as unproblematic in conceiving their unit when in fact students often conceive them 
in ways that are problematic for their comprehension of situations involving them. 

In the following paragraphs, I offer two additional examples to illustrate the messi-
ness of quantification and how attention to units can be helpful to students in under-
standing mathematical or scientific ideas. The first is conceptualizing interest rate as 
actually being a rate of change of one quantity with respect to another. The second 
is the quantification of kinetic energy. 

3.1 Quantification of Interest Rate as a Rate of Change 

To specify a quantity as a rate of change, we must state two quantities whose values 
covary. They vary with respect to each other. The “rate of change” attribute of two 
quantities covarying is captured by a statement of the amount one varies in relation 
to variations in the other. 

Here are three definitions of interest rate by commonly accepted authorities: 

1. “The cost of borrowing money from a lender is represented as a percentage 
of the principal loan amount, called the interest rate.” U.S Federal Housing 
Administration https://www.fha.com/define/interest-rate 

2. “The amount earned on a savings, checking, or money market account, or on an 
investment, as a certificate of deposit or bond, typically expressed as an annual 
percentage of the account balance or investment sum.” Dictionary.com https:// 
www.dictionary.com/browse/interest-rate 

3. “The percentage usually on an annual basis that is paid by the borrower to the 
lender for a loan of money.” Meriam-Webster.com https://www.merriam-web 
ster.com/dictionary/rateofinterest. 

I find it peculiar that, despite purporting to define interest rate, none of these 
statements actually defines a rate of change of one quantity with respect to another. 

Imagine a bank advertisement as follows: 

We pay 3% interest per year on your deposit. 

What quantities are involved in this practice of charging or paying interest? What 
are their units? What is the rate of change of one quantity with respect to another 
that is the “rate”? 

The quantities are interest paid (dollars of interest), dollars on balance (basis of 
the percentage), and an amount of time (number of years balance is on deposit). 
Regarding the rate—what is it? Is it a rate of change of balance with respect to time? 
The rate of change of interest earned with respect to time?

https://www.fha.com/define/interest-rate
https://www.dictionary.com/browse/interest-rate
https://www.dictionary.com/browse/interest-rate
https://www.merriam-webster.com/dictionary/rateofinterest
https://www.merriam-webster.com/dictionary/rateofinterest
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The crux of the matter is to understand that “3%” has a unit: dollars of interest 
per dollar on balance. The unit of “3% interest per year” is ($interest/$balance)/year. 
The bank will pay interest at the rate of 0.03 dollars interest per dollar of balance 
per year. There is yet one open question: What constitutes the balance upon which 
interest is computed? Is it the current balance at the time of computing interest, or is 
it the initial balance at the time of opening the account? 

The difference between simple interest and compound interest is much easier to 
understand when we answer these questions explicitly. “We pay 3% interest per year 
on your deposit, compounded quarterly” means that at the end of each quarter they 
will add to your balance the amount earned at the rate of (($0.03 interest per $1.00 
balance at beginning of compounding period) per year) earned in 1/4 year. You earn 
interest over a quarter year at 1/4 the rate you would earn over a year. This is like 
speeding up at a rate of 10 (km/h)/h for 1/4 h. Your speed increases at a rate per 
1/4 hour that is 1/4 the rate for an hour, or at a rate of (2.5 km/h) per 1/4 h. 

The idea of the unit of an interest rate is related to students’ difficulties distin-
guishing between linear and geometric growth. Graphs given in Fig. 8 show two 
ways to understand the phrase “… increases at a rate of 20% per month.” Fig. 8a 
shows 20% of the original amount (e.g., $2) added to the current value (e.g., $10) to 
get the next value (e.g., $12). The same amount is added at the end of each month. 
Figure 8b shows 20% of the current month’s value added to get the next month’s 
value. Since the current value increases each month, the amount added at the end of 
each month increases. 

The phrase “… increases at a rate of 20% per month” is ambiguous regarding 
which interpretation the speaker intends a listener to make. Being clear about the 
quantities and their units is clarifying. The first would be “… increases at a rate of

Fig. 8 Two ways to interpret the phrase, “… increases at a rate of 20% per month” 
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($0.20 interest per dollar of initial balance) per month”, whereas the second would 
be, “… increases at a rate of ($0.20 interest per dollar of current balance) per month”. 

3.2 Quantification of Kinetic Energy 

A characteristic of physical quantities is how deeply their conceptualizations are 
interconnected. Energy is commonly defined as “the capacity to do work” (Ency-
clopedia Britannica, 2022). The idea of work is tied to the idea of applying a force 
to move an object some distance, while force is the idea of accelerating an object 
(having mass) from one velocity to another velocity. The meaning of kinetic energy 
is the work required to bring an object having mass m from velocity v to velocity 0.2 

Jin et al. (this volume) speak of students’ understanding of kinetic energy in terms 
of implications they draw from a formula for quantifying its measure, namely E =
1 
2 mv2, for how an object’s kinetic energy changes when its velocity changes. Some 
students think doubling an object’s velocity doubles its kinetic energy. Other students 
think doubling its velocity quadruples its kinetic energy. The issue Jin et al. addressed 
is students’ abilities to reason about the implications of a quantification expressed in 
a formula. I address a more foundational issue—the quantitative reasoning involved 
in quantifying kinetic energy to end with the formula E = 1 

2 mv2. My aim here 
is to illustrate how conceptualizations of object, attribute, and quantifications are 
intertwined. 

To quantify kinetic energy, we must identify an object and its attribute as a starting 
point of quantification—to determine a method by which to measure it and the unit 
in which it will be measured. In the case of kinetic energy, the “object” is anything 
having mass. One attribute is its motion—it is moving (at least momentarily) at a 
constant velocity. Another attribute is the effort (work) required to stop its motion. 
Work, as a quantity, is a force applied over a distance. The object’s velocity, however, 
is not constant. Its velocity decreases as work is applied to it. 

A slight twist which makes envisioning kinetic energy easier is to realize the 
energy required to bring an object from velocity v to velocity 0 is the same as the 
energy required to bring it from velocity 0 to velocity v. 

Breaking down these components, and envisioning the object’s velocity changing 
in little bits as it accelerates from 0 to v, we get 

• a force of measure F is created by accelerating a mass of measure m at a rate of 
measure a, 

• a small bit of acceleration is created by changing an object’s velocity by a variation 
of measure dv during a variation of time of measure dt, 

• a small variation in distance ds is made by going at velocity v for a small variation 
in time dt,

2 I have limited these descriptions to mechanical quantities to avoid dealing with the complexities 
of their electro and thermal equivalents. 
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• a small variation of work is created by applying a force of measure F over a small 
variation in distance of measure ds, and 

• a small variation in an object’s kinetic energy of measure dE is created by a small 
variation in work of measure Fds  that varies its velocity. 

Symbolically, taking F as a measure of force, E as a measure of kinetic energy, 
and dE, dv, dt, and ds as infinitesimal variations in kinetic energy, velocity, time, 
and distance, respectively: 

F = ma, a = 
dv 
dt  

, ds  = vdt, dE  = Fds  

− − − − − − − − − − − − − − − − − − −  
dE  = Fds  
= mads 

= m
(
dv 
dt

)
vdt  

= mvdv 

So, a small variation in an object’s kinetic energy is its momentum times a small 
variation in its velocity. This says an object’s momentum at any velocity is its rate 
of change of kinetic energy with respect to velocity. 

Recalling that the work required to decelerate an object from v to 0 is the same as 
the work required to accelerate it from 0 to v, an object’s kinetic energy is the (hyper) 
sum of all infinitesimal variations in its kinetic energy as velocity varies from 0 to v. 
Symbolically3 : 

E(v) =
∫ v 

0 
mudu 

= 
1 

2 
mu2

∣∣∣∣
u=v 

u=0 

= 
1 

2 
mv2 

As I said earlier, a full, robust understanding of this quantification of kinetic energy 
requires understanding constituent quantities’ units (units of mass, time, distance) 
and the units of quantities created from them (acceleration, force, momentum, work, 
kinetic energy)—but not in the sense of an arithmetic of units. Rather, I mean one

3 I acknowledge that this derivation relies on students’ understanding of integrals as a (hyper) sum 
of infinitesimal variations and on their understanding of the relationship between a rate of change 
function and its accumulation functions. However, they could approximate any object’s kinetic 

energy to an acceptable accuracy with Desmos using the finite sum Eapprox(v) = 
v/Δv∑
i=1 

m(iΔv)Δv, 

where Δv is a small increment in velocity. See Thompson et al. (2019, Ch 5) for a full development 
of these ideas. 
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must understand units in the sense of Bridgman’s (1922) dimensional analysis, which 
attends to the creation of quantities from other quantities while attending to the nature 
of their attributes. Bridgman wrote, for example, [F] = [m][a] to convey that the 
quantity force is formed by the quantitative operation of multiplicative combina-
tion—by accelerating an object having mass. He wrote F = ma to represent how 
you calculate a measure of force, ending with a number with a unit that is consis-
tent with the quantity’s dimension. If you measure a mass in kg and acceleration in 
((meters per second) per second), the unit of force is kg ((m/s)/s), meaning a mass 
measured in kg is accelerated at a rate measured in ((meters per second) per second). 

How might students know to multiply m and a to calculate a measure of force? 
Hopefully, from schemes they constructed through experimentation,4 that force is 
proportional to both mass and acceleration. If we increase by a factor of j the mass 
being accelerated at a rate a, the force of accelerating it increases by a factor of j; if we  
increase the acceleration of an object by a factor of k, meaning its velocity increases k 
times as rapidly with respect to time, the force of accelerating it increases by a factor 
of k. Let  F( j, k) represent a measure of the force of accelerating an object of j mass 
units at a rate of k acceleration units. Then F( j, k) = F( j · 1, k · 1) = j · kF(1, 1). 
This says the measure of force that accelerates a mass of measure j mass units at a 
rate of measure k acceleration units is j · k times as large as the force of accelerating 
a mass of measure 1 mass unit at a rate of change of velocity with respect to time of 
1 acceleration unit. 

Lastly, there is another question we should hope students ask with respect to 
quantification of kinetic energy. Since kinetic energy is equivalent to an amount of 
work, they hopefully ask whether 1 2 mv2, our quantification of kinetic energy, actually 
quantifies an amount of work. If it does, then the derived unit of 1 2 mv2 must, in line 
with Bridgman, accord with a force applied over a distance. Its unit must be of 
dimension [F][d]. Here is where arithmetic of units is useful. 

The standard unit of force in the kg-meter-second system is the Newton (N), or 
1 kg accelerated at 1 (m/s)/s. Keeping track of units, and using m as a measure of 
mass and v as a measure of velocity in the kg-meter-second system, we get 

1 

2 
mv2 → kg m2 /s2 

→ (
kg

(
m/s2

)
m 

→ (kg (m/s)/s) m 

→ N m 

→ [F][d] 

The unit of 1 2 mv2 in the kg-meter-second system is the Newton-meter, which is 
of dimension [F][d], so it is a unit of work.

4 Of course, the experimentation that affords students an opportunity to construct such schemes 
must be crafted carefully so their abstractions are from their own activity. 
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4 Connections with Chapters in This Book 

The examples of conceptualizing and quantifying force and kinetic energy tie together 
themes developed in several chapters of this volume: Brahmia and Oshlo’s focus on 
quantification as a central aspect of scientific reasoning, Johnson’s focus on mathe-
matizing a la  Freudenthal via an intellectual need for relationships, Jin et al.’s focus 
on mathematizing as a bridge between mathematics and science, Paoletti et al.’s and 
Ellis et al.’s focus on variation and covariation as foundational ways of thinking for 
students to develop understandings of functions, Moore et al.’s focus on abstracted 
quantitative structures as a target for students’ quantitative reasoning, Gonzalez’ 
proposal of quantitative reasoning and quantification as a central theme in climate 
science. 

Moreover, if we consider these quantifications of force and kinetic energy as 
conceptual analyses of understandings we hope students construct—as a teacher’s 
key developmental understandings of force and kinetic energy—then Carlson et al.’s 
analysis comes into play. As they explain, teachers must reflect upon their own 
quantitative understandings to become conscious of the intricacies entailed in their 
goals of instruction and must decenter to consider how one might support students 
in developing these understandings via conventions of speaking with meaning and 
emergent symbolization. 

The example of work as a quantity relates to Moore et al.’s construct of abstract 
quantitative structure in a profound way. Understanding work dimensionally, as 
[F][d], is to understand the quantitative structure of work and to understand that 
units will be involved, but the exact units need not be specified—they just need to 
be coherent with the quantities of force and distance. The example of kinetic energy 
also is related to Karagöz Akar, Watanabe and Turan’s use of quantitative reasoning 
as a lens to examine mathematics textbooks’ coherence. Does a textbook support 
teachers to engage students in reflective discourse aimed at their conceptualization 
of quantities, their quantification, and situations involving them that textbook authors 
purport to address? 

The representation of kinetic energy as a function of velocity, E(v) = 1 
2 mv2, 

relates to Johnson’s stance regarding intellectual need for relationships, Ellis et al.’s 
conceptual analysis of functions, and Paoletti’s analysis of covariational reasoning. 
For a student (or instructor) to even consider writing “E(v)” requires they (1) seek 
a relationship between velocity and kinetic energy that remains invariant as velocity 
varies, (2) envision velocity varying smoothly from 0 to v regardless of the amount 
of time this acceleration takes, and (3) understand the notation “E(v)” through a 
scheme that entails an image of velocity and kinetic energy varying simultaneously 
and varying in a way that each value of velocity determines a value of kinetic energy 
(see Yoon & Thompson, 2020). 

I can imagine mathematics educators questioning the examples of quantifying 
force and kinetic energy as being largely relevant to science education and less 
relevant to mathematics education. I disagree. Anyone who has taught arithmetic, 
algebra, precalculus or calculus in the United States has seen their students arrive
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at solutions to applied problems with little meaning or inappropriate meanings for 
numbers or variables in their answer. This is a serious problem. The solution to 
the problem of meaning, however, must be systemic. To take quantitative reasoning 
seriously in mathematics and science education requires attention to having students 
conceptualize quantities and methods and meanings of their measures throughout 
their schooling. This can range from asking students what quantity their arithmetic 
has evaluated, to asking them what an appropriate unit for the area of a rectangle 
of height 3 jibs and width of 4 jabs would be, to how one might convert measures 
of fuel efficiency from miles per gallon to kilometers per liter, to asking them for a 
useful unit of effort to complete a job (e.g., person-hour), and so on. 

Moore et al.’s construct of abstract quantitative structure might be behind experts’ 
utterances like “speed times time equals distance”. They of course do not mean speed 
in any unit times time in any unit equals distance in any unit. Rather, they presume, 
without saying, this is true for a coherent system of units for speed, time, and distance. 
This brings to mind Carlson et al.’s explanation of the necessity for instructors to 
examine their own understandings and presumptions in order to consider how their 
expressions of them might be interpreted by students who will interpret teacher’s 
utterances and actions through schemes quite unlike the teacher’s. 

5 Conclusion 

I once again praise the authors’ work expressed in this volume and my colleagues’ 
who brought this collective work to our attention. I hope my call to give greater atten-
tion to the details of students’ and teachers’ conceptualizations of object, attribute, 
and measure is useful for those employing quantitative reasoning as a lens in math-
ematics and science education. I suspect doing this will give greater insight into 
difficulties students experience in learning mathematics and science and difficulties 
teachers experience in promoting such learning. 
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An Intellectual Need for Relationships: 
Engendering Students’ Quantitative 
and Covariational Reasoning 

Heather Lynn Johnson 

People encounter situations involving change and variation as citizens of the world. 
For instance, sea levels are rising as the oceans continue to absorb heat from the atmo-
sphere. One may read about this phenomenon in newspaper articles or encounter 
graphs representing rising sea levels over time. By engaging in quantitative and 
covariational reasoning (Carlson et al., 2002; Thompson, 1994, 2011; Thompson & 
Carlson, 2017), people can interpret and make meaning of such situations (e.g., 
González, 2021). Not only are these forms of mathematical reasoning productive for 
being informed citizens, but they also underlie key mathematical concepts such as 
rate and function (Thompson & Carlson, 2017). Hence, it is crucial for students to 
develop and engage in such reasoning, and for opportunities to occur throughout their 
schooling, across K-12 and university mathematics courses. Yet, from a student’s 
point of view, what may serve as a catalyst, so students can actualize potential 
opportunities? Drawing on Harel’s construct of “intellectual need” (1998, 2008b, 
2013), I offer an intellectual need for relationships, which is a need to explain how 
elements work together, as in a system. I argue that this need can engender students’ 
quantitative and covariational reasoning. 

To illustrate, consider a situation involving Sam, who is walking from home to 
the corner store. There are a number of attributes that students may separate from the 
situation; two include Sam’s distance from home and Sam’s distance from the store. 
Engaging in quantitative reasoning (Thompson, 1994, 2011), a student can conceive 
of the possibility of measuring those attributes, even if they do not find particular 
amounts of measure. For instance, a student may have a sense of a length of a stretch-
able cord extending from Sam’s current location to home or the store. As Sam is 
walking, each distance changes, increasing or decreasing depending on Sam’s route. 
Engaging in covariational reasoning (Carlson et al., 2002; Thompson & Carlson,
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2017), a student can conceive of relationships between the changing distances. 
For instance, with a direct route, Sam’s distance from home increases while the 
distance from the store decreases. By forming and interpreting relationships between 
attributes, students can mathematize (Freudenthal, 1973) such situations in terms of 
quantities and covariation. 

Results of researchers’ investigations of students’ quantitative and covariational 
reasoning represent both challenge and promise. Even accomplished university 
students have demonstrated difficulty (e.g., Carlson et al., 2002; Moore et al., 2019a, 
2019b), while middle and secondary students have shown promising evidence (e.g., 
Ellis et al., 2020; Johnson, 2012). I argue that students’ intellectual need for such 
reasoning may account, in part, for differences in these findings. For example, 
consider a task in which students are to sketch a Cartesian graph relating Sam’s 
distance from home and Sam’s distance from the store. Some students may find 
such a task problematic; they may wonder how to measure and relate the different 
distances as they sketch their graph. In contrast, other students may think the task is 
an exercise in finding a resulting graph that is an instance of some familiar graph. If 
students are focused on getting end results, they may miss opportunities to engage 
in quantitative and covariational reasoning. 

Harel (1998, 2008b, 2013) put forth the construct of intellectual need, rooted in 
Piaget’s constructivist theory. To illustrate, say a student encounters a situation that 
is problematic for them, and as a result of engaging with that situation, they develop 
some new mathematical knowledge. The “problematic-ness” of that situation, from 
the student’s point of view, is the student’s intellectual need. For example, one student 
may intend for Sam’s graph to represent a relationship between distances. Another 
student may intend to represent Sam’s physical motion on the walk. While both 
students find the situation problematic, the first student’s goal is more compatible 
with quantitative and covariational reasoning. 

Harel (2008a) has posited two different forms of mathematical knowledge that 
can emerge from students’ intellectual needs: ways of understanding (products of 
mental action) and ways of thinking (characteristics of mental action). For example, 
a conception of function can be a product of mental action, and a correspondence 
approach can be a characteristic of mental action. Through broad categories, Harel 
has illuminated three ways of thinking (2008a) and five forms of intellectual need 
(2013), leaving room for the possibility that more categories can emerge. I argue for 
an expansion of the ways of thinking and forms of intellectual need put forward by 
Harel. 

I organize this chapter into six sections. First, I discuss theoretical underpin-
nings of quantitative and covariational reasoning. Second, I offer Freudenthal’s term, 
“mathematizing” (Freudenthal, 1973), to represent an additional category of a way 
of thinking that can emerge from students’ intellectual need. Third, I explain what 
I mean by an intellectual need for relationships, and how that need may engender 
students’ quantitative and covariational reasoning. Fourth, I put forward four facets 
of such a need. Fifth, I address task design considerations for each facet, using a 
digital Ferris wheel task to illustrate. Sixth, I discuss implications for theory and 
practice.
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1 Theorizing Quantitative and Covariational Reasoning 

Thompson rooted the theory of quantitative reasoning (1994, 2011) in Piaget’s 
constructivist theory, which assumes that individuals develop new understandings 
by reorganizing their existing conceptions. From this lens, the distances I identified 
in the situation of Sam walking from home to the store would not be “out there” for 
a student to observe. Rather, they would be a person’s conception of the situation. 
In the theory of quantitative reasoning, Thompson explains how individuals may 
conceive of situations in terms of attributes that are possible to measure, such as the 
distances in Sam’s situation. Engaging in quantitative reasoning involves concep-
tions of quantities, a quantification process, and quantitative operations. A student’s 
quantitative reasoning can entail some or all of these elements. 

Quantities are a foundational element of the theory. Per Thompson (1994), a 
quantity is an individual’s conception of an attribute in a situation as being possible to 
measure. This means that quantities are human creations; through their conceptions, 
individuals transform attributes into quantities. For example, in Sam’s situation, a 
student can transform attributes into quantities by separating those attributes (e.g., 
distance) from the physical motion described in the situation (e.g., Sam’s walking). 
Essential to Thompson’s theory is a distinction between conceiving of the possibility 
of measurement and the act of determining particular amounts of measure. This 
means that students can think of measuring Sam’s distance from the store without 
finding certain amounts of distance. 

With quantification, Thompson (2011) explained a three-part process by which an 
individual can formalize this “possible to measure-ness.” First, they would conceive 
of an attribute that could be measured, such as Sam’s distance. Second, they would 
conceive of a unit of measure for the attribute. This might be a standard unit, such as 
a meter or foot, or a nonstandard unit, such as one of Sam’s steps. Third, they would 
conceive of a proportional relationship between the unit and the attribute’s measure. 
That is, they could iterate one of the units, such as a step length, to measure Sam’s 
distance from the store. As with quantity, an essential aspect of quantification was 
that an individual did not need to actually measure Sam’s distance from the store 
with the indicated unit, just think of the possibility of doing so. 

Thompson (1994, 2011) put forward quantitative operations to describe mental 
activity in which individuals could employ a quantitative lens on situations and 
conceive of new kinds of quantities. Thompson identified a “difference” as one such 
quantity that students could create via additive comparison. For example, at any 
instant in Sam’s walk, a student might compare Sam’s distance to the store and Sam’s 
distance from home to create a new quantity, the difference between the distances. 
As with quantity and quantification, students could engage in quantitative operations 
without determining particular amounts of difference. 

With Fig. 1, I express interconnections between quantity, quantification, and quan-
titative operations. Because both quantification and quantitative operations extend 
from quantities, I have placed unidirectional arrows between quantity and those 
elements. Conceiving of an attribute as being possible to measure is the first part


