
Springer Series in Reliability Engineering

Long Wang · Karthik Pattabiraman ·
Catello Di Martino · Arjun Athreya ·
Saurabh Bagchi Editors

System
Dependability
and Analytics
Approaching System Dependability
from Data, System and Analytics
Perspectives

Springer Series in Reliability Engineering

Series Editor

Hoang Pham, Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA

Today’s modern systems have become increasingly complex to design and build,
while the demand for reliability and cost effective development continues. Reli-
ability is one of the most important attributes in all these systems, including
aerospace applications, real-time control, medical applications, defense systems,
human decision-making, and home-security products. Growing international compe-
tition has increased the need for all designers, managers, practitioners, scientists and
engineers to ensure a level of reliability of their product before release at the lowest
cost. The interest in reliability has been growing in recent years and this trend will
continue during the next decade and beyond.

The Springer Series in Reliability Engineering publishes books, monographs and
edited volumes in important areas of current theoretical research development in
reliability and in areas that attempt to bridge the gap between theory and application
in areas of interest to practitioners in industry, laboratories, business, and government.

Indexed in Scopus and EI Compendex

Interested authors should contact the series editor, Hoang Pham, Department of
Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854,
USA. Email: hopham@rci.rutgers.edu, or Anthony Doyle, Executive Editor,
Springer, London. Email: anthony.doyle@springer.com.

mailto:hopham@rci.rutgers.edu
mailto:anthony.doyle@springer.com

Long Wang · Karthik Pattabiraman ·
Catello Di Martino · Arjun Athreya ·
Saurabh Bagchi
Editors

System Dependability
and Analytics
Approaching System Dependability from
Data, System and Analytics Perspectives

Editors
Long Wang
Tsinghua University
Beijing, China

Catello Di Martino
Nokia Bell Labs
São Paulo, Brazil

Saurabh Bagchi
Purdue University
West Lafayette, IN, USA

Karthik Pattabiraman
University of British Columbia
Vancouver, BC, Canada

Arjun Athreya
Mayo Clinic
Rochester, MN, USA

ISSN 1614-7839 ISSN 2196-999X (electronic)
Springer Series in Reliability Engineering
ISBN 978-3-031-02062-9 ISBN 978-3-031-02063-6 (eBook)
https://doi.org/10.1007/978-3-031-02063-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-02063-6

Introduction

The idea of this book was born at the end of 2019, when we celebrated Professor
Ravishankar K. Iyer’s 70-year-old birthday. Professor Ravishankar K. Iyer is
George and Ann Fisher Distinguished Professor in the Department of Electrical
and Computer Engineering at University of Illinois at Urbana-Champaign (UIUC),
Urbana, Illinois, USA. He has been our Ph.D. or Postdoctoral Advisor, and
importantly, a lifelong mentor to us.

Professor Iyer has made seminal contributions to multiple sub-areas within the
area of computing systemdependability spanning his over 40-year career. And inspir-
ingly, he is continuing tomakemore path-defining contributions. Therefore, this book
took shape as reviewing some of the most important technical achievements in four
dominant themes in dependability, namely software dependability, large-scale
systems and data analytics, healthcare and cyber-physical systems, and depend-
ability assessment. Each section is both a look back and a look forward. The look
back describes the important milestones, several from the authors of the chapters,
as well as detours on the way to the milestones. The look forward defines impor-
tant open challenges, which are both relevant and technically challenging, needing
concerted efforts from the community. Hopefully, this book will serve as a “call to
arms” to the community to pick up some of these problems and to solve them.

Fittingly, we have a section with personal reflections from colleagues who have
known Prof. Iyer well. The fact that they happen to be towering researchers in their
own right adds more weight to these reflections. These reflections offer a view rarely
seen in public documents and will, we hope, serve to inspire a fresh generation of
researchers in the field of dependability and beyond.

Each section begins with a chapter, written by one of us, introducing the rest of
the chapters in that section, and providing a broad perspective on the theme profiled
in that section. These introductory chapters can serve as a guidepost for the reader
wishing to selectively navigate through the chapters in the book.

v

vi Introduction

Topic of Dependable Computing Systems

Dependability has long been studied in computer science and engineering—our
premier conference, IEEE/IFIP Dependable Systems and Networks, or DSN,
had its start in 1970. The importance of this area is understandable since human
safety and well-being have long depended on computing and engineered systems.
Research on computer system dependability has led to innumerable successes in
fields as varied as follows: aviation and space (NASA was one of the early organi-
zations that emphasized dependable computing), supercomputing clusters, banking
and finance, electric power, transportation, and distributed computing clusters. As
dependability earned more successes, we ventured into the construction of more
complex large systems such as cloud platforms, big autonomous IT infrastructures,
and the Internet of Things (IoT).

This book is titled System Dependability and Analytics to emphasize its focus on
system dependability, rather than only of its component pieces, as well as its intersec-
tion with data-driven analytics and machine learning. This latter aspect is becoming
increasingly important at a rapid pace. The impetus is coming from large amounts
of data being generated by our systems, which are being analyzed for understanding
dependability weaknesses and for mitigating effects of dependability failures. The
field is growing, and we expect many foundational as well as applied advances to
come in the next few years. This book is an early attempt to chart that course, though
doubtless, there is a good deal of speculation involved in our charting activity.

Staging of Dependability Topics

In the early stage of his research career, Prof. Iyer worked on analysis of depend-
ability data and building of dependability models from the data. Subsequently, he
worked on the design of dependability technologies and measurement of system
dependability. In the recent decade or so, his research focus hasmoved onto analytics-
driven approaches to dependability, including a prominent focus on dependability
in genomics and autonomous transportation. Correspondingly, this book features
the four sections that approximately cover these themes. It also makes sense that
Prof. Iyer’s dependability research started with modeling and measurement and then
steered toward application to use cases, as the models and measurement techniques
gained maturity. Thus, his career exemplifies the synergistic relationship that should
ideally exist between theory and practice. In terms of the target systems for the
dependability techniques, Ravi’s work spans a long arc. Correspondingly, this book
follows such an arc covering dependability of mainframes (early era) to that of super-
computers and software systems, to analytics of healthcare systems, and now to CPS
and autonomous systems.

Introduction vii

We start off with the theme of software dependability where we look at software
that goes in small to large devices. Then, we move to the dependability of large-
scale systems and the aspect of data analytics introduced above. Next, we delve into
the impact of dependability on healthcare and cyber-physical systems (CPS), two
relatively recent but already highly impactful sub-areas. We then come to the topic
of how to assess if our dependability design meets its goals or not. We end the book
with personal reflections on Ravi from three of his colleagues at the University of
Illinois at Urbana-Champaign.

Goals

By reading this book, the readerwill obtain an understanding of leading-edge depend-
ability techniques in the diverse areas of software, large-scale systems and data
analytics, healthcare and CPS, and dependability assessment techniques. These are
grouped into four corresponding sections of the book. The book does not aim for
completeness of the coverage of these topics. Rather, it provides influential tech-
niques that have strong theoretical foundations and, in many cases, have proven to
be of practical value in real-world systems.

The contributors of this book are active researchers and practitioners in leading
universities and research laboratories. They conduct research and build real-world
systems, services, and technologies in the areas covered in this book. In the book,
they bring forward their deep insights and provide their contemporary views and
visions on dependability. Thus, researchers, professional practitioners, and graduate
students will all obtain a clear-eyed view of the state of the art of the research and
real-world practice of system dependability and analytics.

Biographical Note on Prof. Ravishankar K. Iyer

Professor Ravishankar K. Iyer is ACM Fellow, IEEE Fellow, AAAS Fellow, and
served as Interim Vice Chancellor of UIUC for research during 2008–2011. He
has received several awards, including the IEEE Emanuel R. Piore Award, and the
2011 ACM Outstanding Contributions award. He has supervised about 40 Ph.D.
dissertations over his distinguished career.

Long Wang
Karthik Pattabiraman
Catello Di Martino

Arjun Athreya
Saurabh Bagchi

Contents

Software Dependability

Introduction: Software Dependability . 3
Long Wang

Intelligent Software Engineering for Reliable Cloud Operations 7
Michael R. Lyu and Yuxin Su

Data Analytics: Predicting Software Bugs in Industrial Products 39
Robert Hanmer and Veena Mendiratta

From Dependability to Security—A Path in the Trustworthy
Computing Research . 55
Shuo Chen

Assessment of Security Defense of Native Programs Against
Software Faults . 69
Keun Soo Yim

Multi-layered Monitoring for Virtual Machines . 99
Cuong Pham

Security for Software on Tiny Devices . 141
Saurabh Bagchi

Large-Scale Systems and Data Analytics

Introduction: Large-Scale Systems and Data Analytics 163
Saurabh Bagchi

On the Reliability of Computing-in-Memory Accelerators for Deep
Neural Networks . 167
Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

Providing Compliance in Critical Computing Systems 191
Long Wang

ix

x Contents

Application-Aware Reliability and Security: The Trusted Illiac
Experience . 207
Karthik Pattabiraman

Mining Dependability Properties from System Logs: What We
Learned in the Last 40 Years . 221
Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia

Critical Infrastructure Protection: Where Convergence of Logical
and Physical Security Technologies is a Must . 239
Luigi Coppolino, Salvatore D’Antonio, Giovanni Mazzeo,
and Luigi Romano

Health Care and CPS

Introduction: Cyber Physical Systems and Healthcare Analytics 257
Arjun P. Athreya

On Improving the Reliability of Power Grids for Multiple Power
Line Outages and Anomaly Detection . 259
Jie Wu, Jinjun Xiong, and Yiyu Shi

Domain-Specific Security Approaches for Cyber-Physical Systems 301
Hui Lin

Uniting Computational Science with Biomedicine: The NSF
Center for Computational Biotechnology and Genomic Medicine
(CCBGM) . 323
Liewei Wang and Richard M. Weinshilboum

Data-Driven Approaches to Selecting Samples for Training Neural
Networks . 327
Murthy V. Devarakonda

Classifying COVID-19 Variants Based on Genetic Sequences Using
Deep Learning Models . 347
Sayantani Basu and Roy H. Campbell

Twenty-First Century Cybernetics and Disorders of Brain
and Mind . 361
Gregory Worrell

Dependability Assessment

Introduction: Dependability Assessment . 369
Karthik Pattabiraman

Effect of Epistemic Uncertainty in Markovian Reliability Models 371
Hiroyuki Okamura, Junjun Zheng, Tadashi Dohi, and Kishor S. Trivedi

Contents xi

System Dependability Assessment—Interplay Between Research
and Practice . 393
Mohamed Kaâniche and Karama Kanoun

Assessing Dependability of Autonomous Vehicles . 405
Saurabh Jha

Personal Reflections

Foreword: Computing and Genomics at Illinois . 425
Gene E. Robinson

An Academic Life Begins and Continues at University of Illinois
at Urbana-Champaign . 429
Janak H. Patel

Learning from Prof. Iyer . 431
Wen-Mei Hwu

Software Dependability

Introduction: Software Dependability

Long Wang

Abstract This is the introduction of the 6 chapters in this “software dependability”
section. Threats to software dependability are getting aggravated as more complex
software and systems are being used and hardware devices with thinner MOSFET
channel lengths are being used. This section presents 6 state-of-the-art work that
demonstrate a few trends in software dependability research: popular use of data-
driven AI, blurring limits between software dependability and security, and software
dependability and security in emerging computing environments. The audience will
get an up-to-date view of the software dependability research, especially its ongoing
trends, after reading this section.

Keywords Dependability · Security · Blurring limit

Information technology (IT) is rapidly expanding its application scope and spreading
into more critical domains such as electric power management, transportation traffic
regulation and public health, in addition to the traditional domains of scientific
computing, office business, finance and telecommunication, etc. Large computing
platforms such as cloud systems and artificial intelligence (AI) platforms, and large
networks such as internet-of-things (IoT) network are emerging as key computing
infrastructures that host IT services. As a result, the complexities of software running
on these modern computing systems have been increasing by a lot.

The rapid spread of software into broader critical domains and the increasing
complexities of software demand high dependability of software. Moreover, hard-
ware devices underlying computing systems are using MOSFET (or similar tech-
nologies) devices with very thin channel length (5 nm, or thinner expected in near
future), which give rise to a much larger amount of soft errors in computing systems.
This issue further aggravates the software dependability problem, and demands more
focus be placed on software dependability in modern computing systems. However,
the rapid progress of IT technologies also brings new capabilities of improving
software dependability.

L. Wang (B)
Tsinghua University, Beijing, China
e-mail: longwang@tsinghua.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_1&domain=pdf
mailto:longwang@tsinghua.edu.cn
https://doi.org/10.1007/978-3-031-02063-6_1

4 L. Wang

This section presents a select set of state-of-the-art work that demonstrate a
few trends in software dependability research now. (i) One recent principal thrust
addressing software dependability is through data-driven AI, including machine
learning based on deep neural network, data analytics, and various classification
techniques. (ii) Another trend is the blurring limits between software dependability
and software security. Specifically, a number of technologies originally proposed
and traditionally applied for software dependability are recently applied for soft-
ware security and have demonstrated their significance in addressing security issues.
Examples include bit flip injection, fuzzing (exploration of various inputs for tests),
formal method, distributed consensus and monitoring technologies. As the limits
between software dependability and security get blurring a new gate is open, and a
number of technology advancements are being proposed and then employed in prac-
tice. (iii) Software dependability and security in emerging computing environments
such as cloud systems and IoT environments are also hot topics recently.

The first two articles of this section demonstrate two good examples on how
data-driven AI is adopted for addressing software dependability issues. Intelligent
Software Engineering for Reliable Cloud Operations, authored by Prof. Lyu and
Prof. Su, describes an AIOps (Artificial Intelligence for IT Operations) framework
that employs AI technologies for anomaly detection in cloud systems. The frame-
work leverages existing monitoring data of a cloud, particularly Key Performance
Indicators (KPIs) data such as CPU usages of VMs, packet loss rates, packet error
rates, etc., and applies neural network models to do anomaly detection and generate
system incidents. Then the framework applies Graph Representative Learning algo-
rithms to cluster and aggregate the incidents for failure diagnosis and root cause
analysis. Hanmer and Prof. Mendiratta’s Data Analytics: Predicting Software Bugs
in Industrial Products presents a survey of software bug prediction techniques and
a case study that employs source code complexity metrics, such as percent branch
statements, block depth, line number of deepest block, statements at block level 0,
to do bug prediction. The proposed technique in the case study uses Random Forest
for the prediction. The two articles show that AI has demonstrated its super powerful
capabilities in identifying patterns in complicated data, and such capabilities greatly
help with anomaly detection, failure diagnosis, and error prediction.

The following three articles are examples that show blurring limits between soft-
ware dependability and software security. Dr. Chen’s From dependability to secu-
rity—a path in the trustworthy computing research provides enlightenments on the
relationships between dependability and security, between faults and attacks, by
virtue of the author’s own experience. Dependability and security are discussed in
context of a common adversarymodel. Particularly, “bit flips”, “formalmethods” and
“distributed consensus” are discussed as the main instruments used for both depend-
ability and security (actually most of them, if not all, were proposed and applied
first for dependability, and then repurposed for security). Assessment of Security
Defense of Native Programs Against Software Faults by Dr. Yim studies security
defense of C/C++ programs against faults. Faults and attacks, though they are two
distinct adversaries of programs, are related in that faults, e.g. bit flips, may cause
consequences of security breaches. This article conducts experimental studies of

Introduction: Software Dependability 5

“exploitable software faults”, the software faults that can be exploited to result in
security breaches, and shows both the capability of the fuzzing technology in finding
exploitable software faults and the built-in security defense capability of programs
against exploitable software faults. The article exposes interesting insights on how
security-oriented exploitation and reliability faults are related. Multi-layered Moni-
toring for Virtual Machines by Dr. Pham describes a solution of VM monitoring for
both reliability and security purposes. The solution covers all layers from hardware
and hypervisor up to applications. It provides a quite comprehensive description of
VMmonitoring technologies. The audience will understand the challenges, pros and
cons of VM monitoring technologies after reading this article. The three articles are
part of the ongoing efforts that combine dependability research and security research.

The last article in this section, Prof. Bagchi’s Security for Software on Tiny
Devices, presents research challenges and potential approaches for providing security
to software running on IoT devices. This is a very good introduction on software secu-
rity on IoT devices. The unique challenges are clearly stated, and the discussions in
the article span analysis techniques and algorithms, the enforcement of IoT software
security that implements the analysis techniques and algorithms, and measurements,
metrics and evaluations of IoT software security. The audience will obtain a clear
view of state-of-the-art of the IoT software security from the article.

In summary, this section focuses on software dependability and presents a select
set of state-of-the-art work on it. The audience of the section will get an up-to-
date view of the software dependability research, especially its ongoing trends. This
view is very important today as software dependability is gaining an unprecedented
demand while undergoing a drastic change. Both are brought about by the wide and
rapid adoption of technology advancements in cloud computing, AI, and other areas:
IT services (and software) are growingly supporting more applications and scenarios
including many in the critical domains such as public health, transportation traffic
regulation and driving of vehicles, where traditionally IT technologies were not
largely involved; at the same time, the technology advancements give rise to new
approaches, many drastically different from traditional ones, to addressing software
dependability issues.

Intelligent Software Engineering
for Reliable Cloud Operations

Michael R. Lyu and Yuxin Su

Abstract ReliableCloudoperations are vital to our daily lives becausemanypopular
modern software systems are deployed in cloud systems. In this chapter, we discuss
our experience in developing an AIOps (Artificial Intelligence for IT Operations)
framework to improve the reliability of large-scale cloud systems with intelligence
software engineering techniques. The comprehensive AIOps framework includes
anomaly detection of key performance indicators, service dependency mining for
failure diagnosis, and system incident aggregation for root cause analysis from var-
ious information sources like meter data, topology, alert, and incident tickets. We
also conduct extensive experiments with production data collected from large-scale
Huawei Cloud systems to demonstrate the effectiveness of intelligent software engi-
neering techniques for reliable cloud operations.

1 Introduction

Modern software systems provide convenient services to our daily lives. In particular,
IT enterprises start to deploy their applications and services on cloud computing
platforms, such as search engines, instant messaging apps, and online shopping.
Worldwide public cloud service revenue enjoys an impressive growth, as predicted
by Gartner to reach 364 billion US dollars by 2022 [13].

Cloud services are large-scale distributed applications running across thousands
of servers within datacenters. The most critical infrastructure of cloud computing is
the data centers around the world. Data centers are massive hardware and software
systems containing millions of servers, with high-speed interconnection networks.
Each server is composed of hardware devices like CPU and memory, which runs an
OS or virtual machine on top to manage the hardware resources. Software systems

M. R. Lyu (B)
The Chinese University of Hong Kong, Hong Kong, Hong Kong
e-mail: lyu@cse.cuhk.edu.hk

Y. Su
Sun Yat-sen University, Guangzhou, China
e-mail: suyx35@mail.sysu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Wang et al. (eds.), System Dependability and Analytics, Springer Series in Reliability
Engineering, https://doi.org/10.1007/978-3-031-02063-6_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-02063-6_2&domain=pdf
mailto:lyu@cse.cuhk.edu.hk
mailto:suyx35@mail.sysu.edu.cn
https://doi.org/10.1007/978-3-031-02063-6_2

8 M. R. Lyu and Y. Su

as cloud services are large-scale distributed applications running across thousands
of servers within data centers.

As modern software systems have grown to an unprecedented scale, the tremen-
dous complexity, scaling, and stringent performance of datacenter operations bring
significant reliability challenges. Any cloud outage or breakdown will cause signifi-
cant revenue loss, and harmcustomer trust and company reputation to cloud providers
and service providers [6, 16]. According to Lloyd’s report [21], a major failure that
brings cloud outage for 3–6d could result in a total loss of 19 billion US dollars
revenue, most of which is not be covered by insurance. Worst of all, in a society
highly dependent on IT infrastructure, cloud outages can affect everybody’s life just
like power outages. To this end, cloud resilience is of paramount importance.

Unfortunately, cloud failures leading to performance degradation or service inter-
ruptions have often occurred to major cloud operators. Cloud reliability issues are
mainly due to the fact that tough cloud failures take a long time to mitigate manu-
ally. Cloud systems are actively undergoing continuous feature upgrades and system
evolution by DevOps [9] paradigm, complex service dependency, load balance, and
recovery procedures such as backup and restore; therefore, the statistical properties
of system monitoring data may change from time to time. On-call engineers from
different sectors equipped with multi-location, multi-source and multi-layer compo-
nents have their specific responsibilities. Overall, the real root cause of cloud failures
is hard to locate.

Traditionally, Software Reliability Engineering (SRE) aims to solve software reli-
ability challenges by providing reliability models to track software failures. The
tracked failure rates enable engineers to predict software reliability with analyti-
cal models using two or three parameters. The Handbook of Software Reliability
Engineering [22] examined this process, and introduced the techniques to improve
software reliability, including fault avoidance, fault removal, fault tolerance, and
fault prediction.

This traditional analytical approach is not enough for today’s complicated cloud
software systems since modern cloud systems generate more complex and massive
amounts of data concerning software reliability issues. To serve various users, cloud
provides flexible infrastructure containing threemajor layers: application layer, plat-
form layer, and infrastructure layer, displayed in Fig. 1. On-call engineers inspect the
status of cloud from application and system logs, meter data generated frommultiple
components, and alerts triggered by rule-based monitor. Besides, top cloud systems
provide customer service to collect most incidents, outages, or dissatisfaction from
users. Customer service transfers feedback to on-call engineers. In order to obtain
a comprehensive understanding of failures, on-call engineers from different sectors
establish a war-room to discuss the problem and try to find possible solutions. This
process generates incident tickets.

However, humans are not good at solving complex failure diagnosis problems
associated with big data generated from large-scale cloud systems. But Artificial
Intelligent (AI) algorithms have the opportunity to solve the complicated problems
because AI algorithms are superior to human in big data analysis. For example, the

Intelligent Software Engineering for Reliable Cloud Operations 9

Fig. 1 Cloud systems generate a variety of data

Fig. 2 The overall framework of resilient cloud systems with AIOps

Key Performance Indicator (KPI) “packet number” monitoring the cloud network
may suddenly decrease because of anomalies happening in some network services.
This may indicate a serious failure in the network. We would like to determine what
failures are caused by the anomalies underneath, which is generally indicated by
the sudden increase and drop of KPIs. Human maintainers generally assign different
importance of system performance to distinct KPIs in the cloud. Generally, when
diagnosing failures for large-scale cloud systems, an automated detectionmodel with
flexible importance assignment is more precise and quicker to signify the potential
root cause than human maintainers.

In this chapter,wedescribe our experience on the development ofAIOps (Artificial
Intelligence for IT Operations) framework to tackle several reliability challenges
commonly seen in industrial cloud systems.We provide a general end-to-end pipeline
of intelligent software engineering illustrated in Fig. 2 to conduct anomaly detection,
failure diagnosis, and root cause analysis with multiple sources of heterogeneous
information such as meter data, topology, alert and incident ticket. Specifically, the
root cause analysis in cloud systems differs from the traditional definition in software
reliability engineering that aiming to identify the exact fault of a particular failure. In
cloud systems, it is more practical to narrow down the scope of system components

10 M. R. Lyu and Y. Su

associated with a failure. We also conduct extensive experiments with real-world
large-scale cloud systems fromHuawei to demonstrate the effectiveness of intelligent
software engineering techniques for reliable cloud operations.

2 Anomaly Detection of Key Performance Indicators

2.1 Background

Key Performance Indicators (KPIs) are the most important data in the cloud, which
are leveraged to monitor the health status of a machine, like network traffic, response
delay and CPU usage. Anomaly detection over the KPIs is a critical tool to ensure the
reliability and availability of the system, which aims to discover unexpected events
or rare items in data. Different system components (e.g., microservices, servers) are
tightly coupled, and cloud failures usually trigger anomaly performance in multiple
KPIs. For example, a problematic load balance server is often accompanied by a
burst on both round-trip delay and in-bound traffic rate, which will further increase
CPU utilization.

Recent studies tackle this problem by constructing an m × m KPI inner-product
matrix [36] or a complete graph [37] for m different KPIs to capture the pairwise
KPI interaction, both of which yield anO(m2) computation complexity. A real-world
example is provided in Fig. 3, which is from a public dataset released by [31]. CPU
LOAD and ETH INFLOW are highly correlated as their curves exhibit a very similar

Fig. 3 Multivariate KPIs snippet from server machine dataset

Intelligent Software Engineering for Reliable Cloud Operations 11

trend. The correlated relationship provides an overall picture of the systems’ health
status. For example, in the segment marked as Normal A, we can see a clear spike in
MEMORY USAGE, which would be flagged as an anomaly without a glance at the
other three KPIs. Similar situation happens to segmentNormal B, where boots can be
clearly seen in both CPU LOAD and ETH INFLOW. Therefore, we need to consider
the full set of multivariate KPIs to pursue an accurate anomaly detection, as shown
in segment Anomaly A and Anomaly B. Besides the dependency between KPIs, we
can also leverage historical KPI patterns to reduce false positives. Specifically, in
Fig. 3, all KPIs have witnessed some abnormal spikes in history. However, they do
not necessarily indicate the occurrence of failures.

In industrial systems, hundreds or even thousands of KPIs are being monitored.
The dependencies among KPIs are very sparse, i.e., most KPIs are not or weakly
dependent on other KPIs. Therefore, how to automatically learn the dependencies
among different KPIs is critical towards efficient multivariate KPI anomaly detec-
tion. In the literature, many studies have shifted to anomaly detection on multivariate
KPIs, which mainly resorts to different neural network models. For example, Omni-
Anomaly [31] proposes to learn the normal patterns of multivariate time series by
modeling data distribution through stochastic latent variables. Anomalies are then
determined by reconstruction probabilities. Similarly, Malhotra et al. [24] used an
LSTM-based (long short-termmemory-base) encoder-decoder network to learn time
series’s normal patterns and Zhang et al. [36] used an attention-based convolutional
LSTM network for the learning purpose. Although tremendous progress has been
made, we still observe two major limitations of existing approaches: (1) the inter-
actions among KPIs are not explicitly modeled, and (2) the efficiency falls behind
industrial needs. Specifically, previous approaches [28, 31] detect anomalies onmul-
tivariate KPIs mainly by stacking different types of KPIs into a feature matrix and
feeding it to sophisticated neural network models. Different from previous work, we
argue that by properly modeling the interactions of KPIs along with feature and tem-
poral dimensions, cost-effective neural networkmodels can be leveraged for anomaly
detection.

To overcome the aforementioned limitations, we introduce CMAnomaly illus-
trated in Fig. 4, which is an efficient unsupervised model for anomaly detection over
multivariate KPIs. CMAnomaly consists of four phases, i.e., data preprocessing,
collaborative machine, model training, and anomaly detection. The first phase pre-
processes the data by applying normalization and window sliding. Particularly, the
input types of KPIs can vary depending on the application scenario. In the next phase,
the preprocessed data are fed to the proposed collaborative machine, which is the
core component of CMAnomaly. The collaborativemachine can properly capture the
interactions among multivariate KPIs along with both feature and temporal dimen-
sions. In the third phase, we train a forecasting-based anomaly detection model [10,
18], which detects anomalies based on prediction errors. Finally, the trained model
will be applied to detect anomalies for new observations.

12 M. R. Lyu and Y. Su

Fig. 4 Overall framework of CMAnomaly

2.2 Preprocessing

The input of multivariate KPIs is denoted as X ∈ R
n×m , where n is the number of

differentKPIs andm is the number of observations. The t-th rowof X , denoted as xt =
[x1t , x2t , . . . , xmt], is an m-dimensional vector containing the observation of each KPI
at timestamp t . Similarly, the k-th column of X , denoted as xk = [xk1 , xk2 , . . . , xkn], is
an n-dimensional vector containing the observations of the k-th KPI. Particularly, we
denote xki : j = [xki , xki+1, . . . , x

k
j] as a consecutive sequence of xk from timestamp i to

j . The objective of anomaly detection formultivariateKPIs is to determinewhether or
not a given xt is anomalous, i.e., whether the entity is in abnormal status at timestamp
t . For each timestamp t , our model calculates an anomaly score st ∈ [0, 1], which
represents the probability of xt being anomalous. If st is larger than a pre-defined
threshold θ , xt will be predicted as an anomaly. The ground truth y ∈ R

n is an
n-dimensional vector consisting 0 and 1, where 0 indicates a normal point, and 1
indicates an anomalous one.

Different KPIsmay have distinct scales, for example, theKPImonitoring the CPU
execution, i.e., CPU USAGE, is in the range of 0% to 100%. However, the KPI mon-
itoring the network traffic, i.e., INBOUND PACKAGE RATE can range from zero to
millions of kilobytes. Therefore, data normalization is performed for each individual
KPI to ensure the robustness of our model. We apply max-min normalization to each
individual KPI, i.e., xk , as follows:

xknorm = xk − min(xk)

max(xk) − min(xk)
, (1)

where the values of max(xk) and min(xk) are computed in the training data, which
will then be used for test data normalization. For simplicity, we omit the “norm”
subscript in the following elaboration. The sliding window is to partition KPIs along
the temporal dimension. Particularly, it consists of two attributes, i.e., window size
ω and stride τ . The stride indicates the forwarding distance of the window along the
time axis to generate multivariate KPI windows. As the stride is often smaller than
the window size, there exists overlapping between two consecutive windows. We
denote the s-th sliding window as:.

Xs = [xsτ , xsτ+1, . . . , xsτ+ω−1] (2)

Intelligent Software Engineering for Reliable Cloud Operations 13

where s ∈ [0, 1, 2, . . .]. Xs togetherwith the observations at the next timestampof the
window, i.e., x̂s = xsτ+ω, constitute a pair (Xs, x̂s), where Xs ∈ R

ω×m and x̂s ∈ R
m .

2.3 Multivariate KPIs Interactions

As shown in Fig. 3, historical patterns of KPIs provide important clues for anomaly
detection on multivariate KPIs accurately. To explicitly capture the dependency
between multivariate KPIs and their historical patterns, for each sliding window,
denoted as Xs ∈ R

ω×m , we calculate the pairwise inner product of all KPI feature vec-
tors, i.e., xksτ,sτ+ω−1, k ∈ [1,m], and temporal vectors, i.e., xt , t ∈ [sτ, sτ + ω − 1].

h f = b0 +
m∑

i=1

wi x
i +

m∑

i=1

m∑

j=i+1

〈
xi , x j

〉
viv j (3)

ht = b̂0 +
ω∑

i=1

ŵi xi +
ω∑

i=1

ω∑

j=i+1

〈
xi , x j

〉
v̂i v̂ j (4)

The cross-feature and cross-time KPI interactions, denoted as h f and ht , are formu-
lated as Eqs. 3 and 4, respectively. In Eq.3, b0, wi , v j , v j ∈ R are trainable parame-
ters, xi , x j ∈ R

ω are the i-th and j-th column of Xs with each column representing
all the observations of a KPI in the corresponding window, and < ·, · > is the oper-
ation of inner product. These equations are composed of three terms: the first term
is a trainable bias, the second term is a weighted sum of all KPIs without explicit
interaction, and the third term is the core part of the proposed collaborative machine,
which models the pairwise KPI interactions.

2.4 Collaborative Machine for Anomaly Detection

The last two phases of CMAnomaly are model training and anomaly detection. In the
detection phase, the well-trained model predicts the next KPI values given preceding
observations. In the trainingphase, asmostmultivariateKPIswould reflect the normal
status of an entity, the model will learn the normal patterns of KPIs, i.e., what the
next observations would be given previous ones. Although there could be anomalies
in the training data, they tend to be forgotten by the model as they rarely appear.
Consequently, in the detection phase, the model will predict “normal” KPI values
based on the learned patterns. If the real observations deviate from the predicted ones
by a significant margin, an anomaly may happen, i.e., the entity is not in its normal
status. Therefore, such deviation measures the likelihood of the occurrence of the
anomaly.

14 M. R. Lyu and Y. Su

Our framework supports various types of neural network models for anomaly
detection. The anomaly detection model can be formulated as follows:

h̃i+1 = σ(h̃i X̃i + b̃i), i = 0, 1, . . . , L − 1, (5)

where L is the number of layers of the Multilayer Perceptron (MLP) model, W̃i , b̃i
are trainable parameters with customized size, and σ(x) = max(0, x) is the ReLU
activation function. We simultaneously consider the cross-feature and cross-time
KPI interactions by concatenating h f and ht , which is the input to the model, i.e.,
h̃0 = concat (h f , ht). ŷ = h̃L ∈ R

m is the prediction result produced by the last
layer of the MLP model, which contains the predicted values for all KPIs at the next
timestamp.

Anomaly detection model is optimized by minimizing the following mean square
error (MSE) loss L between the predictions and the ground truth observations:

L =
N∑

i=1

∥∥ŷi − x̂i
∥∥
2 , (6)

where N is the number of training sliding windows. ŷi ∈ R
m and x̂i = xiτ+ω ∈ R

m

are the predicted and ground truth observations for the i-th window, respectively.
With the minimization of loss L during training, CMAnomaly can learn from the

normal patterns in the training data by updating all trainable parameters, e.g., viv j

denoting the interaction weights. After the model is trained, we compute an anomaly
score for each window Xi in the testing data. Then, we first calculate the MSE
between the predicted and ground truth observations, and then apply the sigmoid
function to rescale the score to the range [0, 1], which represents the probability of
the occurrence of an anomaly:

si = φ

(
1

m

∥∥ŷi − x̂i
∥∥
2

)
(7)

where φ(x) = 1
1+e−x is the sigmoid function. To determine whether an anomaly has

happened, a threshold θ should be defined for the anomaly score. The timestamps
with a large anomaly score, i.e., si ≥ θ , should be regarded as anomalous points.

In reality, the threshold can be set by on-site engineers based on their experience.A
large threshold imposes a strict anomaly detection policy, which may miss important
system failures, i.e., low recall. However, a small threshold increases the sensitivity
to KPI changes, resulting in false alarms, i.e., low precision.

Intelligent Software Engineering for Reliable Cloud Operations 15

Table 1 Accuracy comparison on Huawei Cloud dataset

Methods Precision Recall F1

OmniAnomaly 0.6639 0.8382 0.7283

LSTM-VAE 0.8273 0.7436 0.7560

CMAnomlay 0.9179 0.8202 0.8368

2.5 Experiments

In this part, we evaluate CMAnomaly using both public data and industrial data.
We collected real-world KPIs from Huawei Cloud to conduct a more comprehensive
evaluation. Huawei Cloud contains a large number of nodes supporting tens of mil-
lions of users worldwide. Therefore, to provide a stable 24 × 7 service, the status of
each component of the network is closely monitored with KPIs. The engineers can
fix problematic components timely if the anomalies of KPIs can be automatically
detected and reported in real-time. To evaluate our method in a practical scenario,
we collected a 30-day-long KPIs dataset with 13 network components within Jan.
2021. Each of the network components has 70∼200 different types of KPIs. We use
the first 20d of KPIs as the training data and the rest as the testing data. Then, several
experienced engineers were invited to manually label the anomalous points in the
testing data.

To study the effectiveness of CMAnomaly, we compare its performance with two
most effective open-source anomaly detection methods, i.e., LSTM-VAE [28] and
OmniAnomaly [31] on the dataset collected from Huawei Cloud.

The experimental results are shown inTable1. In particular, the precision ofOmni-
Anomaly is the lowest, but the recall is the highest because the complex architecture of
OmniAnomaly incurs more trainable parameters, which makes it easier to overfit the
training data. Therefore, OmniAnomaly is more sensitive to capture more anomalies
but has the most false positive alarms. LSTM-VAE has a more light-weight design
than OmniAnomaly, so LSTM-VAE suffers less overfitting. As a result, LSTM-VAE
only raises the anomaly score when the new observation deviates more from the pre-
diction. In this case, although higher precision is achieved, LSTM-VAEhas the lowest
recall because it cannot effectively find all possible anomalies. CMAnomaly can bal-
ance precision and recall better and achieves the best F1 score, ∼0.08 higher than
the second-best one achieved by LSTM-VAE. The collaborative machine facilitates
CMAnomaly to capture the dependency of the training KPIs effectively. Therefore,
CMAnomaly avoids overfitting the noisy points existing in the training data, e.g.,
usual spikes as shown in Fig. 3. CMAnomaly reports a higher anomaly score only
when the dependent KPIs are anomalous, thus achieving the highest precision.More-
over, CMAnomaly keeps the sensitivity to detect more true positive samples thanks
to its ability to capturing the dependency.

16 M. R. Lyu and Y. Su

3 Service Dependency Mining for Failure Diagnosis

3.1 Background

Service reliability is one of the key challenges that cloud providers have to deal with.
The common practice nowadays is developing and deploying small, independent,
and loosely coupled cloud microservices that collectively serve users’ requests. The
microservices communicate with each other through well-defined APIs. Under this
architecture, microservice management frameworks like Kubernetes will be respon-
sible for managing the life cycles of microservices. Developers can focus on the
application logic instead of the bothering tasks of resource management and fail-
ure recovery. It enables agile development and supports polyglot programming, i.e.,
microservices developedunder different technical stacks canwork together smoothly.

However, the loosely coupled nature of microservices makes it difficult for engi-
neers to conduct systemmaintenance.Differentmicroservices in a large cloud system
are usually developed and managed by separate teams. Each team only has access
to their own services as well as services that are closely related, which means they
only have a local view of the whole system [32]. As a result, failure diagnosis, fault
localization, and performance debugging in a large cloud system become more com-
plex than ever [12, 33]. Despite various fault tolerance mechanisms introduced by
modern cloud systems, it is still possible for minor anomalies tomagnify their impact
and escalate into system outages.

Although microservice management frameworks provide automatic mechanisms
for failure recovery, unplanned service failures may still cause severe cascading
effects. For example, failures of critical services that provide basic request routing
functions will impact the invocation of cloud services, slow down request processing,
and deteriorate customer satisfaction. Therefore, evaluating the impact of service
failures rapidly and accurately is critical to the operation and maintenance of cloud
systems. Knowing the scope of the impact, reliability engineers can emphasis on
services that have more significant impacts on others.

3.2 Tracing Analysis

For commercial cloud providers, it is crucial to troubleshoot and fix failures in a
timely manner because massive user applications may be affected even by a small
service failure [4]. In large-scale cloud systems, a request is usually handled by
multiple chained service invocations. As clues to defective services are hidden in the
intricate network of services, it is difficult for even knowledgeable SRE personnel
to keep track of how a request is processed in the cloud system. All the services and
dependencies in a cloud system collectively construct a directed graph of services,
which is also called a dependency graph. The dependency graph of a cloud system
can be very complicated.

Intelligent Software Engineering for Reliable Cloud Operations 17

Fig. 5 A span generated by
the train-ticket benchmark

Distributed tracing provides an approach to monitor the execution path of each
request in a dependency graph. For chained service invocations, e.g., service A
invokes service B and service B invokes service C, it is important to know the status of
each service invocation, including the result, the duration of execution, etc. By adding
hooks to the services and microservices of the cloud system, a distributed tracing
system [11] can record the contextual information of each service invocation. Such
records are called span logs, abbreviated as spans. A span represents a logical unit
of execution that is handled by a microservice in a cloud system. All the spans that
serve for the same request collectively form a directed graph of spans. Such directed
graph of spans generated by request is called a piece of trace log, abbreviated as a
trace. With a trace, engineers can track how the request propagates through the
cloud system. Collectively analyzing the traces of the entire cloud system can help
engineers obtain in-depth latency reports that could assist failure diagnosis, fault
localization, and surface performance degradation in the cloud system.

Although the actual implementation of distributed tracing system varies a lot,
the types of information they record are similar. For clarity, we formally describe
the attributes of spans as follows. Suppose we have a trace T composed of spans
{s1, s2, . . . , sn}, a span si ∈ T contains the following attributes.

sidi The ID of span si ,
s pidi The ID of the parent span of si ,
stidi The ID of the trace that si belongs to,
sname
i The name of service/microservice corresponding to si ,
stsi The time stamp of si ,
sdi The duration of execution of si , and
sri The result of execution of si .

Figure5 illustrates a span generated by the train-ticket benchmark [38]. It means
that service ts-preserve-service was invoked at 04:58 on April 17, 2020.
The duration of execution is 1126 μs and the execution result is SUCCESS.

18 M. R. Lyu and Y. Su

Fig. 6 The statuses of service A, B and C. A invokes B and C but B has a greater effect on A

3.3 Intensity of Service Dependency

Existing tools treat the dependency as a binary relation, i.e., if the caller service
invokes the callee service then the caller is dependent on the callee. We suggest that
this binary dependency metric is not fine-grained enough for cloud maintenance.
Figure6 shows the statuses of three services1 A, B, and C in Huawei Cloud. Service
A invokes both service B and service C. Service B encountered failures. The x-axis
represents time inminute. The y-axes represent the number of invocations perminute,
the average duration of invocations per minute, and the error rate per minute of A,
B, and C. Although service A invokes service B and service C, it is obvious that the
statuses of B and C influence the status of A in different degrees.

The reason is that the functionalities provided by service A and B are creating vir-
tual machines, and allocating block storage, respectively. Creating a virtual machine
requires allocating one ormore block storage. Thus, the failure of serviceB inevitably
affects service A. On the contrary, due to the fault tolerance mechanism of service
A, the failure of service C will not affect service A significantly.

1 For confidentiality reasons, we cannot reveal the names of the related services.

Intelligent Software Engineering for Reliable Cloud Operations 19

Thus, it is more accurate to say that the intensity of dependency between service A
and serviceB is higher than the intensity of dependency between serviceA and service
C. Ideally, if the development team of every cloud microservice accurately provide
the intensity of dependencies for every dependent service, the failure diagnosis could
be accelerated. On-call engineers (OCEs) can prioritize the services that exhibit the
higher intensity of dependency instead of inspecting all the dependent services if
they have accurate intensity information. However, due to the complexity and the fast
evolving nature of cloud systems [2], manuallymaintaining the dependency relations
with intensity is very difficult. As a result, OCEs often struggle in diagnosing failures
due to the lack of intensities.

3.4 Dependency Strength Mining

In order to relieve the pressure on OCEs, we introduce a framework called AID [35]
to predict the Aggregated Intensity of service Dependency in large-scale cloud sys-
tems. The intuition is that direct service invocation incurs direct dependency to some
degree. To properly capture service dependency, AID consists of three steps: can-
didate selection, status generation, and intensity prediction. We will introduce the
details in the following parts:

3.4.1 Candidate Selection

Given the raw traces, AID first generates a set of candidate service pairs (P,C)

where service P directly invokes service C. In general, direct service invocations
can be divided into two categories, i.e., synchronous invocations and asynchronous
invocations. Modern tracing mechanisms can keep track of both synchronous and
asynchronous invocations [27]. Given all the raw traces of a cloud system, in this
step, we generate a candidate dependency set Cand. The candidate dependency set
Cand contains service invocation pairs (P1,C1), (P2,C2), · · · , (Pn,Cn). Each pair
(Pi ,Ci) in the candidate dependency set denotes that the service named Pi invokes
the service namedCi at least once. Therefore, service Pi depends on serviceCi . This
step is to shrink the search space of possible dependent pairs because the service
invocations indicate direct dependencies.

3.4.2 Service Status Generation

The status of one service is composed of three aspects of dependency, i.e., number
of invocations, duration of invocations, and error of invocations. Each aspect of the
service’s status contains one or more KPIs, depending on the actual implementation
of the distributed tracing system. As service invocations occur repeatedly, the three
statuses of service invocations can derive three aspects of service dependency:

20 M. R. Lyu and Y. Su

Number of Invocations The number of invocations from the caller to the callee.
Duration of Invocations The duration of invocations.
Error of Invocations The number of successful invocations from the caller to

the callee.

Inspired by the common practice in cloud monitoring [1], we distribute the spans
of one service into many bins according to the spans’ timestamps. Each bin accepts
spans whose timestamp is in a short, fixed-length period. We denote the length of
the short period as τ . For example, the span shown in Fig. 5 will be put in the bin
of ts-preserve-service at time 04:58, 17 April 2020. We can then represent
the status of a cloud service in a short period by the statistical indicators of all the
spans in the corresponding bin. Formally, given all the spans in the cloud system
over a long period T , we first initiateM × N empty bins of the predefined size τ .M
is the number of microservices. N, determined by T

τ
, is the number of bins. Then we

distribute all spans into different bins according to their timestamp sts and service
name sname. After that, we can calculate the following three types of indicators as
the KPIs for each bin.

invomt Total number of invocations (spans) in the bin;
errmt Error rate of the bin, i.e., the number of errors divided by the number of

invocations;
durmt Averaged duration of all spans in the bin;

where t is the time of the bin and m is the service name of the bin. If a service is
not invoked in a particular bin (i.e., the corresponding bin is empty), all the KPIs
will be zero. In this scenario, we obtain the KPIs of every service S at every period
t . Ordering the bins by t , we get three time series of KPIs for each cloud service,
denoted as invoS , err S , and dur S as the status of each cloud service.

3.4.3 Intensity Prediction

The intensity prediction steps quantitatively predict the intensity of dependency by
measuring the similarity between two service’s statuses. The similarity between
two service’s statuses is a normalized and weighted average of the similarity of all
the KPIs of the two services. We calculate the similarity between two KPIs by a
dynamic time warping algorithm (DTW) [19] and aggregate all the similarities to
get the overall similarity.

DTW automatically warps the time in chronological order to make the two status
series as similar as possible and get the similarity by summing the cost of warping. It
utilizes dynamic programming to calculate an optimal matching between two status
series. Given two services P , C , and their status series invoP , invoC , err P , errC ,
dur P , and durC , the warping from the callee C to the caller P is specially designed
for the cloud environment.

For all (Pi ,Ci) ∈ Cand, we calculate similarities between their status series,
denoted as d(Pi ,Ci)

invo , d(Pi ,Ci)
err , and d(Pi ,Ci)

dur . We normalize the similarity across the

Intelligent Software Engineering for Reliable Cloud Operations 21

whole candidate set with a min-max normalization with Eq.8, where status ∈
{invo, err, dur}.

d(Pi ,Ci)
status = d(Pi ,Ci)

status − min(d(P,C)
status)

max(d(P,C)
status) − min(d(P,C)

status)
(8)

The intensity of dependency between Pi and Ci is the average similarity of all
three similarities between their status series.

I (Pi ,Ci) = 1

3

∑

status∈S
d(Pi ,Ci)
status , S = {invo, err, dur} (9)

Finally, we can build the dependency graph with intensity from the candidate set
and the corresponding intensity values.

3.5 Experiments

In this part, we evaluate AID on both simulated dataset and industrial dataset from
Huawei Cloud system. For the simulated dataset, we deploy train-ticket [38], an
open-source microservice benchmark, for data collection. Apart from the simulated
dataset, we also collected a 7-day-long trace dataset with 192 microservices in April
2021 from a region of Huawei Cloud to evaluate AID. Table2 displays the detailed
information about these two datasets.

Since there is no existing work that measures the intensity of service dependency,
we employ Pearson correlation coefficient, Spearman correlation coefficient, and
Kendall Rank correlation coefficient as the baseline. Particularly, we calculate corre-
lation on the status series of a candidate dependency pair (P,C). For the baselines,
we directly use the implementation fromPython packagescipy.2 Wemap the corre-
lation to [0, 1] with the function f (x) = (x + 1)/2. The intensities of dependencies
are then produced in the same way as Eq.9.

We employ Cross Entropy (CE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE), as calculated in Eq.10 to evaluate the effectiveness of AID
in predicting the intensity of dependency. Specifically, cross entropy calculates the
difference between the probability distributions of the label and the prediction. Mean
absolute error and root mean squared error measure the absolute and squared error.
Lower CE, MAE, and RMSE values indicate a better prediction.

2 https://www.scipy.org/.

https://www.scipy.org/

