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Preface

In recent decades, advancements in Blockchain and quantum technology have been
the subject of technical, professional and business discussions in a variety of venues.
As a result of these technologies and their combination with other valuable technolo-
gies of recent years, several applications and abilities have been created, including the
ability to provide transparent and redundant safe, responsible, and efficient settings.
For example, Blockchain technology provides a secure, distributed, peer-to-peer and
decentralised network that is based on sophisticated cryptographic primitives and
protocols thatmay be used to transact in real time. These cryptographic primitives and
protocols aid in the achievement of high-security needs that are resource-dependent.
Quantum physics and Blockchain solutions may now bemerged with other technolo-
gies. These include Internet of Things (IoT), cloud/fog/edge computing, Serverless
computing and Next Generation Networks. Incorporating diverse technologies
requires comparative study, rules and application-specific use. Thus, our work
encourages people from other sectors to develop technology-integrated solutions
that are low-cost, high-quality, secure and fulfil future expectations. As a conclusion,
this book helps readers and practitioners develop abilities in developing next gener-
ation systems based on security cryptographic primitives and protocols. Finally,
IT professionals may use this study to better understand the need for technological
transitions and quantum computing activities. Constructing quantum computing
systems and communicating with them are novel technological features that may
greatly affect future applications. Among research challenges, this book provides a
comprehensive study over those approaches that improve quantum computing and
cryptographyprotocols. For example,QuantumKeyDistributionmethods are studied
and improved using security proofs against individual and collective computing
environments. These computing environments can help in producingmore than a few
GB/s of security bits in the computing world that are sufficient to protect the network
against quantum attacks. This book provides strong knowledge insight into various
issues identified about Quantum and Blockchain networks and helps to develop
solutions towards trust management in a secure network, quantum computing and
quantum science, quantummemories, quantum repeaters and many more. This book
aims to provide technical insight into Quantum and Blockchain technology aspects
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vi Preface

such as the current state-of-the-art requirements, performance, evaluation and
challenging aspects, to the readers in one place. The book is organised as follows:

Chapter “Quantum Technologies I: Information, Communication, and Computa-
tion” presents fundamental quantum information science ideas andmethods and how
these concepts and tools may be helpful to quantum Blockchain technology. Starting
with quantummechanics postulates, which define the theory’s fundamental laws that
deviate from classical mechanics. Next, this chapter introduces the abstract concepts
of quantum information science. Next, this work presented multiple controlled Tooli
gates, which may be used in quantum computing and quantum Blockchain. Further,
this chapter discusses quantum error correction, a method for protecting qubits
(quantum information units) from environmental noise and developing fault-tolerant
quantum technology.

Chapter “Quantum Technologies II: Cryptography, Blockchains, and Sensing”
expands on the concept of quantum technology introduced in the preceding chapter.
The main responsibilities of quantum information processing are quantum commu-
nication and quantum sensing. Quantum data is further separated into quantum
cryptography and quantum Blockchain. Quantum cryptography discusses the secu-
rity of quantum cryptosystems. Quantum Blockchain is a decentralised, distributed
and public digital ledger in quantum world. Finally, quantum sensing emerges from
quantum mechanical particles/systems like photons.

Chapter “Empirical Analysis of Security Enabled Quantum Computing for Cloud
Environment” studies that quantum cloud computing is a popular tool in the digital
industry. Most quantum experts think it will improve cloud services. It includes
installing quantum computation sources in a cloud environment to tackle atomic
plus software-based cloud computing. Further, this work presented an analysis
of the advantages and disadvantages of utilising quantum computing with cloud
systems. The same goes for recent updates and quantum as a cloud service. This
work showcases quantum services as well.

Chapter “Photonic Quantum Computing” focuses on photonics quantum
computing and its uses. Due to minimal or negligible loss and ability to work at
ambient temperature, the Photonic Quantum Computers meet five of Vincenzo’s
seven requirements. As a result, substantial research has been done on the prac-
tical implementation of scalable Photonic Quantum Computers. Quantum Machine
Learning, Quantum Cryptography and Quantum Key Distribution are all uses of
Photonic Quantum Computers.

Chapter “A Conceptual Framework for Scaling and Security in Serverless Envi-
ronments Using Blockchain and Quantum Key Distribution” explains that today,
Serverless computing is a popular deployment strategy. It is a concept where the
execution environment is not predefined but scaled on demand. Cloud computing,
which relies on this concept, has gained importance. This chapter has explored cloud
computing concepts, Blockchain concepts and networking concepts for futuristic
applications.
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Chapter “Implications of Quantum Science on Industry 4.0: Challenges
and Opportunities” explains the current capability of quantum leaves some processes
vulnerable, yet its immense power of computation opens doors to amazing develop-
ments in the field. This review discusses the consequences in various domains, and
a comprehensive road map of future occurrences is drawn.

Chapter “Quantum Generative Modelling and Its Use Cases” discusses that a
generative model shows how a probability model samples a dataset. It also includes
techniques for generative model optimization and quantum generative model-based.
The variational quantumEigen solver is explained for molecular simulation and opti-
mization. Our quantum generative model can generate pharmaceuticals and financial
option pricing. Several applications have compared quantum generator algorithms to
traditional machine learning techniques. Quantum generator algorithms outperform
traditional machine learning algorithms. This brings us to quantum advancement in
Artificial Intelligence (AI).

Chapter “A Comprehensive Overview of Quantum Internet: Architecture,
Protocol and Challenges” presents that the Quantum Internet is an interconnected
network of distant quantum devices. The main benefits of Quantum Internet are
its independence from traditional internet, safe data transfer and cutting-edge
bling computing. This work examines the foundations of Quantum Computing and
Quantum Internet. Further, it explores quantum entanglement, quantum bits and
quantum states.

Chapter “Quantum Solutions to Possible Challenges of Blockchain Technology”
presents that the quantum computing has made existing Blockchain cryptosys-
tems more vulnerable. Modern algorithms like Shor’s massive integer factorization
and Grover’s unstructured database search are exponentially faster than quantum
methods. Public-key and asymmetric key cryptosystems are both susceptible,
needing quantum-secure encryption. Further, it investigates conventional scalability
and security primitives. The key sizes, hash lengths, execution times, computing
overhead, and energy efficiency of Bitcoin, Ethereum, and Corda are listed and
compared.

Chapter “Futuristic Technologies for Supply Chain Management: A Survey”
prepares thorough and critical insights into the present advances and future visions of
technologies associated with supply chain management such as IoT, Artificial Intel-
ligence/Machine Learning, Blockchain and Quantum Computing. Today’s supply
chain is more complex than ever, combining people, processes and technology.
Businesses must balance resilience and profitability in the face of global pandemics
like Ebola. Customer and supplier network awareness may help many organisa-
tions. Along with AI and machine learning, supply chain organisations need IoT to
automate product monitoring, fleet tracking and other processes.

Chapter “Quantum Computing and Quantum Blockchain: Recent Advance-
ments, Analysis and Future Directions” examines recent developments in Quantum
Computing (QC). This study explores quantum physics, quantum gates and quantum
circuits. A case study that illustrates the QC-based concepts is presented.
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Chapter “Secure Blockchain-Based Mental Healthcare Framework:
—A Paradigm Shift from Traditional to Advanced Analytics” educates the
reader about the Blockchain technology, its influence on mental healthcare, and to
bring attention to a conceptual framework for safe mental health analytics that will
be implemented in nearby future. It’s important to keep in mind that figuring out the
full advantages of Blockchain technology is still a work in progress.

This book servers as an essential knowledge resource for the students at the grad-
uate level from different engineering disciplines such as Physics, Computer Science
and Engineering, Applied Computer science, space engineering, Data Science, and
Business Analytics. This book acts as a bridging information resource between
basic concepts and advanced level contents from technical experts to quantum and
Blockchain communities and hobbyists towards enhancing their knowledge and
proficiency. This book facilitates the research group to publish novelwork towards the
advancement of emerging technologies in applications of quantum and Blockchain
disciplines.

Dehradun, India
London, UK
Auburn, WA, USA

Adarsh Kumar
Sukhpal Singh Gill

Ajith Abraham
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Quantum Technologies I: Information,
Communication, and Computation

Emilio Peláez, Minh Pham, and U. Shrikant

Abstract In this chapter, we introduce some of the notions of quantum information
science including aspects of information, information security, entanglement states,
quantum gates, teleportation, direct secure communication, quantum secret sharing,
quantum noise, quantum operations, quantum error correction, quantum circuits and
quantum Toffoli gate. Most of these aspects are of importance in quantum enhanced
technologies including quantum blockchain. The objective of this chapter is to intro-
duce the basic notions of quantum information science aspects with its real-time
need and usage, including some notes on how the above mentioned concepts and
tools might be helpful in quantum blockchain technology. The chapter is organized
into three major sections as follows. Starting from postulates of quantummechanics,
which set the basic rules of the theory which drastically deviates from the classical
mechanics. Then we introduce, in Sect. 1 the basic notions of quantum information
(QI) science as described in the abstract. Section 2 is dedicated to multiple controlled
Toffoli gate, which may find its application in may areas of quantum computing and
also in quantum blockchain. Section 3 is dedicated to certain aspects of quantum
error correction, a scheme to protect qubits (units of quantum information) from
environmental noise, which helps develop fault-tolerant quantum technologies. In
Conclusion section, we note how the content in this chapter might be relevant to
quantum blockchain technology. A table of symbols is given in Appendix.
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1 Quantum Information

Quantum information (QI) science [1] is now attracting scientists from different
disciplines. Last decade has been intense for QI science, in theory and even in exper-
iments. There have been announcements by various companies and academia about
achieving the so-called “quantum supremacy”, a term coined by John Preskill. On
the one hand, a quantum computer is purported to outperform any existing classi-
cal (digital) one, which is still a debated topic today. However, there are instances
of true quantum supremacy that challenges any classical algorithm even in theory.
On the other hand, unconditional security provided by quantum cryptography holds
enormous promise for future quantum technologies and secure communication. Not
to mention, very long distance and also satellite based quantum key distribution have
been achieved. Currently, we are living in the Noisy Intermediate Scale Quantum
(NISQ) era [2] where NISQ devices are already in use for academic and industrial
purposes.

It pertinent to point out that quantum information finds its utility in foundations
of physics, such as condensed matter theory, statistical mechanics, thermodynamics,
black hole information paradox, foundations of quantum theory, and approaches to
solving the long-standing puzzle of finding a quantum theory of gravity including
string theory throughAdS/CFTcorrespondence, to name a few. It provides a universal
language to study theories without having to worry about what physical system one is
using. For example, a quantum state (in discrete variable setting) is a density operator
whether we are talking in terms of non-relativistic or relativistic quantum theory. The
wonder about quantum theory is that it finds enormous applications in QI science,
yet remains mysterious at the foundational level.

However, the aim and scope of this section of the chapter is restricted to introduce
the basic notions of QI science. The reader is expected to have basic knowledge in
quantum mechanics and linear algebra, and some basics of probability theory. We
do not hope to cover all the topics in this section but only basics of QI that finds
application in quantum blockchain technology. Quick instances of application to
quantum cryptography and communication will be mentioned.

1.1 Postulates of Quantum Mechanics

Here we will take density matrix approach to quantum mechanics since it provides
the most generic language for QI theory.

States and operators. A quantum state is given by a vector in a Hilbert space. A
state is is more generally represented by a density matrix with the properties that it
is hermitian: ρ = ρ†, has unit trace: Tr(ρ) = 1, and is positive semi-definite: ρ ≥ 0.
Since every hermitian operator has a spectral decomposition, the state can be written
as ρ = ∑

i λi |ei〉 〈ei|. Here, |ei〉 are the eigenvectors of ρ with the corresponding
eigenvalues λi, with the requirement that

∑
i λi = 1 and 0 ≤ λi ≤ 1. All observables
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are necessarily Hermitian operators and hence possess real eigenvalues. This is in
conformity with what one sees in real experiments. An average of an observable is
given by 〈O〉 = Tr(Oρ).

Mixed states are those for which Tr(ρ2) < 1 and pure states are those for which
Tr(ρ2) = 1.We will later see that under a noisy evolution, a pure state is transformed
into a mixed state, hence the density matrix formalism provides the most generic lan-
guage for QI and the theories that are statistical in nature.

Dynamics. Quantum dynamics is given by a unitary matrix which takes a quan-
tum state to a quantum state: ρ ′ = UρU †, where U = exp{−iHt/�} is the unitary
matrix with H being the Hamiltonian which is the generator of translation in time.
The dynamics are unitary and reversible only for a closed system and a unitary oper-
ator maps orthogonal states to orthogonal states. We shall later see that for a more
general (such as noisy) evolution, the dynamics need not be unitary and reversible.

Measurement and Probabilities. A measurement in quantum mechanics is given
by the set of measurement operators {Mi} satisfying∑i M

†M ≤ 1. The probability
of obtaining an outcome i and the updated state after measurement, respectively, are
given by

p(i) = Tr[MiρM
†
i ] ; ρ → ρ ′ = MiρM

†
i

p(i)
. (1)

The theory of measurements in quantum mechanics involves two types: projec-
tive operator measure (PVM) and positive operator valued measure (POVM). In fact,
measurement is an irreversible process through which one learns the state of the sys-
tem. Once measured, the state irreversibly collapses to a one of the basis states in
which the measured state in expanded into. What quantum theory predicts is the
probability of getting a particular basis state which is revealed only after measure-
ment. Quantummeasurement indeed acts as a bridge between quantum and classical
worlds. Once measured, collapsing the quantum state, quantum information reduces
to classical information!

Composite systems. A multipartite state is given by the tensor product of indi-
vidual parts. For example, a generic two qubit state may be given by |ψ〉AB =∑

i,j pij |φi〉 ⊗ ∣
∣φj
〉
, where ⊗ represents the tensor product. A multipartite state is

said to be separable if it can be written as a tensor product of individual parts. How-
ever, quantum mechanics allows for states that cannot be written as a tensor product
ofmarginal states, and the particles represented by such a non-separable joint state are
said to be quantum correlated. Examples will be introduced in subsequent sections.
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1.2 Classical and Quantum Information

Classical and quantum information are fundamentally different [1, 3]. The basic
unit of classical information is a bit such as a logical/physical 0 or a 1. Quantum
information talks of information in termsof a “quantumbit”,qubitwhich is a quantum

superposition of two states: |qubit〉 = 1√
2
(|0〉 + |1〉), where |0〉 =

[
1
0

]

and |1〉 =
[
0
1

]

. These matrices may be thought of as corresponding to the orthogonal states of

a two-level quantum system such as polarization degrees of a photon or spin degrees
of an electron. In fact, these degrees of freedom define what type of quantum system
we are talking about, and to be more precise the dimension determines the type of the
system. In this subsection we will define some of the main measures of information,
classical and quantum. And further mention some of the uses of these definitions in
quantum information science.

In 1948, Shannon [4] gave an abstract theory of information which revolution-
ized the field of information science. Given a binary sequence of bits, which occur
with some probability pi, then the information contained in the signal is simply
I = −∑i log pi. This tells us that the less probable an event is the more informa-
tion it contains! Generally, such an abstract theory is able to provide a language for
information processing which doesn’t depend on what physical systems are being
used. It is now well known that information is physical in the sense that, quoting
Landauer [5], “information is not an abstract entity but exists only through a physical
representation”, and hence limited by laws of physics.

As noted earlier, classical information is represented generally by binary bits 0
and 1. Classical computation follows the Boolean algebra. We shall not dwell much
on classical computation here and we will focus on the ingredients that are useful
in quantum communication and cryptography. Classical communication is done by
encoding these bits into physical systems and sent down a communication channel.
Most commonly used form of communication is using electromagnetic waves while
the communication channel being free air or an optical fiber cable.

In classical information theory [4, 6], information in a signal is encoded as clas-
sical bits corresponding to events which occur with certain probability. Consider a
random variable A ∈ {a1, a2...}, called the source with symbols a1, a2... and so on,
which occur with probability p1, p2... and so on, respectively. Then the Shannon
entropy (SE), which quantifies information in A, given as the negative average of the
logarithm of the probability:

H (A) = −
∑

a

p(A = a) log(p(A = a)). (2)

Here,H (A) is SE and p(A = a) is the probability with which the random variable
A takes the random value a. The logarithm is always taken to be base 2, unless
otherwise stated. Based on the above definition, one can go on defining various
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measures of information originating from more than one source, say the random
variables A and B. Conditional entropy (CE) quantifies the amount of information
gained by measuring A when that of Y is known:

H (A|B) = −
∑

a,b

p(a|b) log[p(a|b)]. (3)

Joint entropy (JE) of A and B is given by the information gained from measuring
both A and B:

H (A,B) = −
∑

a,b

p(a, b) log[p(a, b)] (4)

where p(a, b) is the joint probability distribution of A and B. JE actually mea-
sures total uncertainty about A,B. In fact, CE and JE are related by the expression
H (A,B) = H (A) + H (A|B). And Shannon entropy has the sub-additivity property
given by H (A,B) ≤ H (A) + H (B), with the inequality holding when A and B are
dependent and equality holding when they are independent.

Since a quantum state can be thought of as a compendium of probabilities, by
simply replacing probability distribution with the density matrix, one can write down
the von Neumann entropy: S = −Tr(ρ log ρ). Since every Hermitian operator is a
normal operator, it can be given a spectral decomposition (ρ = ∑

i pi |i〉 〈i|) and
hence von Neumann entropy reduces to Shannon entropy (2) in the basis {|i〉}, which
are the eigenvectors of ρ, and pi are the eigenvalues of the operator ρ.

Quantum version of every definition of the classical entropy measures can
be obtained by replacing the classical probability distribution (pi) with the den-
sity matrix (ρ) and summation

∑
i with Trace operation. For example, condi-

tional entropy is S(ρA|ρB) = S(ρAB) − S(ρA), where S(ρA) = −Tr(ρA log ρA) and
S(ρAB) = −TrρAB log ρAB, is the joint entropy of A and B.

1.2.1 Distance Measures and Fidelity

A common question in classical information theory is to ask how close any two
probability distributions are and howwell can one tell them apart. A distancemeasure
tells how much two probability distributions differ. In classical information theory,
one learns about Kolmogorov distance [1]: given two probability distributions p
and q, the distance between them is given by d(p, q) = 1

2

∑
i |pi − qi|. Whereas in

quantum information theory, a number of equivalent distance measures are defined.
For example, trace distance between any two quantum states ρ1 and ρ2 is defined as

D(ρ1, ρ2) = 1

2
‖(ρ1 − ρ2)‖1 (5)
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where ‖A‖1 = √
A†A is the L1 norm or trace norm of an operator A. Trace distance in

fact gives a maximum bound on how much information one can reliably send down
a quantum channel while the distance is taken between the states �[ρ] and ρ, where
� is the quantum channel.1

One can also define a measure to quantify how close two states are which is given
by the fidelity: F = Tr(ρ1ρ2). Fidelity has other useful forms such as the one due to
R Josza:

F = (Tr
√√

ρ2ρ1
√

ρ2)
2. (6)

Uhlmann’s theorem for fidelity states that given a purification
∣
∣φρ1

〉
of the a state

ρ1

∣
∣φρ1

〉 =
k∑

i=1

√
pi |i〉 ⊗ |i〉 (7)

where {|i〉} are the orthonormal basis inHk , then the fidelity

F(ρ1, ρ2) = max|φρ1〉
|〈φρ1 |φρ2〉|2 (8)

quantifies the maximum overlap between purifications. Interestingly, trace distance
(5) is an upper bound of the fidelity:

F(ρ1, ρ2) ≤ 1 − 1

4
‖ρ1 − ρ2‖2. (9)

Anotherwell-knowndistancemeasure isBures distance:B =
√
2 − 2

√
F(ρ1, ρ2),

where F(ρ1, ρ2) is the fidelity given in Eq. (6).

1.2.2 Entangled States

Quantum entanglement [7] is a type of spatial correlation between quantum systems
that can not be created with classical resources. It finds applications in many areas
of quantum information science, specifically quantum communication and cryptog-
raphy.

An example of a spatially quantum-correlated state is an entangled (Bell) state:

|φ〉ij = 1√
2
(|0j〉 + (−1)i)

∣
∣1j̄
〉

(10)

1 We shall define what a quantum channel is in a moment.
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Here, when |j〉 = |0〉, ∣∣j̄〉 = |1〉. The above four Bell states |φ〉ij are orthonormal
and form the so-called Bell basis {|φ〉00 , |φ〉01 , |φ〉10 , |φ〉11}. However, there are
other special class of mixed entangled states such as Werner state: a convex mixture
of the four Bell states given in (10)

|�〉Werner = f |φ〉00 + 1

3
(1 − f )(|φ〉01 + |φ〉10 + |φ〉11) (11)

which is entangled only for 2
3 ≤ f ≤ 1. This shows that a superposition of maximally

entangled states need not be maximally entangled.
Even today, multi-particle entanglement theory is not fully developed. However,

there are a class of states, called GHZ2 states, which find applications in quantum
information science. A multi-qubit GHZ state given by [8]

|GHZ〉 = 1√
2
(|000 · · · 0〉 + |111 · · · 1〉). (12)

Here, the notion |000 · · · 0〉 ≡ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉. Another class of mul-
tipartite entangled state, that finds numerous applications, is the W state. A simple
3-qubit W state is given by [9]

|W 〉 = 1√
2
(|001〉 + |010〉 + |100〉), (13)

GHZ and W states can be generalized for arbitrary higher (finite) dimensional
systems, which we omit in this section for simplicity.

Entanglement need not necessarily be between only discrete variables. One can
even create hybrid states of particles that are entangled between their continuous and
discrete degrees of freedom. Entangled states, which were of theoretical interest, are
now being exploited as resources in quantum computing [10]. Another class of states
are the hyper-entangled states [11, 12] in which two particles are entangled in more
than one discrete degrees of freedom.

1.2.3 Mutual Information, Holevo Bound and Information Security

Let A and B be two systems with corresponding quantum states ρA and ρB, respec-
tively. Quantum mutual information quantifies the amount of information common
to both systems. Moreover, it is the measure of correlations between the two system
states. It is given by [1]

I(A : B) = S(A) + S(B) − S(A,B) (14)

2 This abbreviation stands for the authors Greenberger, Horne , and Zeilinger and independently
due to Mermin.
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where S(A : B) is the joint entropy. Now suppose Alice wants to send information to
Bob via general mixtures ρi prepared with probabilities pi. This situation can occur
when Alice sends pure states |ψ〉i down a noisy quantum channel, due to which the
pure state becomes a mixed state. The total message is given by ρ = ∑

i piρi. Given
that, how much information Bob can decode on his side? The amount of classical
information he can extract is bounded by

I(A : B) ≤ S(ρ) −
∑

i

piS(ρi). (15)

The right hand side is called Holevo information or the χ quantity. The amount of
classical information that can be encoded in, and hence extracted from, a quantum
system is upper bounded by χ quantity.

In quantum cryptography and communication, a protocol is provably secure if
the mutual information between the legitimate parties I(A : B) is greater than that
between Alice and the eavesdropper, Eve, i.e., I(A : B) > I(A : E) which leads to
positive secure key rate: κ = I(A : B) − I(A : E) > 0. However, this kind of security
is in general true only for individual attacks, where Eve attacks the particle at every
round of communication.More generally, Eve can adopt a strategywhere she chooses
to attack all the particles at the end, which is called the collective attack. In such a
case the secure key rate is given by κ = I(A : B) − χ(E), where χ(E) is the Holevo
information learned by Eve.

The above definition of information security of quantum key distribution based
on mutual information is not “composable”. It is in the sense that it is valid if one
is restricted to only one cryptosystem. When more than one cryptosytems are used,
one needs a composable definition. However, for many general purposes, it suffices
to use the above definitions.

1.2.4 The No-Cloning Theorem

No cloning theorem states that given a quantum state |ψ〉, there is no unitary operator
such thatU |φ〉 → |φ〉 |φ〉. The proof the theorem ultimately stems from the linearity
of quantum mechanics. Let us assume that there exists a unitary U which clones the
state |φ〉 such thatU |ψ〉 = |φ〉 ⊗ |φ〉. If |φ1〉 = |0〉, thenU |0〉 = |0〉 |0〉. However, if
the state is unknown i.e., an arbitrary superposition |φ〉 = α |φ1〉 + β |φ2〉, then due
to linearity the copying machine should output U |φ〉 = |α|2 |φ1φ1〉 + |β|2 |φ2φ2〉
which is not the same as

|ψ〉 ⊗ |ψ〉 = (α |φ1〉 + β |φ2〉) ⊗ (α |φ1〉 + β |φ2〉)
= |α|2 |φ1φ1〉 + |β|2 |φ2φ2〉 + α∗β |φ1φ2〉 + β∗α |φ2φ1〉 . (16)

In other words, no cloning theorem states that an unknown quantum state cannot
be cloned perfectly. Once measured, it collapses into a classical state which then
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can be obviously cloned. No cloning theorem also says that a pair of non-orthogonal
states can’t be copiedwith perfect fidelity since they can’t be reliably distinguished in
a measurement. Letψ1 andψ2 be two orthogonal states. ThenU |ψ1〉 = |ψ1〉 ⊗ |ψ1〉
andU |ψ2〉 = |ψ2〉 ⊗ |ψ2〉. Now, the overlap between the two states before and after
cloning should be equal i.e. 〈ψ1|ψ2〉 = (〈ψ1|ψ2〉)2 which is possible only when
either both states are same, or both are orthogonal. For example, when |ψ1〉 = |+〉 =
1√
2
(|0〉 + |1〉) and |ψ2〉 = |0〉, these two states cannot be cloned with perfect fidelity

because they are not orthogonal to each other.
No cloning has important and fundamental implications in quantum cryptogra-

phy [13]. An eavesdropper won’t be able to copy a quantum state without producing
detectable disturbance, which then can be detected by the legitimate parties whowish
to communicate secretly. More the disturbance one creates during a measurement
process, the more information one will be able to gather about the quantum system
being disturbed. This is at the heart of cryptographic security. The more an eaves-
dropper gets information by her measurements, the more she disturbs the system,
hence gets caught in the process. However, there are necessary conditions that the
communicating parties need to ensure for such a situation. For example, they need
to randomly switch their basis with which they encode information in the system,
and a classical public channel (assumed to be authentic) through which they share
their basis information rather than measurement outcome.

1.2.5 Quantum Gates and Operations

In quantum computing, circuit formalism is most often preferred. One can realize a
task by performing quantum gates on qubits. One of the important aspect to compare
between classical and quantum computing is the notion of a universal gate set [1]. In
classical theory of computation, a set of ANDandNOTgate together suffice to form a
universal set. Interestingly, a Toffoli gate alone is sufficient for universality, and so is
the Fredkin gate. Quite generally, a logic gate is a function f : {0, 1}i → {0, 1}j, with
i inputs and j outputs. For example, an exclusive-ORgate is given by 2-input-1-output
map: XOR : {x, y} → x ⊕ y, where ⊕ represents addition modulo 2.

A quantum circuit is made of gates which transform an input state to an output
state, and of wires that carry the quantum information via quantum states. Wires
carry the bits around in space and time. A simplest set of quantum gates are the qubit
gates. In fact, a set of all single qubit gates and a single two qubit gate suffice to form
a universal set. It means that any qubit quantum gate as well as qubit circuit can be
realized with the combination of these gates. Suppose a qubit quantum gate has k
inputs and outputs, then the matrix, representing the gate, will be of 2k degree. A
two-qubit gate will be 2k = 4, i.e., a 4 × 4 matrix.

Single-qubit gates An important group of transformations in quantum information
is the Pauli group with operators
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σ1 = X =
(
0 1
1 0

)

, σ2 = Y =
(
0 −i
i 0

)

, σ3 = Z =
(
1 0
0 −1

)

and σ0 = 1 =
(
1 0
0 1

)

,

(17)

which generate the dynamics of a two-level system, which can be realized on a
Bloch sphere. Pauli operators are the generators of rotation in 2D Hilbert space.
For example, rotation about an arbitrary direction n̂, the unitary matrix is given by
Rn̂(θ) = exp

(− iθ �

2 (σ · n̂)), where σ = a1σ1 + a2σ2 + a3σ3 is the Pauli operator
vector. An equal superposition of X and Y gives us a crucial transformation known
as the Hadamard gate

H = 1√
2
(X + Z) = 1√

2

(
1 1
1 −1

)

. (18)

Complex phases play a central role in quantum dynamics. It is pertinent to intro-
duce a phase gate:

P = 1√
2

(
1 0
0 eiθ

)

, (19)

where θ ∈ {0, 2π} value of which determines a particular action on the qubit.

For example, one of the famous gate is the so-called π
8 gate: T =

(
1 0
0 e

iπ
4

)

=

e
iπ
8

(
e− iπ

8 0
0 e

iπ
8

)

. Note that for θ = π one recovers the Z gate, which is nothing

but a phase-flip.
Two-qubit gates It is important in quantum information and computation to exploit

quantum resources such as entanglement. Two qubit gates are used to manipulate
two-qubit states, entangled or otherwise. A generic controlled-unitary qubit gate is
given by

CU = |0〉 〈0| ⊗ 12 + |1〉 〈1| ⊗U (20)

which says that if the state of the control qubit is |0〉, then do nothing ; and if it is
|1〉, then apply the unitary U . For U = X , we get a controlled-NOT (CNOT) gate.
Similarly, one can construct C-Y and C-Z gates.

CNOT gate finds many interesting applications. Note that the CNOT gate is an
entangling operation, which finds its use in going from computational basis {|0〉 , |1〉}
to Bell basis {|φ〉00 , |φ〉01 , |φ〉10 , |φ〉11}. For example, in theBell statemeasurement,
as shown in the below quantum circuit Fig. 1, a Hadamard gate is applied on the first
qubit, followed by a CNOT gate and then both qubits are measured in computational
basis with measurement operators Mi satisfying

∑
i Mi = 1. Note, however, that it

is not necessary to use CNOT for Bell state measurement.
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Fig. 1 Bell state
measurement [1]. The initial
states are chosen to be |0〉 for
simplicity

|0〉 H

|0〉

1.2.6 Quantum Operations

Quantum systems are fragile since they are inevitably subject to ubiquitous environ-
mental interactions. In reality, there is no such thing as perfectly closed quantum
system, the system is alway open [14]. When quantum system interacts with the
environment, it loses its coherence, hence undergoes decoherence. That is, when a
system is completely decohered, the off-diagonal terms (also called the coherences)
in the density matrix vanish. Moreover, it may also lose its energy undergoing dis-
sipation. Open system quantum mechanics now follows different set of axioms: (1)
states are density matrices, (2) measurements are POVMS and (3) dynamics is fixed
by a completely positive (CP) trace preserving (TP) map. The density matrix cap-
tures both pure and mixed state representations, POVMs are convex combination of
PVMs and the dynamics is no more unitary but linear and CP, thus representing a
physically valid evolution. That is, a not CP evolution is unphysical in the sense that
corresponding dynamical map outputs a negative state.

Quantum technologies face the challenge of reducing errors due to noise and the
aim and purpose of quantum error-correcting codes is to facilitate the functioning of
a fault tolerant quantum computer which is robust against environmental hazards and
faulty device induced errors. Studying decoherence is an important aspect of quantum
information since any quantum computer must satisfy the so-called DiVincenzo
criteria; one of them being the long decoherence time for qubit evolution.

Suppose a qubit is interacting with an environment. Its evolution is governed
by a master equation famously known as Gorini-Kossakowski-Lindblad-Sudarshan
(GKSL) equation [15, 16], which is obtained assuming the so-called Born-Markov
approximation. An equivalent representation, useful in quantum information science,
is the operator-sum (KSMR)3 representation [17, 18] of a CPTP map (a quantum
channel):

�[ρ] =
∑

i

KiρK
†
i (21)

where Ki are called the KSMR operators [1], satisfying
∑

i K
†K = 1, which can

be obtained by tracing out the environmental degrees of freedom from the global
unitary that generates system-environment evolution: �[ρ] = Tr{U (ρ ⊗ ρenv)U †}.
For simplicity, let us assume that the initial environmental state is ρenv = |0〉 〈0| and

3 K stands for Kraus and SMR stands for the first founders of this representation: Sudarshan,
Mathews and Rau.
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{|ei〉} are the environmental degrees of freedom, thenKi = 〈ei|U |0〉.KSMRoperators
representation is a powerful way of essentially capturing the noisy evolution of the
qubit. We must remember that decoherence is basis dependent. That is, for example,
what is decoherence in {|0〉 , |1〉} is not decoherence in {|−〉 , |+〉} basis! This has
implications to how one develops errors correcting codes.

Simple examples of errors that are commonly found for qubits are the bit-flip,
phase-flip and bit-phase-flip errors. And others include depolarizing, amplitude
damping and generalized amplitude damping errors. A class of qubit errors is known
as Pauli errors that involve only Pauli group hence the name, These errors occur
without dissipation that is they induce only decoherence. A qubit flip error can be
written as

�i[ρ] = (1 − p)ρ + pUiρU
†
i (22)

whereUi represents the a Pauli operator depending on which error occurs with prob-
ability p, e.g., Ui=1,2,3 = σ1, σ2, σ3 for bit-flip, bit-phase-flip and phase-flip errors,
respectively. There may be situations where more than one or all of the qubit errors
occur. Another important qubit error is given by the depolarizing channel

�depol[ρ] = (1 − p)ρ + p

3

3∑

i=1

σiρσ
†
i (23)

Another type of quantum channel is amplitude damping which captures dissi-
pation or relaxation process. In this case, a particle not only lose coherence, but
also population (or energy) while it relaxes or damps. It is given by the channel
�AD[ρ] = ∑

i AiρA
†
i with KSMR operators

A1 = 1

2

(
1 0
0

√
1 − λ

)

A2 = 1

2

(
0

√
λ

0 0

)

(24)

where λ is called the damping factor, determined by the type of process. More will
be talked about quantum error correction later in the chapter.

1.2.7 Choi-Jamiolkowski Isomorphism

One of the central tools of quantum information theory is the Choi-Jamiolkowski
(CJ) isomorphism [19]. It is mainly used to exploit the channel-state duality. Namely,
any CPTPmap (a channel) can be used to transform a state which will be isomorphic
to the map. And the CJ matrix [19] or B matrix4 [18] is given by

4 Importantly, CJ matrix is nothing but the B matrix of Sudarshan, Mathews and Rau which was
implicitly discovered about a decade before Choi.
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ξ = (� ⊗ 1)[∣∣ψ+〉 〈ψ+∣∣] (25)

where
∣
∣ψ+〉 = 1√

2
(|00〉 + |11〉) is a maximally entangled state in the computational

basis. If the state (25) is negative, then � is a not-completely positive (NCP) map.
Nevertheless, such a map will output a valid quantum state for single qubit space, it
doesn’t do so in an extended Hilbert space; that is when it is acting on a part of the
Bell state. This result follows from the Stinespring dilation theorem. Historically, Eq.
(25) (now known as Sudarshan B matrix) was first demonstrated in the seminal work
of Sudarshan, Rao and Mathews [18], which was later independently discovered
by Choi and Jamiolkowski. One should note that while it is possible to transform
a dynamical map or a physical process to a state, the converse is necessarily not
possible. One of the applications of a NCP map is to witness entanglement in a
state—a method known as the Positive Partial Transpose (PPT) criterion [7]: Given
a bipartite state, if a partial transposemap acting on one half of the state renders theCJ
matrix negative, then the state is entangled. We shall later see one of the applications
of quantum operations applied to study open quantum system evolution.

1.3 Quantum Information Science—Applications

Here we will discuss some of the major applications of quantum information science
namely teleportation, superdense coding and entanglement swapping that are not
possible classically. It means that there exist no resources in the classical world with
which one can reproduce the rather counter-intuitive effects applied to transmitting
and manipulating information using quantum systems. In this subsection, our main
motivation will be to explain how quantum entanglement plays the role of a resource
in quantum communication and quantum technologies in general. We will also men-
tion about the peaceful coexistence of quantum mechanics with the theory of special
relativity in the sense that there will be no faster-than-speed-of-light communication
involved when performing quantum information processing tasks.

1.3.1 Superdense Coding

How does one send information using quantum particles? Quantum particles possess
degrees of freedom in which information can be encoded. In fact, a particular degree
of freedom, say polarization of a photon, can be used as a qubit. That is our quantum
system which we manipulate in the lab. Now, bits of information can be encoded
in the polarization of a photon and sent down a quantum channel. How many bits
can Alice send to Bob with a single particle? With an isolated uncorrelated photon,
she can send a single classical bit of information. Suppose, Alice and Bob share a
maximally entangled pair of particles, then Alice can send two bits of information
on a single qubit. This is known as superdense coding. Given an initial Bell state



14 E. Peláez et al.

|φ〉00 = 1√
2
(|00〉 + |11〉), (26)

if Alice wants to send bits 00, she does nothing to her particles and send it to Bob. If
Alice locally applies a σx gate, then the state transforms as

(σx ⊗ 1) |φ〉00 = 1√
2
(|10〉 + |01〉) = |φ〉01 . (27)

Similarly, if she locally applies iσy and σz gates, she transforms the state, respec-
tively, as

(iσy ⊗ 1) |φ〉00 = 1√
2
(|01〉 − |10〉) = |φ〉11 , (28)

(σz ⊗ 1) |φ〉00 = 1√
2
(|00〉 − |11〉) = |φ〉10 . (29)

When Bob receives the qubit, he makes Bell measurements to find out one of the
Bell states {|φ〉00 , |φ〉01 , |φ〉10 , |φ〉11} corresponding to the bits {00, 01, 10, 11} that
Alice wanted to send him.

1.3.2 Quantum Teleportation

Quantum teleportation is one of the striking features of quantum mechanics which
allows communicating an unknown qubit using entanglement. The protocol goes
as follows. Suppose that Alice wants to send an unknown quantum state |ψ〉 =
α |0〉 + β |1〉 to Bob, who is space-like separated from her i.e., light or information
takes finite time to reach. Alice and Bob pre-share an entangled pair of qubits, an
EPR-Bell state, say, |φ〉00 = 1√

2
(|00〉 + |11〉). Now the initial total state of all the

parities is:

|�〉initial = |ψ〉 ⊗ |φ〉00
= (α |0〉 + β |1〉) 1√

2
(|00〉 + |11〉) (30)

Alice entangles her part of the EPR-Bell pair with the unkown state |ψ〉 to be
teleported i.e., she performs a CNOT gate CN = |0〉 〈0| ⊗ 12 + |1〉 〈1| ⊗ σx on her

pair. Subsequently, she performs a Hadamard gate H = 1√
2

(
1 1
1 −1

)

on the first

qubit. Here, 12 and σx are qubit identity and Pauli-X operators. After all of this,
simple algebra gives the resulting total state:
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∣
∣
∣�̃
〉
= α

2
(|0〉 + |1〉)(|00〉 + |11〉) + β

2
(|0〉 − |1〉)(|10〉 + |01〉)

= 1

2
[|00〉 (α |0〉 + β |1〉) + |01〉 (α |1〉 + β |0〉) + |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)].

(31)

As before, Alice possesses her first two qubits of the state
∣
∣
∣�̃
〉
and Bob the third

one. Now comes the magical part of quantum teleportation. Alice now measures her
pair of qubits in the computational basis {|0〉 , |1〉},5 which teleports the unknown
state |ψ〉 to Bob instantaneously! If Bobmakes ameasurement on his qubit now, then
he has 1

4
th
probability of getting either of the 4 states {(α |0〉 ± β |1〉), (α |1〉 ± β |0〉)}

depending on which Bell basis Alice finds her pair to be in. For example, if she finds
her pair’s state to be |01〉 then the state teleported to Bob is (α |1〉 + β |0〉). Alice now
communicates her basis information, for which she has to send 2 bits of information
over a classical channel. This part of communication is restricted by special relativity:
she can’t send her information faster than speed of light. Therefore, unless Alice tells
Bob her basis information, Bob never recovers the state |ψ〉 which Alice actually
wanted to send him! The final stage of the protocol is that based on Alice’s basis
information, Bob does a corresponding Pauli operation to transform the state to the
actual state |ψ〉 Alice wanted to send. That is, if Alice’s finds her pair to be in
|10〉, the Bob performs a σz to recover the state. Therefore, they must use classical
communication to achieve teleportation!

Interestingly, no-cloning theorem and no-faster-than-speed-of-light transfer of
information are related. If Bob can make a large copies of his particle, then he can
make a measurement on each of them, and the basis which returns the same result
is the basis Alice would have encoded in. But again, copying an unknown state is
prohibited by no-cloning! Therefore, Bob can never recover his state without Alice’s
classical message.

Quantum teleportation finds enormous applications in quantum technologies. One
of the immediate application is in quantun internet—a quantum network to exchange
quantum states between the nodes with distributed entanglement. Another applica-
tion is in teleportation based quantum computing. In fact, teleportation has been
achieved for very long distances, about 143 km long [20], and also using satellite
based quantum entangled particles achieving 1,400 km distance [21]. Such practical,
long distance teleportation will be key to a global quantum internet.

5 The operations by Alice until now together are equivalent to making a Bell measurement on the
initial product qubits in her possession; i.e., a Hadamard on the first qubit and a CNOT on the both
the qubit and measuring both qubits in computational basis each.
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1.3.3 Entanglement Swapping

Yet another type of process which doesn’t have a classical analog is entanglement
swapping which finds its use in quantum network based communication. Here, we
briefly explain it below.

Generally, for two quantum particles to be entangled, they must have interacted
sometime in the past through some physical process. Entanglement swapping is a
technique of exploiting quantum measurement and entanglement itself to entangle
two particles that have never interacted before! Suppose, {a, b} and {c, d} are pairs of
particles with Alice and Bob, respectively. a is entangled with b; and c is entangled
with d . Now, a and c have never interacted in the past. Question is: Can {a, c} get
entangled? The answer turns out to be yes, and this is one of the spooky phenomena
allowed by quantum mechanics! It goes as follows.

Suppose Alice has an entangled pair |φ〉ab = 1√
2
(|00〉ab + |11〉ab). Similarly, Bob

has |φ〉cd = 1√
2
(|00〉cd + |11〉cd ). So the initial state is:

|ψ〉initial = |φ〉ab ⊗ |φ〉cd . (32)

Now, this initial state is sent to a third party Charlie who does a Bell-state mea-
surement on {b, d}, as explained previously, and as a result {a, c} get entangled!
This shows one of the spooky features of measurement and entanglement in quan-
tum physics. Note that entanglement swapping has been realized experimentally
[22, 23].

1.3.4 Quantum Cryptography and Communication

Ever sinceBennett andBrassard proposed the famousBB84quantumkeydistribution
protocol in 1984, there has been an intense research toward developing more secure
communication protocols formore than 3 decades now.And that has been achieved to
a significant extent. Still there appears to be much more to be achieved at theoretical
and experimental frontiers. Specifically, there is a challenge of building a scaleable
quantum secure communication system and quantum computing machines, that will
outperform the existing classical information processing systems.Nevertheless, there
are also efforts being put to develop classical encryption algorithms that will provide
post-quantum cryptographic security, meaning that they will provide security against
a threat from attacks by a quantum computer.

One of the striking application of entanglement is in secure direct quantum com-
munication protocol. Here, it is pertinent to briefly explain one such protocol, fist
introduced in 2002 by Bostrom and Felbinger [24]:

• Bob has a pair of photons entangled in polarization degree, say,
∣
∣φ+

ht

〉 = 1√
2
(|01〉 +

|10〉) one of which he keeps with himself (home photon in the state ρh) and the
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other (travel photon in the state ρt) he sends to Alice who is at a long distance
from him.

• Once Alice receives the qubit, she does either an identity or Pauli-Z operation on
it, each with probability 1

2 and sends it back to Bob.
• After receiving the travel qubit back, Bob does a Bell state measurement on them,
and finds his pair of particles either in

∣
∣φ+〉 or

∣
∣φ−〉 = (1 ⊗ σz)[

∣
∣φ+〉], depending

whether Alice wants to send him 0 or 1, respectively.
• If Bob finds the pair to be anti-correlated, then they abort the protocol. If he finds
his particles to be in either of the Bell states

∣
∣φ±〉 then the protocol is repeated.

Now, if an eavesdropper tries to measure the flying qubit, all she finds is perfectly
random outcomes, since the reduced density matrix ρt = Trh(

∣
∣φ+

ht

〉 〈
φ+
ht

∣
∣) of a max-

imally entangled state ρAB is a maximal mixture i.e., ρt = I
2 . Note that Alice and

Bob never used a classical channel to communicate the basis information and the
information transmitted was direct and deterministic. Here, we immediately see the
advantage of using an entanglement for the security of QKD as well as direction
quantum communication. However, Wojcik [25] introduced a clever attack on this
protocol using which the eavesdropper could get as much information as Alice and
Bob will have at the end. Thence, the security check was extended to analyzing chan-
nel losses induced due to eavesdropping. The reader is referred to Refs. [25, 26] for
further study.

This protocol has a disadvantage that it is quasi-secure when it is used for direct
communication but comes with an advantage of being fully secure when used for a
key distribution. Moreover, all two-way protocols suffer from the point of view of
resources needed for an extra round of sending the particle down a quantum channel.
Some of the one-way QKD protocols, couterfactual or otherwise, will be introduced
in a later section. Surprisingly, in a counterfactual key distribution protocol, Alice
and Bob can choose to generate a secret key for which the particle actually doesn’t
travel through the quantum channel (interferometric arm, in this case) with certain
probability! This interesting feature for secure QKD will be discussed in a later
chapter.

1.3.5 Quantum Secret Sharing

The idea of sharing a secret among untrusted individuals is a very relevant problem.
A brief introduction is given [as in Ref. [27] and the reference therein] below [see
Fig. 2]:

1. An individual (Alice) has to share a secret among two or more untrusted parties
(Bob, Charlie, Dave,...) so that no single party can decode it, but at least half of
them must come together to do so.

2. E.g., key K ≡ 11010 ⇐⇒ b(= 10001) + c(= 01001) is shared b/w Bob and
Charlie. Thus b and c are shares for the key. Knowing only one of them, no
information of K obtainable.
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Fig. 2 A schematic of a
secret sharing protocol for
the case of a key shared with
three untrusted parties

3. Secret S is to be divided between n parties such that:

a. # ≥ k parties necessary and enough number to reconstruct S.
b. # k − 1 parties get zero info.

4. For a polynomial of degree k − 1 (over a prime # field), at least k points are
required. Each share is the triple (x, f (x),P).

5. Example: quadratic polynomial f (x) = a0 + a1x + a2x2 where a0 is the secret
(a prime number). We share (x, f (x)) for n number of parties, then at least three
parties must come together to get a0.

Quantum secret sharing schemes offer security based on no-go theorems in quan-
tum mechanics, unlike computational hardness of a problem, as in classical counter-
part. A simple protocol is given below.

1. Four parties {A,B,C,D,E}: collection of sets that can reconstruct secret: G =
{{A,B,C}, {C,D}, {A,B,E}}. Here G is the access structure [27].

2. Quantum case: no-cloning theorem ⇒ no two disjoint elements in G.
3. Classical keys + QKD solves the eavesdropping problem; thus QSS best moti-

vated for quantum secrets.

Let us suppose a GHZ triplet is shared between three parties, Alice, Bob and
Charlie in the state [28]

|ψ〉 = 1√
2
(|000〉 + |111〉) (33)

Alice andBob choose randomly tomeasure their particle in eitherXorYdirection,
which can give eigenvalues of ±1, represented by ±X or ±Y. Writing GHZ state in
XY bases, we construct the Table 1 [29].

1.3.6 Open Quantum System Dynamics

Quantumoperations provide a cleanmethod to represent and studyopenquantumsys-
tem dynamics—Markovian and non-Markovian [30, 31]. In realistic situations, most
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Table 1 A table representing the Pauli bases in which the particle in measured

+ X – X + Y – Y

+ X |0〉 + |1〉 |0〉 − |1〉 |0〉 − i |1〉 |0〉 + i |1〉
– Y |0〉 − |1〉 |0〉 + |1〉 |0〉 + i |1〉 |0〉 − i |1〉
+ Y |0〉 − i |1〉 |0〉 + i |1〉 |0〉 − |1〉 |0〉 + |1〉
– Y |0〉 + i |1〉 |0〉 − i |1〉 |0〉 + |1〉 |0〉 − |1〉

of the open system dynamics are non-Markovian (NM) as Born-Markov approxima-
tion may not hold. Recently there have been enormous efforts to study NM dynam-
ics from an information theoretic viewpoint. For example, the first simple method
of detecting and quantifying non-Markovianity (NM-ity) was proposed by Breuer-
Laine-Piilo (BLP) [32] which exploits that fact that trace distance (TD) (5) is a
monotone under a Markovian CPTP map �(t):D(�(t)[ρ1],�(t)[ρ2]) ≤ D(ρ1, ρ2),
whereD is TD and ρ1 and ρ2 are two orthogonal initial states. This means that as the
initial orthogonal states become more and more indistinguishable as time evolves.
This has been interpreted as quantum information-loss to the environment. Crucial
observation is that under a NM channel this monotonicity will be broken, in the sense
that the information lost to the environment flows back to the system. Hence, the non-
monotonous regions can be used to quantify NM-ity. The BLP measure is given by
NBLP = ∫

σ>0 σ(�, ρ1, ρ2) where σ = dD
dt . Another method of detecting and quanti-

fying NM-ity is due to Rivas-Huelga-Plenio (RHP) [33] based on the divisibility of
the channel. Given a CPTP map �, it can be decomposed into a concatenation of
intermediate maps for, say, simple 3 instances: �(t2, t0) = �(t2, t1)�(t1, t0). If the
CJ matrix (25) of the intermediate map �(t2, t1) is negative (i.e., if the intermediate
map is not a channel), then the CPTP map �(t2, t0) is CP-indivisible and termed
NM according to RHP. And the NM-ity is quantified as NRHP = ∫∞

0 g(t), where
g(t) = limε→0+ ‖ξ(�,ε)‖1−1

ε
, where ε is infinitesimal time and ξ(�, ε) represents the

CJ matrix of the map in the infinitesimal time limit. Note that both BLP and RHP
measures need not be normalized, and suitable normalization can be used to fit them
in the range 0 to 1.

Other than the above two, there have been a number of approaches to quantify
NM-ity—based on fidelity [34], capacity of channel [35], causality measure [36],
interferometric power, accessible information and many more. However, there are
in-equivalences. When multiple decoherence channels are involved in a process,
then BLP and RHP need not be equivalent. But for a qubit dynamics involving a
single decoherence channel they are known to be equivalent. Another interesting
and intriguing way NM-ity may arise is through convex combination of Markovian
channels. In the case of unital channels,6 it is known that the space of PauliMarkovian
(CP-divisible) channels is not convex [37–39]. If one takes a convex combination
of two Pauli semigroups, the resulting channel is non-Markovian in the sense that
it is CP-indivisible. Moreover, it can be eternally non-Markovian according RHP

6 A channel � is said to be unital if �[12 ] → 1
2 . Else, it is called non-unital.


