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Preface

Concurrency is a topic a lot of developers find scary. And for good reason.
Concurrency is probably one of the most complicated topics in the world
of programming. When you look at it from a very high level, concurrency
allows us to do a lot of work at the same time. Sometimes related,
sometimes unrelated. The definition is simple, but as a programmer, it is
hard to reason about concurrent programs. We learn to write code that
can be read from top to bottom, and code usually makes sense when you
read it in such a manner. In fact, the way developers reason about code

is not too different to how non-programmers reason about a cooking
recipe. Humans can understand anything they read if it is structured and
makes sense.

But the very nature of concurrency breaks this top-to-bottom reading
flow. Not only do we need to reason about concurrency differently, but we
also need to keep in mind other factors that make it harder, such as shared
mutable data, locks, threads.... Concurrency is naturally very complicated,
especially when dealing with lower-level tools.

Luckily, the new async/await system, introduced in 2021, makes
concurrency easier to reason about because it abstracts a lot of the
complexity behind language-integrated features that are easy to use and
hard to misuse. If you have written concurrent code before with anything
other than async/await in any other platform (and that includes but is
not limited to i0S, macOS, and other Apple platforms), you do not have
to concern yourself with mutexes, semaphores, or any other low-level
concurrency primitives. If you have never written concurrent code before,
you can write amazing multithreaded software in a way that makes
sense without ever having to concern yourself with the complexities of
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traditional concurrency. This new system is very powerful and easy to use
for both developers familiar with concurrency as well as those who have
never written concurrent code before.

Who This Book Is For

This book is aimed at intermediate iOS developers and above. You should
find this book to be of your skill level if you have been writing Apple apps

a bit over a year. Having experience with other concurrency tools in either
Apple platforms or anything else may help you grasp this book easier, but
previous concurrency knowledge is by no means necessary. You should be
familiar with the basic process of writing and maintaining an iOS app to
take advantage of this book.

How This Book Is Organized

I tried my best to organize this book in a way that makes sense. There were
topics that recursively required the knowledge of other topics before they
could be properly understood. For those situations, I spent a little bit more
time explaining some concepts at a higher level so you could get by before
they got properly introduced.

Chapter 1 introduces concurrency and its traditional problems when
trying to implement it. It discusses low-level concurrency primitives and
how they can be used. It also discusses the traditional problems you will
find when you try to implement a concurrency system without using
higher-level tools such as async/await.

Chapter 2 formally introduces “async” and “await” as keywords of the
Swift language. These two keywords are essential to understand to use the
concurrency system effectively. Every single topic makes use of async/
await, so this chapter is completely dedicated to these keywords.
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Chapter 3 introduces Continuations, a tool that helps you migrate
closure-based or even delegate-based code to use async/await. This
can help you “bridge” such code into the async/await world, making
them easier to write and understand. You will also learn how to backport
concurrent code to iOS 14 and 13.

Chapter 4 introduces the concept of Structured Concurrency. You will
write your first concurrent code here. Structured concurrency helps you
write multithreaded code that is easy to read and write.

Chapter 5 introduces the concept of Unstructured Concurrency, a
topic that will help you write streamlined concurrent code with a little bit
more of flexibility than Structured Concurrency.

Chapter 6 introduces the concept of Actors. Actors are reference types
that isolate their own state, so they are useful when you need to write
concurrent code that deals with shared mutable state. It helps you answer
questions such as “What happens if two processes write to this variable at
the same time?”

Chapter 7 is all about Sendable types, which are objects that can
be used safely in concurrent code, either because they have built-in
protection (such as actors) or because the developers took special care of
these types to make them usable concurrently (like classes that implement
their own synchronization mechanism).

Chapter 8 discusses Global Actors, a tool to help you write concurrent
code that is spread out across different files and even frameworks. It also
discusses the Main Actor, a global actor that you use when you need to
update your app’s UL

Chapter 9 is all about async sequences. These sequences can help
you receive values over time in an asynchronous context, helping you
eliminate the usage of closures and delegates in some scenarios.

Chapter 10, the final chapter, covers the usage of a property wrapper
called @TaskLocal, which you can use to share data down a concurrent
tasks tree.

xvii
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Before You Get Started

While Apple managed to backport the new concurrency system to iOS 13
and iOS 14, it is recommended you study this system with iOS 15. There
are no native APIs that use async/await in lower iOS versions, and you
would need to provide an alternative to them every time you are interested
in using them.

It is recommended you have at least Xcode 13, but you should have
the latest version if possible. At the time of this writing, the latest Xcode
version is 13.4.1. The exercises and sample code were tested on this Xcode
version. This implies your Mac will need to run macOS Monterey as Xcode
13 cannot run on anything lower than Monterey.

xviii



CHAPTER 1

Introduction

Programmers are used to writing programs that are executed in a linear
fashion. As you write, test, and execute your program, you expect your
instructions to run in the order that you wrote them. In Listing 1-1, you
have a program that will first assign a variable a to the number 2. It will
then assign a variable b to the number 3, followed by assigning a variable
sum, the sum ofa + b, and it will finally print a result to the console. There
is no way this program will work if you try to print(sum) before you even
managed to calculate the value for sum.

Listing 1-1. A simple program that runs from top to bottom

let a =2
let b =3
let sum = a + b // This variable depends on the values for

a and b, but the variables themselves can be assigned in
any order.

print(sum) // We can only print a variable that we have the
value of.

This is called procedural programming, because you write simple
statements, and they are executed from top to bottom. Even if you add
statements that can alternate the execution flow, it’s still easy to follow.
Ifyou a call function when working with procedural programming, your
program will “jump” to a different place in memory and execute its

© Andrés Ibanez Kautsch 2023 1
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contents, but the execution of these lines will also be done procedurally in
the same order they were written until control flow is returned to the caller.

Even people who are not programmers can follow any instruction set if
they are written in a specific order and if they are doing one thing at a time.
Someone following a cooking recipe, or someone building a doghouse
from an online tutorial may not be a programmer, but people are naturally
good at doing something if they have the steps clearly laid down.

But computer programs grow and become more complex. While it is
true that a lot of complex software can be written that follows such a linear
execution flow, often programs will need to start doing more than one
thing at once; rather than having a clear code execution path that you can
follow with your bare eyes, your program may need to execute in such a
way that it’s not obvious to tell what’s going on at a simple glance of the
source code. Such programs are multithreaded, and they can run multiple
(and often - but not always - unrelated) code paths at the same time.

In this book, we will learn how to use Apple’s async/await
implementation for asynchronous and multithreaded programming. In
this chapter, we will also talk about older technologies Apple provides for
this purpose, and how the new async/await system is better and helps you
to not concern yourself with traditional concurrency pitfalls.

Important Concepts to Know

Concurrency and asynchronous programming are very wide topics. While
I’d love to cover everything, it would go out of the scope of this book.
Instead, we will define four important concepts that will be relevant while
we explore Apple’s async/await system, introduced in 2021. We will
define them with as few words as possible, because it’s important that you
keep them in mind while you work through the chapters of this book. The
concepts of the new system itself will be covered in the upcoming chapters.
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Note Apple is not the original creator of the async/await

system. The technology has been used in other platforms in the

past. Microsoft announced C# would get async/await support in
2011, and C# with these features was officially released to the public
in 2012.

Threads

The concept of Thread can vary even when talked about in the same
context (in this case, concurrency, and asynchronous programming).
In this book, we will treat a thread as a unit of work that can run
independently. In iOS, the Main Thread runs the Ul of your app, so every
Ul-related task (updating the view hierarchy, removing and adding views)
must take place in the main thread. Attempting to update the UI outside of
the main thread can result in unwanted behavior or, even worse, crashes.
In low-level multithreading frameworks, multithreading developers
will manually create threads and they need to manually synchronize
them, stop them, and do other thread management operations on their
own. Manually handling threads is one of the hardest parts of dealing with
multithreading in software.

Concurrency and Asynchronous Programming

Concurrency is the ability of a thread (or your program) to deal with
multiple things at once. It may be responding to different events, such as
network handlers, UI event handlers, OS interruptions, and more. There
may be multiple threads and all of them can be concurrent.
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There are different APIs throughout Apple’s SDKs that make use of
concurrency. Listing 1-2 shows how to request permission to use Touch ID
or Face ID, depending on the device.

Listing 1-2. Biometric unlock is an asynchronous task

func requestBiometricUnlock() {
let context = LAContext()

var error: NSError? = nil

let canEvaluate = context.canEvaluatePolicy(
.deviceOwnerAuthenticationWithBiometrics, error: &error)

if cankvaluate {
if context.biometryType != .none {

// (1)

context.evaluatePolicy(
.deviceOwnerAuthenticationWithBiometrics,
localizedReason: "To access your data") {
(success, error) in
/7 (2)
if success {

/1 ...

(1) calls context.evaluatePolicy, which is a concurrent call. This
will ask the system to suspend your app so it can take over. The system will
request permission to use biometrics while your app is suspended. The
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thread your app was running on may be doing something entirely different
and not even related to your app while the system is running context.
evaluatePolicy. When the user responds to the prompt, either accepting
or rejecting the biometric request, it will deliver the result to your app. The
system will wait for an appropriate time to notify your app with the user’s
selection. The selection will be delivered to your app in the completion
handler (also called a callback) on (2), at which point your app will be in
control of the thread again. The selection may be delivered in a different
thread than the one which launched the context.evaluatePolicy call -
this is important to know, because if the response updates the UI, you
need to do that work on the main thread. This is also called a blocking
mechanism or interruption, as evaluatePolicy is a blocking call for the
thread. If you have done iOS for at least a few months now, you are familiar
with this way of dealing with various events. URLSession, image pickers,
and more APIs make use of this mechanism.

People often think that asynchronous programming is the act
of running multiple tasks at once. This is a different concept called
Multithreading, and we will talk about it in the next point.

Note If you are thinking on implementing biometric unlock to
resources within your app, please don’t use the code above. It has
been simplified to explain how concurrency works, and it doesn't
have the right safety measures to protect your user's data.

Multithreading is the act of running multiple tasks at once. Multiple
threads (hence its name - multithreading) are usually involved. Many tasks
can be running at the same time in the context of your app. Downloading
multiple images from the internet at the same time or downloading a file
from your web browser while you open some tabs are some examples of
multithreading. This allow us to run tasks in parallel and is sometimes
called parallelism.



