Modern
Concurrency on
Apple Platforms

Using async/await with Swift

Andrés Ibanez Kautsch

ApPress’

Modern Concurrency
on Apple Platforms

Andrés Ibanez Kautsch

Apress’

Modern Concurrency on Apple Platforms: Using async/await with Swift

Andrés Ibanez Kautsch
La Paz, Bolivia

ISBN-13 (pbk): 978-1-4842-8694-4 ISBN-13 (electronic): 978-1-4842-8695-1
https://doi.org/10.1007/978-1-4842-8695-1

Copyright © 2023 by Andrés Ibanez Kautsch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Mark Powers

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the GitHub repository: https://github.com/Apress/Modern-Concurrency-
on-Apple-Platforms. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8695-1

To my mother Renata and to my brother Gaston, for all the
support and patience they have always shown and for
everything they have always done for me.

Table of Contents

About the AULNOF ... ————————— ix
About the Technical REVIEWETccceinnsssmmmemmmmmmmmsssssssssssnssessssssssssnnns Xi
Acknowledgments.......ccccuuuisssmmnmnmmmmmmssssssssssnsseessssssssssssnnssesssssssnnnnnns Xiii
- 1 1 XV
Chapter 1: Introduction..........cccevinnmmnnnnssennnmnmssssmmmssssnmssss———————" 1
Important Concepts t0 KNOW.........cccoriinininiesnsncne s 2
TRFEAUS......civi e e 3
Concurrency and Asynchronous Programmingccccceeveerveererversesseeseersensens 3
Multithreading PitfallSccoccvvrniinrrre e 6
Existing Multithreading and Concurrency ToOIS.........c.ccverierninsenienesensensennes 13
Introducing async/await...........ccccvvvevrerrnsrnne s 20
REQUIrEMENTS.......ceeiiieirere e e e 21
SUMMANY....ceriieircrere s n e np e e 22
EXBICISES...eivierrrerrssesersese s s s n e 23
Chapter 2: Introducing async/awaitccccusseemnmmssssnnnmssssssnsssssssnnns 25
Closures and Their Place in Concurrency and Multithreadingcccovvvevverene. 25
Getting Started with async/await............cccevrevivverrrieriensnsenserese s sesessessenaens 34
The async KEYWOI..........ccocvveriririe s s 35

The await KEYWOIcocvveeeereriree s s 37
USING @SYNC/AWAILccrverrererrerereressereressesessessessessssessessessssessessessesssssnsessees 39

TABLE OF CONTENTS

ASYNC gET PrOPEITIES.....cvvereerrererier e r e s s 49
async/await in i0S 13 and i0S 14ccccevvvvvvreriere e sessessens 50
11T 111 T O 50
(] (oS 51
Chapter 3: Continuationsccccunssemmmmmssssnnnmssssssnnmsssssssnmsssssssssssssnnnnns 53
Understanding Continuations...........coovevnenennenmnnsnnsessssse s sessesenns 54
Converting closure-based calls into async/await...........ccoeeervrernsenenesenennes 54
Converting delegate-based code into async/awaitcccccvevvenernieniennenn 58
Supporting async/await in i0S 13 and 14 ... 66
SUMMANY....eitieeirestre s e e p e e 72
(=] (T 72

Chapter 4: Structured CONCUITENCYceeeerrrrrssssssssssnsnssssssssssssssnsssnsnsnss 13

Understanding Structured CONCUITENCY......c.cevivververieresensessessessesessessessessssessessens 75
The async Iet CONSTIUCT.......c.cceviivrin s 75
TASK GIOUDS vvveuersereersrersersessssesessessessssessessessssessessesssssssessessesssssssessesssssnsessens 78

11T 111 T o O 86

EXBICISES...cveereeererueerrese e s e s se s e e e r e ne e e 86

Chapter 5: Unstructured CONCUITENCYccurssssnnnssssssnsnsssssssnnssssssnnnnss 89

Tasks iN DEPth........ccccic e —————— 89
Creating TASKScuverrrrserereserrssesessesesssse s sesss e s ssssesessssessssesesssssssssensnns 90
Unstructured Concurrency in ACHION.........coovevvrererrenesssesessesesesesessesessesensnnes 93

THE TASK TFBE ...t s 100
Error Propagationcueeevenennsennesinese s sssse s sesssssssenens 103
Task CanCellation..........c.cccevvvernenenesesnsesrne s 103
Task Cancellation and Task GrOUPSccovererreserrssesesesessssessssessssssessssesenns 111

TABLE OF CONTENTS

Unstructured Concurrency with Detached Taskscccvvvverierenseniersenensensenenns 112
11T 1117 S 113
EXBICISES...c.veererueerreeriee e s e se s e s e se e e e nne e nre s 114
Chapter 6: ACIOrS....cccuuiismmmmmnmnrrnssssssssssnsnsssessssssssssssnnsseessssssnnnnnnnnnnnss 117
INTrOdUCING ACIOIS....cciiecrercrer e 118
Interacting with an ACHOr.........cccvvcvrcsrc - 120
Nonisolated ACCESS 10 an ACLOFccccrerernrerneserese s 125
Actors and Protocol CONformanceccouuennernnsnssssesssssssssse e 127

DA Yo (0] g T Te] 01 =T [S 129
Actors and Detached TaSKS........ccocoerererernererenereserenesese e se e esesnenens 133
General Tips for Working With ACLOrSccoveerenerererrserenese e 133
SUMMANY....ceiieeresesesese e se e e s e se e nensenenns 135
Chapter 7: Sendable TYPES ...ccccerrrusssmmmmmssssnnsnmsssssnssssssssnsssssssanssssssnnns 137
Understanding Sendable TYPES.......ccocuverrirernsennessnnse e sessens 137
The Sendable ProtoCol...........ccoveeeresernnsnessss e 139
SUMMAIY.c.ueititrierere st e s e s s a e e s s sae e e e s e s aesae e s e s aesae e e e nannaees 149

Chapter 8: The Main Actor & Final Actorsuuceemeennnnnsssssssssssnnnnnns 191

The Main TRread ... e 151
The Main ACHOKcoveerce e 153
Understanding GIobal ACLOrS..........cccovevrercrnienre s 160
Creating GIODAl ACIOISccccvereeireccrr s 160
SUMIMANY.....eeeererereree e e e e e re e re e e e e 165
Chapter 9: ASYNCSEQUENCEcvuvusursrarsssmsmsmsmsssssmsmsssssssassssssssssssssssnsns 167
INtroducing ASYNCSEUUENCE.......ccevveerererrrreeressesessesessssesessssessesessssesessesssssssssenes 167

A Short Dive into Sequences and ASYNCSEQUENCESccuvvverererersessersens 169
AsyncSequence COoncrete TYPES.......covvrererrenmreseressesessssessssssessssessssesessesenns 170

vii

TABLE OF CONTENTS

ASyNCSEqUENCE EXAMPIE.....cccevviriererrerenrere e sessere e ssssessessesss s ssesssssssessesnes 171
Native APIs That Use ASYNCSEQUENCE........covrerrerrerersersersessesessessessessssessessens 177

The AsyncStream ODJECT.........ccvrevrecrccr e 177
The CoreLocationAsyncStream Projectccoccvvcevnecencscvncvenescvinenene 178

The AsyncThrowingStream ODJECtc.correrreerererere e 190
SUMMANY....ceiieerereresese e se s sr s s e nenssnenns 190
Chapter 10: @TaskLOCalcocvvusssmsmsmsmsssmsssssssmsmsssssssssasasassssssnsnsnans 191
Introducing the @TaskLocal Property Wrapper........c.ccccuvvevnennesesnsesessenensenes 192
USiNg @TASKLOCAIccecerreerrrenirenerissesese s srs e ssans 192
SUMMAIY . ueititrierere et s e s s e e s s sae st e e e ae s aesae e s e s aesae e e e nannaees 196
INA@X . iiiiisssnnnnnnnnnnnssssssssnnnnnnnnnnssssssssnnnnnnnnsssssssssnnnnnnnsnsssssssnnnnnnnnnsssssssnn 197

viii

About the Author

Andrés Ibafiez Kautsch started writing iOS
apps as a young college student in 2011. His

and its common pitfalls was in an operating
systems class that introduced the importance
(and complexity) of writing concurrent code.
Since then, he has studied how this problem
is solved in Apple’s platforms, including

iOS. Andy has worked in institutions that
make use of concurrent technologies to keep
their services running for their customers, including banks, applying the
concepts to their mobile applications.

first introduction to concurrency programming

ix

About the Technical Reviewer

Massimo Nardone has more than 22 years
of experience in security, web/mobile
development, and cloud and IT architecture.
His true IT passions are security and Android.
He has been programming and teaching
how to program with Android, Perl, PHP, Java,
VB, Python, C/C++, and MySQL for more than
20 years.

He holds a Master of Science degree in
Computing Science from the University of
Salerno, Italy.

He has worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect
for many years.

Acknowledgments

Whenever you decide to buy a technical book, you usually see one or two
author names, and maybe a reviewer attached to it, but there are a lot of
people involved in a single book, both directly and indirectly. It will not
be possible to acknowledge everyone who has helped make this book
possible, but I'd like to single out a few.

First, I'd like to give a big kudos to Alexis Marechal. Alexis has, in
short, saved my career as a software developer. Alexis is not only a great
teacher, but also a great friend. His teaching style has greatly inspired
mine, and I hope I can do justice to that in this book. A big thank-you
to Carlos Anibarro and Jose Luis Vera for their teachings and words of
encouragement as well.

Writing a book is something I have always wanted to do, but Ernesto
Campohermoso is the first person who ever asked me, “When are you
going to write a book?” That single question was a great push for this book
to come into existence.

Ivan Galarza is the first person I mentored in iOS development, and he
became a very reliable iOS engineer in a short time thanks to all the talent
he has. He was the ideal candidate to review a book in progress. His input
helped me make sure everything makes sense and that this book will be
something people would like to read.

A big thank-you to all the folks at Apress for the process that made
writing this book possible. The entire experience has been a joy, from
being contacted to write a book to turning in the final chapters. The final
form of this book would have not been possible without their tenacity and
amazing work ethic.

xiii

ACKNOWLEDGMENTS

Finally, I'd like to give a big thanks to all the readers of my blog,
andyibanez.com. The comments and feedback I received in the original
tutorial series for this topic helped me greatly improve this book. I cannot
reply to every message I get, but I am thankful to all my readers. Thank
you all.

Xiv

Preface

Concurrency is a topic a lot of developers find scary. And for good reason.
Concurrency is probably one of the most complicated topics in the world
of programming. When you look at it from a very high level, concurrency
allows us to do a lot of work at the same time. Sometimes related,
sometimes unrelated. The definition is simple, but as a programmer, it is
hard to reason about concurrent programs. We learn to write code that
can be read from top to bottom, and code usually makes sense when you
read it in such a manner. In fact, the way developers reason about code

is not too different to how non-programmers reason about a cooking
recipe. Humans can understand anything they read if it is structured and
makes sense.

But the very nature of concurrency breaks this top-to-bottom reading
flow. Not only do we need to reason about concurrency differently, but we
also need to keep in mind other factors that make it harder, such as shared
mutable data, locks, threads.... Concurrency is naturally very complicated,
especially when dealing with lower-level tools.

Luckily, the new async/await system, introduced in 2021, makes
concurrency easier to reason about because it abstracts a lot of the
complexity behind language-integrated features that are easy to use and
hard to misuse. If you have written concurrent code before with anything
other than async/await in any other platform (and that includes but is
not limited to i0S, macOS, and other Apple platforms), you do not have
to concern yourself with mutexes, semaphores, or any other low-level
concurrency primitives. If you have never written concurrent code before,
you can write amazing multithreaded software in a way that makes
sense without ever having to concern yourself with the complexities of

PREFACE

traditional concurrency. This new system is very powerful and easy to use
for both developers familiar with concurrency as well as those who have
never written concurrent code before.

Who This Book Is For

This book is aimed at intermediate iOS developers and above. You should
find this book to be of your skill level if you have been writing Apple apps

a bit over a year. Having experience with other concurrency tools in either
Apple platforms or anything else may help you grasp this book easier, but
previous concurrency knowledge is by no means necessary. You should be
familiar with the basic process of writing and maintaining an iOS app to
take advantage of this book.

How This Book Is Organized

I tried my best to organize this book in a way that makes sense. There were
topics that recursively required the knowledge of other topics before they
could be properly understood. For those situations, I spent a little bit more
time explaining some concepts at a higher level so you could get by before
they got properly introduced.

Chapter 1 introduces concurrency and its traditional problems when
trying to implement it. It discusses low-level concurrency primitives and
how they can be used. It also discusses the traditional problems you will
find when you try to implement a concurrency system without using
higher-level tools such as async/await.

Chapter 2 formally introduces “async” and “await” as keywords of the
Swift language. These two keywords are essential to understand to use the
concurrency system effectively. Every single topic makes use of async/
await, so this chapter is completely dedicated to these keywords.

PREFACE

Chapter 3 introduces Continuations, a tool that helps you migrate
closure-based or even delegate-based code to use async/await. This
can help you “bridge” such code into the async/await world, making
them easier to write and understand. You will also learn how to backport
concurrent code to iOS 14 and 13.

Chapter 4 introduces the concept of Structured Concurrency. You will
write your first concurrent code here. Structured concurrency helps you
write multithreaded code that is easy to read and write.

Chapter 5 introduces the concept of Unstructured Concurrency, a
topic that will help you write streamlined concurrent code with a little bit
more of flexibility than Structured Concurrency.

Chapter 6 introduces the concept of Actors. Actors are reference types
that isolate their own state, so they are useful when you need to write
concurrent code that deals with shared mutable state. It helps you answer
questions such as “What happens if two processes write to this variable at
the same time?”

Chapter 7 is all about Sendable types, which are objects that can
be used safely in concurrent code, either because they have built-in
protection (such as actors) or because the developers took special care of
these types to make them usable concurrently (like classes that implement
their own synchronization mechanism).

Chapter 8 discusses Global Actors, a tool to help you write concurrent
code that is spread out across different files and even frameworks. It also
discusses the Main Actor, a global actor that you use when you need to
update your app’s UL

Chapter 9 is all about async sequences. These sequences can help
you receive values over time in an asynchronous context, helping you
eliminate the usage of closures and delegates in some scenarios.

Chapter 10, the final chapter, covers the usage of a property wrapper
called @TaskLocal, which you can use to share data down a concurrent
tasks tree.

xvii

PREFACE

Before You Get Started

While Apple managed to backport the new concurrency system to iOS 13
and iOS 14, it is recommended you study this system with iOS 15. There
are no native APIs that use async/await in lower iOS versions, and you
would need to provide an alternative to them every time you are interested
in using them.

It is recommended you have at least Xcode 13, but you should have
the latest version if possible. At the time of this writing, the latest Xcode
version is 13.4.1. The exercises and sample code were tested on this Xcode
version. This implies your Mac will need to run macOS Monterey as Xcode
13 cannot run on anything lower than Monterey.

xviii

CHAPTER 1

Introduction

Programmers are used to writing programs that are executed in a linear
fashion. As you write, test, and execute your program, you expect your
instructions to run in the order that you wrote them. In Listing 1-1, you
have a program that will first assign a variable a to the number 2. It will
then assign a variable b to the number 3, followed by assigning a variable
sum, the sum ofa + b, and it will finally print a result to the console. There
is no way this program will work if you try to print(sum) before you even
managed to calculate the value for sum.

Listing 1-1. A simple program that runs from top to bottom

let a =2
let b =3
let sum = a + b // This variable depends on the values for

a and b, but the variables themselves can be assigned in
any order.

print(sum) // We can only print a variable that we have the
value of.

This is called procedural programming, because you write simple
statements, and they are executed from top to bottom. Even if you add
statements that can alternate the execution flow, it’s still easy to follow.
Ifyou a call function when working with procedural programming, your
program will “jump” to a different place in memory and execute its

© Andrés Ibanez Kautsch 2023 1
A. 1. Kautsch, Modern Concurrency on Apple Platforms,
https://doi.org/10.1007/978-1-4842-8695-1_1

https://doi.org/10.1007/978-1-4842-8695-1_1

CHAPTER 1 INTRODUCTION

contents, but the execution of these lines will also be done procedurally in
the same order they were written until control flow is returned to the caller.

Even people who are not programmers can follow any instruction set if
they are written in a specific order and if they are doing one thing at a time.
Someone following a cooking recipe, or someone building a doghouse
from an online tutorial may not be a programmer, but people are naturally
good at doing something if they have the steps clearly laid down.

But computer programs grow and become more complex. While it is
true that a lot of complex software can be written that follows such a linear
execution flow, often programs will need to start doing more than one
thing at once; rather than having a clear code execution path that you can
follow with your bare eyes, your program may need to execute in such a
way that it’s not obvious to tell what’s going on at a simple glance of the
source code. Such programs are multithreaded, and they can run multiple
(and often - but not always - unrelated) code paths at the same time.

In this book, we will learn how to use Apple’s async/await
implementation for asynchronous and multithreaded programming. In
this chapter, we will also talk about older technologies Apple provides for
this purpose, and how the new async/await system is better and helps you
to not concern yourself with traditional concurrency pitfalls.

Important Concepts to Know

Concurrency and asynchronous programming are very wide topics. While
I’d love to cover everything, it would go out of the scope of this book.
Instead, we will define four important concepts that will be relevant while
we explore Apple’s async/await system, introduced in 2021. We will
define them with as few words as possible, because it’s important that you
keep them in mind while you work through the chapters of this book. The
concepts of the new system itself will be covered in the upcoming chapters.

CHAPTER 1 INTRODUCTION

Note Apple is not the original creator of the async/await

system. The technology has been used in other platforms in the

past. Microsoft announced C# would get async/await support in
2011, and C# with these features was officially released to the public
in 2012.

Threads

The concept of Thread can vary even when talked about in the same
context (in this case, concurrency, and asynchronous programming).
In this book, we will treat a thread as a unit of work that can run
independently. In iOS, the Main Thread runs the Ul of your app, so every
Ul-related task (updating the view hierarchy, removing and adding views)
must take place in the main thread. Attempting to update the UI outside of
the main thread can result in unwanted behavior or, even worse, crashes.
In low-level multithreading frameworks, multithreading developers
will manually create threads and they need to manually synchronize
them, stop them, and do other thread management operations on their
own. Manually handling threads is one of the hardest parts of dealing with
multithreading in software.

Concurrency and Asynchronous Programming

Concurrency is the ability of a thread (or your program) to deal with
multiple things at once. It may be responding to different events, such as
network handlers, UI event handlers, OS interruptions, and more. There
may be multiple threads and all of them can be concurrent.

CHAPTER 1 INTRODUCTION

There are different APIs throughout Apple’s SDKs that make use of
concurrency. Listing 1-2 shows how to request permission to use Touch ID
or Face ID, depending on the device.

Listing 1-2. Biometric unlock is an asynchronous task

func requestBiometricUnlock() {
let context = LAContext()

var error: NSError? = nil

let canEvaluate = context.canEvaluatePolicy(
.deviceOwnerAuthenticationWithBiometrics, error: &error)

if cankvaluate {
if context.biometryType != .none {

// (1)

context.evaluatePolicy(
.deviceOwnerAuthenticationWithBiometrics,
localizedReason: "To access your data") {
(success, error) in
/7 (2)
if success {

/1 ...

(1) calls context.evaluatePolicy, which is a concurrent call. This
will ask the system to suspend your app so it can take over. The system will
request permission to use biometrics while your app is suspended. The

CHAPTER 1 INTRODUCTION

thread your app was running on may be doing something entirely different
and not even related to your app while the system is running context.
evaluatePolicy. When the user responds to the prompt, either accepting
or rejecting the biometric request, it will deliver the result to your app. The
system will wait for an appropriate time to notify your app with the user’s
selection. The selection will be delivered to your app in the completion
handler (also called a callback) on (2), at which point your app will be in
control of the thread again. The selection may be delivered in a different
thread than the one which launched the context.evaluatePolicy call -
this is important to know, because if the response updates the UI, you
need to do that work on the main thread. This is also called a blocking
mechanism or interruption, as evaluatePolicy is a blocking call for the
thread. If you have done iOS for at least a few months now, you are familiar
with this way of dealing with various events. URLSession, image pickers,
and more APIs make use of this mechanism.

People often think that asynchronous programming is the act
of running multiple tasks at once. This is a different concept called
Multithreading, and we will talk about it in the next point.

Note If you are thinking on implementing biometric unlock to
resources within your app, please don’t use the code above. It has
been simplified to explain how concurrency works, and it doesn't
have the right safety measures to protect your user's data.

Multithreading is the act of running multiple tasks at once. Multiple
threads (hence its name - multithreading) are usually involved. Many tasks
can be running at the same time in the context of your app. Downloading
multiple images from the internet at the same time or downloading a file
from your web browser while you open some tabs are some examples of
multithreading. This allow us to run tasks in parallel and is sometimes
called parallelism.

