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Preface
With carbon neutrality being raised as the high-priority
mission for human society, there is an urgent need for
technological development in related fields. In particular,
the demand for energy storage and conversion
applications, represented by batteries, is increasing rapidly.
Moreover, their development of energy-related applications
greatly boosted the requirements for new materials.
Among various new materials, graphene is undoubtedly the
most popular one. Since its discovery, graphene has
become a star material due to its excellent mechanical,
electrical, and chemical properties. However, in energy-
related fields such as batteries, supercapacitors, and
electrocatalysis, the demand for materials has a different
focus. How to manufacture and improve the graphene-
based materials to meet different needs is a question worth
exploring. Among the many strategies to prepare graphene-
based materials, the template method is one of the most
popular methods. The advantage of the template method is
that it can effectively regulate the microstructure of
graphene. Also, such a method can introduce heteroatoms
or other phases in graphene by the interaction between the
template and precursors during the preparation process.
There are more and more researchers recognizing the
benefits of the template method for graphene-based
materials production. There has been a rapid growth in
research in this area and many promising applications have
emerged. Therefore, we think it is necessary to summarize
and review the development in this field, which is the main
reason why we have written this book.
The framework of this book can be broadly divided into
three parts. Firstly, we will start with a basic introduction



to graphene-based materials (Chapters 1 and 2); the
second part is the frontier of template methods for the
preparation of graphene-based materials (Chapters 3–5);
the third part is the research progress of graphene-based
materials in different energy-related applications (Chapter
6–10).
Chapter 1 mainly introduces the basic knowledge of
graphene, including its history and physical properties. The
purpose of this chapter is to give the reader a background
for the following chapters. Chapter 2 will give readers a
grasp of the current synthesis strategies for graphene. To
this regard, the classification of graphene preparations is
described and some typical researches are introduced in
this chapter. Chapters 3 to 5 will focus on a brief overview
of different kinds of template methods for graphene
production. The study of porous metals for graphene
preparation is presented in Chapter 3. Nanoporous
graphene shows excellent physics and electrochemical
performance in the fields of energy storage and conversion
due to its high-quality and unique interconnected structure.
Chapter 3 presents an overview of the recent research
about the nanoporous graphene-based materials using
nanoporous metal as the substrates. Then, Chapter 4
focuses on how to prepare graphene in large quantities, in
particular. Considering the cost of graphene preparation
with the potential for a large number of applications,
substantial efforts have been devoted to developing a facile
and versatile method, and several low-cost template
methods will be reviewed in this part. In Chapter 5, the
strategy of powder metallurgy and additive manufacturing
procedures to prepare graphene materials is highlighted,
which is one of the current research interests of our group.
Subsequent chapters will discuss the various applications
of graphene-based materials, such as lithium-ion batteries
(Chapter 6), lithium-metal batteries (Chapter 7), lithium-



sulfur batteries (Chapter 8), supercapacitors (Chapter 9),
electrocatalysis (Chapter 10), and so on. Chapters 6 to 10
all follow a similar framework of discussion. At first, we will
give the background of these fields, such as the basic
concepts in energy applications and the physicochemical
principles for different devices. Then, the discussion of the
current bottlenecks in materials encountered in these
applications will be presented. Consequently, we will
describe why graphene-based materials are promising in
these fields and how graphene should be improved to suit
the different requirements. Meanwhile, we will review the
specific applications of graphene-based materials prepared
by the template methods in these fields and give the
properties that can be achieved or the performance in
practical cases. At the end of each chapter, we will discuss
the current challenges of these graphene-based materials
in each energy-related application, as well as possible
improvement strategies and directions.
In these chapters, relevant content includes both the
authors' studies and the research of others. This content
has been reorganized and reviewed to form systematic
frameworks. It is my pleasure to write and edit this book on
graphene-based materials and their energy applications. It
is hoped that the publication of this book will be helpful to
researchers in this field and provide guidelines for related
researches. Special thanks go to my students, colleagues,
and the publisher's editors for their discussions and help.
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