

�

� �

�

Unlocking Agile’s Missed Potential

�

� �

�

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson
Anjan Bose
Adam Drobot
Peter (Yong) Lian

Andreas Molisch
Saeid Nahavandi
Jeffrey Reed
Thomas Robertazzi

Diomidis Spinellis
Ahmet Murat Tekalp

About IEEE Computer Society

IEEE Computer Society is the world’s leading computing membership organization
and the trusted information and career-development source for a global workforce
of technology leaders including: professors, researchers, software engineers, IT
professionals, employers, and students. The unmatched source for technology
information, inspiration, and collaboration, the IEEE Computer Society is the
source that computing professionals trust to provide high-quality, state-of-the-art
information on an on-demand basis. The Computer Society provides a wide
range of forums for top minds to come together, including technical conferences,
publications, and a comprehensive digital library, unique training webinars,
professional training, and the Tech Leader Training Partner Program to help
organizations increase their staff’s technical knowledge and expertise, as well
as the personalized information tool my Computer. To find out more about the
community for technology leaders, visit http://www.computer.org.

IEEE/Wiley Partnership

The IEEE Computer Society and Wiley partnership allows the CS Press authored
book program to produce a number of exciting new titles in areas of computer sci-
ence, computing, and networking with a special focus on software engineering.
IEEE Computer Society members receive a 35% discount on Wiley titles by using
their member discount code. Please contact IEEE Press for details.
To submit questions about the program or send proposals, please contact Mary
Hatcher, Editor, Wiley-IEEE Press: Email: mhatcher@wiley.com, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774.

http://www.computer.org
mailto:mhatcher@wiley.com

�

� �

�

Unlocking Agile’s Missed Potential

Robert Webber

�

� �

�

Copyright © 2022 by The Institute of Electrical and Electronics Engineers, Inc. All rights
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:

Hardback ISBN: 9781119849087

Cover Design: Wiley
Cover Image: © Studio Romantic/Shutterstock.com

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

�

� �

�

v

Contents

Author Biography xi
Foreword xiii
Preface xv
Introduction xix

1 The Persistence of Waterfall Planning 1
1.1 Introduction to AccuWiz 1
1.1.1 The New COO 2
1.1.2 Product Management 3
1.1.3 PMO 3
1.1.4 Engineering 4
1.1.5 Customer Perspective 5
1.1.6 Synopsis 5
1.2 Summary 6

2 Why Agile Has Struggled 9
2.1 Agile Development Fundamentals 10
2.1.1 The Agile Revolution 10
2.1.2 Scrum 12
2.1.3 Kanban 14
2.2 Barriers to Real Agile 15
2.2.1 Schedule Pressure 16
2.2.2 The “Motivation” Factor 18
2.2.3 The Mythical Product Owner 20
2.2.4 Feature Planning 22
2.3 Agile Scaling Frameworks 22
2.4 Summary 23

References 24

�

� �

�

vi Contents

3 Embracing Software Development Variance 25
3.1 The Cone of Uncertainty 25
3.2 Software Development Estimation Variance Explained 27
3.3 Making and Meeting Feature Commitments 28
3.4 How Other Departments Meet Commitments 30
3.5 Agile Development Implications 31
3.6 Summary 31

References 32

4 Cost of Delay 33
4.1 Weighted Shortest Job First (WSJF) 34
4.1.1 Cost of Delay Basics 35
4.1.2 Example 36
4.1.3 WSJF Proof 38
4.1.4 CoD and Net Present Value (NPV) Prioritization Methods 40
4.2 Nonlinear Income Profiles 42
4.3 CoD for Nonlinear Cumulative Income Profiles 42
4.3.1 Payback Period CoD Method 42
4.3.2 Third-Year Income Slope CoD Method 42
4.3.3 CoD Computation Method 45
4.4 WSJF and Traditional Finance 47
4.4.1 ROI 47
4.4.2 Investment Rate of Return (IRR) 48
4.4.3 WSJF Versus ROI Prioritization 48
4.5 Summary 50

Reference 50

5 Investment Fundamentals 51
5.1 Investments, Initiatives, and Programs 52
5.1.1 Investment Hierarchy 52
5.2 AccuWiz Investment Examples 55
5.3 Portfolio Allocation 56
5.4 Investment Forecasts 57
5.4.1 Development Effort and Cost 57
5.4.2 Investment Income Forecasts 59
5.5 Investment Backlogs 62
5.5.1 Investment WIP 63
5.5.2 Investment Planning WIP Limits 64
5.5.3 Minimizing Investment WIP 65
5.6 Technical Debt Investments 66
5.7 Summary 68

Reference 68

�

� �

�

Contents vii

6 Maximizing Investment Value 69
6.1 Great Products 69
6.2 Business Model Value Considerations 71
6.3 Stakeholder Value Analysis 73
6.3.1 Gilb Stakeholder Definition 73
6.3.2 Ford’s Big Mistake 75
6.3.3 Trucking Fleet Management Example 77
6.3.4 Five Whys 79
6.4 User Scenarios 82
6.5 Summary 84

References 84

7 Planning High-Value Investment Features 85
7.1 Avoiding the Feature Pit 86
7.2 Feature ROI 87
7.3 Summary 91

Reference 91

8 Releasing Investments 93
8.1 Release Opportunity Cost 94
8.2 Investment Release Bundling 96
8.2.1 Investment Pricing 97
8.2.2 Lack of Customer Acceptance 98
8.2.3 Release Overhead Costs 99
8.3 Overcoming Modular Release Challenges 102
8.3.1 Architecture for Modular Deployment 102
8.3.2 Configuration Management 102
8.4 Release Investment Prioritization 103
8.5 Reducing Software Inventory Costs 104
8.6 Summary 107

Reference 108

9 Meeting Investment Targets 109
9.1 Meeting Commitments 109
9.2 Investment Teams 110
9.3 Managing Investment Scope 113
9.4 Managing Sales Requests 115
9.5 Summary 118

10 Investment Planning Template 119
10.1 Investment Description 120
10.2 Proxy Business Case 120

�

� �

�

viii Contents

10.3 Product Stakeholder Analysis 122
10.3.1 Customer Product Stakeholders 122
10.3.2 Internal Product Stakeholders 122
10.3.3 Constraints 122
10.3.4 Competition 123
10.4 Acceptance Criteria 123
10.5 Go-to-Market Plan 124
10.5.1 Pricing Model 124
10.5.2 Deployment Model 124
10.5.3 Sales Channels 124
10.6 Investment Targets 124
10.6.1 Development Cost 125
10.6.2 Cycle Time 125
10.6.3 Income Projections 125
10.6.4 WSJF 127
10.7 Assumption Validation 127
10.8 Summary 129

References 129

11 Managing the Agile Roadmap 131
11.1 The Agile Roadmap Management Database 132
11.2 The Agile Technology Roadmap 135
11.2.1 Stages of Technology Acquisition 136
11.2.2 Investment Technology Roadmaps 137
11.3 Summary 137

12 Maximizing Investment Development Productivity 139
12.1 Measuring Software Productivity 140
12.1.1 Cost of Quality (CoQ) 141
12.1.2 Cost of Quality and Software Productivity 142
12.1.3 Sources of Software Rework 144
12.2 Agile Cost of Quality 145
12.2.1 Reducing Agile User Story Rework 147
12.2.2 Reducing Agile Defect Rework 148
12.2.3 Agile Cost of Quality Example 149
12.3 Summary 150

References 151

13 Motivating Agile Teams 153
13.1 Background 153
13.2 Why You’re the Only Smart One in Your Organization 154

�

� �

�

Contents ix

13.3 Consequences and Behavior 156
13.3.1 Performance and Organizational Culture 157
13.3.2 Behavior and Software Quality 162
13.3.3 Intrinsic Motivation 164
13.4 Agile and Motivation 165
13.5 Measuring Motivation 167
13.6 Motivation Advice? 169
13.7 Summary 172

References 173

14 Innovating with Investments 175
14.1 Innovation – A Working Definition 176
14.2 Investments as an Innovation Vehicle 178
14.3 Why Your Organization Can’t Innovate 180
14.4 An Organizational Behavior Model of Innovation 181
14.4.1 An Innovation Tale of Two Companies 185
14.4.2 Creating a Culture of Innovation 188
14.5 Summary 193

References 194

15 AccuWiz Gets It Together 195
15.1 The Founder Meeting 196
15.2 The Announcement 196
15.3 Product Stakeholder Analysis 198
15.4 Creating the Investment Backlog 198
15.5 Customer Management 202
15.6 Investment Development 203
15.6.1 Project Management 203
15.6.2 Managers 205
15.6.3 Executive Team 206
15.7 Innovation is Revived 207
15.8 Synopsis 207

Reference 208

16 Getting It Together in Your Company: A Practical Guide 209
16.1 Step 1: Organizational Support 209
16.1.1 Influence Strategy 210
16.2 Step 2: Stakeholder Value Analysis 212
16.3 Step 3: Stakeholder Research 214
16.4 Step 4: Stakeholder Interviews 215
16.5 Step 5: Investments 216

�

� �

�

x Contents

16.5.1 User Scenarios 216
16.5.2 Feature Definition 218
16.5.3 WSJF Screening 218
16.6 Step 6: Initial Roadmap 220
16.6.1 Resource Allocation 220
16.7 Step 7: Investment Planning 221
16.7.1 Agile Roadmap Alignment Meeting 221
16.7.2 Program Review 223
16.8 Step 8: Consequence Alignment 224
16.9 Summary 226

Appendix A General Cost of Delay Formula 229
A.1 Reinertsen WSJF 231
A.2 Income Curve Approximation 231
A.3 Summary 234

Appendix B Investment Income Profile Forecasts 235

Appendix C Release Cycle Productivity Formula 237

Appendix D Rework and Productivity 241

Appendix E Innovation Behavior Survey 243

Glossary 247
Index 255

�

� �

�

xi

Author Biography

Robert Webber introduces a novel approach for Agile portfolio management and
planning based on his extensive experience in leading software development
organizations at GTE, AT&T, and three successful startups. His roles as VPs of
engineering and product management, CEO, and consultant for Fortune 500
companies provided the technical and business perspectives to facilitate Agile
planning while improving schedule and financial predictability.

Robert has an Electrical Engineering degree (honors) from the University of
British Columbia. He holds five patents and received an Academy of Motion Pic-
tures Arts and Sciences Technical Achievement Award for his innovative work on
cable-mounted cameras.

�

� �

�

�

� �

�

xiii

Foreword

As the author of Code Complete I have been asked to write forewords for other
people’s books more times than I can count. I say “no” nearly every time. If readers
see a foreword by the author of Code Complete, I believe they will expect the book
to be as good as Code Complete. I rarely have enough confidence in other books to
make that promise.

This book is a rare exception.
I have known Bob Webber for more than 20 years, and during that time we

have had hundreds of discussions about the topics in this book. We’ve noted the
unique ways that software executives see the world – often correctly, and some-
times flawed. We have shared observations about the relationship between the
typical software development organization and product management, sales, and
top executives. We’ve analyzed the strengths and weaknesses of Agile implemen-
tations – based to some degree on book knowledge, but based more on what we
have seen with the numerous teams and companies we have helped first hand.
We’ve puzzled about the reasons that Agile so often fails to live up to expectations.
We have had many lengthy conversations about managing portfolios of software
projects, releases, value streams, and features – and how all that relates to Agile
development.

This book begins with Bob’s identification of a major problem: The typical
organization’s commitment to Waterfall planning undermines its ability to be
truly agile, and that in turn prevents it from realizing the benefits of Agile
development. Don’t mistake this for the common doctrinaire argument, “You
can’t realize the benefits of Agile unless every remote corner of your organization
becomes Agile.” Bob’s analysis is more focused and far more nuanced – it has to
do with the specific interactions between top executives, product management,
and software development that give rise to a destructive mismatch between
Waterfall planning at the business level that eviscerates the use of Agile practices
in the software organization.

�

� �

�

xiv Foreword

After his clear explanations of this fatal weakness in Agile implementations, Bob
presents an innovative solution, which is to treat software initiatives as a portfolio
of investments, both small and large, and to prioritize them in a specific way that
maximizes economic return. The key is in how investments are sequenced – some
sequences produce far higher return than others, even when the work in total
is all the same. Common sense turns out to be a weak method for sequencing
investments, and this book presents a sophisticated approach that works markedly
better. There is some math in that section, but it’s worth it. When this approach is
used, prioritization of “features” and initiatives becomes more objective and eas-
ier. Historical friction between engineering and product management dissipates.
The organization becomes more successful.

The investment prioritization algorithm in this book – the sequencing – is a
core that supports improved organizational performance in other areas. The core
provides guidance for roadmap planning, increased productivity, and increased
innovation. These are not small benefits. Roadmap planning is perhaps the most
common Achilles heel I have seen in Agile implementations. Many organizations
treat increased productivity and increased innovation as primary goals. Bob’s soft-
ware investment portfolio approach supports them all.

Despite containing a significant amount of math and some economic discussion,
this is not an academic book. It is based on real-world experience, and it provides
a step-by-step guide that you can use to implement this software investment port-
folio approach in your organization. Bob provides practical resources such as an
investment planning template and an extended case study that illustrates how all
the concepts and techniques work together in practice.

Most books can’t measure up to the promise of Code Complete, but the approach
in this book can. Most organizations perform their software work in inefficient
ways. Simply by doing the same work in a different order – changing the
sequence – organizations can increase the returns on their software investments
dramatically.

From my conversations with Bob over more than two decades, I can say with
certainty that there is no one in the world who has spent more time understanding
how to construct a portfolio of software initiatives and how to optimize the returns
on such portfolios. This book describes Bob’s best thinking on the subject, and I
recommend it whole heartedly.

Steve McConnell, author of Code Complete

�

� �

�

xv

Preface

This is a journey that began in 2011 when I started a second career as a product
development consultant. I wanted to leave behind the pressure of delivering soft-
ware products and transition to a role that would allow me more time flexibility
to pursue my interests. I wouldn’t change anything in my first career. It provided
me with a perspective from the engineering and business side to solve a software
industry problem – the missed expectations of Agile development.

I would never have become a consultant if it wasn’t for Steve McConnell, an icon
of software engineering. I had read his books and admired how he updated proven
software engineering practices for the current generation of software developers.
I became a client of Steve’s training and consulting company, Construx Software.

When I decided to leave the corporate treadmill, Construx was the only company
for which I wanted to consult. Steve let me determine how I could best contribute
and gave me the flexibility to focus on my interests. It gave me the opportunity
to apply my knowledge and experience to help software companies build higher
value software and release it faster. It also provided me with insight into what was
really going on in Agile, and it wasn’t the Agile I was reading about in books.

This was a period when everyone was “going Agile.” I saw larger companies
stumble when they tried to apply a simplistic Scrum model designed for small
organizations. Product development organizations had the biggest challenges.
Where is the product owner who knows everything about everything in an
international organization with a complex domain and diverse customers? And
how can engineering do real Agile development when product management
plans large releases with fixed schedules stuffed with features?

My consulting assessments always pointed out that organizations were not really
doing Agile. A basic tenet of Scrum is that teams have time to incorporate feedback
and correct defects during sprint development. Instead, teams were still driven
by imposed schedules and barely had time to create basic functionality. Teams
were demotivated from continually missing schedules. Sprints were not “poten-
tially shippable.” Defects mounted up during sprints which led to major rework

�

� �

�

xvi Preface

in a “hardening sprint.” Engineers were feature implementors instead of providing
innovative solutions to problems conveyed to them in user stories and epics.

The value of releasing faster seemed obvious. Why did these organizations
continue to use traditional Waterfall release planning methods with fixed sched-
ules and content? Waterfall planning hadn’t ever achieved the predictability they
sought. How did they think that Agile roadmap commitments could be made
prior to requirements development given that requirements were allowed to
change?

Companies continue to use Waterfall planning because they are forced to make
multiyear financial commitments. The sales organization needs to know the prod-
ucts and features they can sell before they will commit to revenue. And projects
need financial justification based on delivery schedule and content commitments.
Internal operations groups must budget with the expectation of increased produc-
tivity dependent on new features. Agile didn’t address these issues. The somewhat
flippant response of the Agile community was, “The business needs to be more
Agile.” Even though Waterfall planning leaves a lot to be desired in terms of pre-
dictability, it is the only way product managers know how to plan.

Some companies implemented the SAFe Agile framework to integrate busi-
ness planning and Agile development. However, SAFe just institutionalized
feature-based Waterfall planning. Product managers liked it because they didn’t
have to change the way they planned large releases at the feature-level. SAFe
included an option for Lean Canvas planning but is not widely used in larger
organizations. It’s difficult to get funding approved for market experimentation.
The business wants to see the releases and features they are paying for before
funding development.

I’ve experienced a few epiphanies in my career. One occurred at the annual Con-
strux software leadership summit in 2011 that influenced this book. Donald Rein-
ertsen, author of The Principles of Product Development Flow [1], was a keynote
speaker. His book presents a queue-based model of software development analo-
gous to manufacturing organizations. The book includes a concept that can poten-
tially change the way software is planned. It’s called “Cost of Delay.”

Cost of Delay is a simple yet elegant perspective of the software development
process: “How much more money would you make if you could release your soft-
ware one month earlier?” Reinertsen went on to show that prioritizing projects
based on something called, “Weighted Shortest Job First” (WSJF), would optimize
income. WSJF is the Cost of Delay divided by the project cycle time. It essentially
says that companies make more money when they limit functionality and release
and earn income faster. I recognized that WSJF can facilitate the mythical “Mini-
mum Marketable Feature Set” (MMFS) advocated by Agile. I say mythical because
sales organizations refused to compromise on functionality. They wanted anything
and everything that could possibly lead to a sale in any country.

�

� �

�

Preface xvii

Thus began the journey to this book. Cost of Delay and WSJF were great con-
cepts, but they were not widely adopted. Companies found it difficult to calculate
Cost of Delay for non-linear post-release income profiles. Reinertsen’s formula
works for linear income profiles with constant income per month. I recognized
that WSJF had to be simplified and product managers need to have methods and
tools to simplify the calculations for any income profile.

My conclusion was that most companies have not achieved the potential of
Agile because they are not really doing Agile the way it was envisioned. They
are still trying to force-fit Agile into a Waterfall planning framework. This book
enables these organizations to reap the benefits of their investments in Agile
development by incorporating Agile planning and deployment. It also lets larger
organizations replicate the powerful dynamics of a startup instead of the divi-
siveness and friction I observed between product management and engineering.
The book describes how larger organization can build collaborative Agile product
teams.

There is one other major influence that helped shape my solution. Tom Gilb
has a long history of contributing to the software industry in the areas of software
metrics, software inspections, and evolutionary development processes. Tom gave
a talk on stakeholder value analysis at Construx in 2011. His method provides a
way to dig down to what users really want before getting into requirements detail.
It was the perfect fit for my proposed approach to Agile planning.

I want to thank Steve McConnell for his patience and support for this journey.
Steve is a deep thinker who kept me on track by challenging many of my assertions.
His philosophy of hiring smart people and letting them figure out how they can
best contribute gave me the freedom to pursue my ideas. I also had the benefit of
stimulating collaborations with other Construx consultants. Steve’s recent book,
More Effective Agile [2], is a useful and practical guide for engineering leaders that
complements my work.

Don Reinertsen’s book and principles provided the foundation for this new
approach for Agile planning. He is an inspirational speaker with the analytical
mind of an electrical engineer. I had the pleasure of talking to Don about some of
my ideas at the Construx leadership summit he attended two years after his first
talk. I highly recommend reading, The Principles of Product Development Flow.
WSJF was a way to illustrate the value of reducing cycle time. The book contains
much more. He goes on to show how cycle times can be drastically reduced by
managing queues that build up in software development.

I have one other person to thank – my wife, Susan. In addition to being a great
partner and mother, her PhD in Psychology and experience in leading change at
high-tech companies gave me insight into the “soft” side of software development
that needs to be addressed to realize the full potential of Agile. We can put all the
procedures and processes in place, but little happens without human motivation.

�

� �

�

xviii Preface

This book explains how Agile can create high-performance self-directed teams,
yet how it has been squandered by the constraints and controls from traditional
development, especially those driven by the perpetuation of Waterfall planning.

And, of course, I want to thank Susan for infinite patience and support for the
years I’ve spent developing and refining the Investment approach.

References

1 Reinertsen, D.G. (2009). The Principles of Product Development Flow: Second
Generation Lean Product Development. Celeritas Publishing.

2 McConnell, S. (2019). More Effective Agile: A Roadmap for Software Leaders.
Construx Press.

�

� �

�

xix

Introduction

The Lost Potential of Agile Development

I wrote this book because I want to see Agile development fulfill its promises. My
assertion is that organizations that retain Waterfall planning have not obtained
the true benefits of Agile. I found that organizations often referred to their soft-
ware development frameworks as a “hybrid” approach. After almost a decade of
software development consulting, I learned to recognize that the term “hybrid”
was a sure sign of a failed Agile implementation. It meant that engineering was
still held to fixed schedule and release content commitments. This book will show
that Waterfall planning is the antithesis of Agile. However, product managers can
now adopt new planning methods that support Agile development while meeting
the business need for predictability. Engineering can finally do Agile with content
flexibility.

After a successful career in software development, I joined Construx Software as
a consultant. I gave seminars on requirements, innovation, and project manage-
ment. I also conducted software development organizational assessments, which
included many Fortune 500 companies. I reviewed their practices and organiza-
tional structures to recommend how to improve software development productiv-
ity and predictability, and to reduce time-to-market. I had the opportunity to see
what was really happening “under the hood” in Agile.

While at Construx, I also had the opportunity to moderate group sessions at the
annual Construx Leadership Summit where software executives shared their chal-
lenges and solutions. I heard the same concerns over and over. Engineering was
still being held accountable for schedule, scope and budget commitments made
during the release planning stage. Many reported that they had not been able
to deliver on the expectations of Agile because of the continued use of Waterfall
planning.

�

� �

�

xx Introduction

In this book, we will consider “Waterfall planning” to be any development
framework where release development cost, schedule, and scope are fixed during
an initial planning period. Scope is typically defined in terms of features.
Development may be split up into several increments of release functionality, but
the overall release schedule and scope have already been determined.

Waterfall planning with fixed schedule, scope, and resources undermines the
fundamental Agile principles of evolving requirements to incorporate feedback
and additional knowledge during development. Agile teams were supposed to pull
work from queues at their own pace to ensure they can incorporate feedback and
new requirements during the development cycle. Variable content was supposed
to give teams time to correct defects to maintain “potentially shippable” software
instead of building up mounds of defects that had to be corrected near the end of
Waterfall projects. Agile teams were supposed to deploy software faster, with the
ultimate goal of continuous delivery. However, planning begins with the assump-
tion of large releases that are then “filled up” with myriad features of questionable
value.

This book mainly addresses issues observed in larger organizations with sepa-
rate product management departments. I’ve seen many cases where Agile works
great with small teams under the guidance of a knowledgeable product owner who
truly understands customers and the market. However, something seems to go
wrong when silos go up around formalized product management departments.
There is a major disconnect between the Waterfall planning perpetuated by prod-
uct managers and the variable content necessary for Agile development. Product
managers have not been provided alternatives to Waterfall planning that meet the
predictability needs of the business and the schedule and/or content flexibility
required by engineering.

I’ve also observed that there are common characteristics of the Agile examples
touted by the Agile community. They are mostly in companies with a Business to
Consumer (B–C) business model where the engineers have a solid understand-
ing of the domain. Consider Facebook or Apple versus a medical device company
serving international patients. The second characteristic of these example compa-
nies is the ability to attract the top percentiles of engineering talent. The third is
that engineers are not constrained by Waterfall planning mandated to try to meet
quarterly and annual financial targets.

Engineers with deep domain knowledge, especially when they are potential con-
sumers of the product, can work effectively with little guidance. They can fill in
the blanks of high-level user stories without frequent interaction with product
owners. The Business to Business (B–B) companies that I assessed have complex
domains and were never able to convey the necessary requirements detail through
user stories alone. As an example, I worked with a company where Indian engi-
neers were implementing highly regulated casino management software from user

�

� �

�

Introduction xxi

stories when they had never been in a casino in their lives! It wasn’t Agile devel-
opment – just code and fix.

Talent is another critical factor. I’ve worked with teams of talented engineers
that can deliver software with little or no software development framework or
methodology. These are the top 15% of self-motivated engineers who will over-
come anything in their way. And they can write virtually error-free code. Who
gets this demographic? The “cream of the crop” goes to startups or fashionable
companies like Google, Microsoft, Facebook, and Spotify. The rest of the indus-
try is left with average engineers who need a solid development framework and
detailed requirements.

The third Agile success element is the main subject of this book. The example
companies have abandoned Waterfall release planning and embraced Agile plan-
ning, often because they are dominant in their markets and can set their own
schedules. They are probably not like your company with a demanding sales team
committed to quarterly revenue based on what is available for them to sell. I have
not seen an effective Agile implementation where Waterfall planning persists.

Putting these three Agile success elements together, one realizes that most of
the “ideal Agile” examples and literary advice is based on a small fraction of
the software industry comprised of startups and sexy B–C companies that have
embraced Agile planning and are loaded with engineering talent. I always felt
bad for the Construx summit attendees who listened with envy about amazing
Agile implementations and wondered what was wrong with them. It is not them.
They could be making the same presentations given the same ideal conditions
discussed above.

This book is for the frustrated “silent majority” of software development organi-
zations where Agile has not met expectations. It addresses the typical large com-
pany with complex domains and average talent. These companies can now adopt
Agile planning and deployment and improve predictability for the business. This
book describes how highly motivated Agile product teams can be built around
business problems with quantified value. Engineers are provided with the problem
to solve instead of trying to convey detailed implementation requirements through
user stories with an uninvolved or uninformed product owner.

The word Agile in this book refers to methods other than just Scrum, like
Kanban. I use Scrum terminology in this book, but the same investment planning
principles and methods apply to any Agile method using iterative development
with evolving requirements where self-directed teams pull their work from
backlogs.

There is one other term used throughout this book that needs to be clarified for
those of you with some knowledge of company financials. When I use the term “in-
come” I am referring to “Net Income,” which is the income received with product
cost, expenses and taxes removed.

�

� �

�

xxii Introduction

Missed Business Expectations

Agile has not addressed the real-world need for financial predictability in busi-
ness. We do know that roadmap commitments were usually not met with Waterfall
development. We learned there is a limit to the accuracy of software development
effort and schedule estimation. With the advent of Agile, engineering was now
expected to make commitments even before requirements were developed, exac-
erbating the predictability problem.

The Agile community response of, “The business needs to be more Agile” did
nothing to help product and project managers who were still held accountable for
long-term commitments of schedule, scope, and cost. This widened the division
between product management and engineering. Engineering is frustrated by not
being able to do Agile development the way they were taught, having to resort to
“hybrid” methods. Product and project management are frustrated because of the
reluctance of engineering to make release commitments.

Certainly, there are organizations that have been able to manage variable
content with Waterfall planning by reserving software development contingency.
But these organizations are rare because contingency doesn’t typically survive the
pressure to commit during release planning.

I don’t blame product management for the continued use of Waterfall planning.
They weren’t provided with an alternative. Product managers were left out of Agile
because, in the view of the Agile community, they could be replaced with product
owners who sit with a team to provide verbal clarification for everything they need
to know. And, according to the Agile community, there was no need to get require-
ments right because they could release small increments and gain the benefit of
rapid customer feedback. We went from the Waterfall world where we tried to
know everything about everything before development starts to the purist Agile
view where we can’t know anything about anything.

Agile did not account for the real-world challenges faced by software product
managers in established organizations. In the real world, sales departments must
commit to future revenue so that projected earnings and growth rates can be
met. These commitments become part of multiyear business plans committed to
a board of directors. Of course, sales people naturally want to know what they
will have to sell and when they can sell it before they can agree to sales quotas.
This results in expectations that product managers can predict delivery at the
feature-level on a multiyear roadmap.

Agile grew quickly from a methodology for small development teams to major
projects and products without defining methods for product managers to meet the
predictability demanded by the business.

My experience as a VP of engineering, VP of product management and a CEO
in the software industry has enabled me to view Agile development from all sides.
It has given me a good perspective on how the needs of all stakeholders need to

�

� �

�

Introduction xxiii

be addressed for Agile to be truly successful. Agile development is trying to swim
upstream in a current of established business processes based on financial report-
ing requirements. The business will always demand predictability as long as our
capitalist system requires CEOs to make earnings projections. Agile needs to meet
business predictability expectations to be deemed successful. “The business needs
to be more Agile” is a naïve response from the Agile community. I doubt that any
business leader would argue with this, but agility can only exist within the pre-
dictability constraints of the business.

A New Approach to Agile Planning

Let’s examine what predictability actually means to the business world. Multiyear
financial forecast commitments must be made to shareholders and other stake-
holders. Your company’s executives really don’t care about software estimation
uncertainty. They want financial predictability. Agile can deliver predictability for
the business in two ways. The first is to learn to make commitments that have
high probability of being met, which is addressed in this book. The second is to
plan and focus on delivering predictable financials and R&D Return on Investment
(ROI). The Investment method described in this book enable product management
and engineering to work together to balance income projections and development
costs to meet financial targets.

Today features are still the primary planning element in software development.
Features are an increment of value with a common understanding of benefit by
sales, product management, and engineering. However, it is generally not possi-
ble to estimate financial return on a feature basis at the planning stage. The best
we could do was feature prioritization with subjective rating methods. Some of
you may be familiar with T-shirt sizing, where both “business value” and develop-
ment effort are weighted for a feature. Features with the highest “business value”
and lowest cost have higher priority. T-shirt sizing has been a useful method for
subjective prioritization of features, but it doesn’t project income on a feature basis.

The need for financial predictability on the business side, combined with
the inherent Agile development need of content delivery flexibility, led to the
Investment planning approach introduced in this book. “Investment” in the Agile
planning context is defined as the smallest increment of software functionality
that has the potential to increase income and/or reduce operational expenses.
To generate income a customer must perceive value. Willingness to pay for
something affirms business value.

Here are some examples of Investments:

New Sales

● Interactive dashboards to reduce customer operational costs by 10% to increase
annual revenue by 5% over the next three years

�

� �

�

xxiv Introduction

Defense

● EU competitive features to prevent market loss of 20% over three years

Expense Reductions

● Multi-tenant capability to reduce annual hosting costs by 15%

Refactoring

● Deployment simplification to accelerate $3M in income over the next three years

Investments become the Agile planning element with this new approach.
Features can then be justified and prioritized within an Investment based on their
relative contribution to the financial target instead of trying to prioritize hundreds
of features. This book uses Cost of Delay principles to show that Investments
that generate the highest income with the lowest development effort should be
prioritized higher.

The condition “potentially deployable” is used to separate the release packaging
problem from the prioritization of development work. There are often valid rea-
sons why multiple Investments may be packaged in the same release. Regulatory
validation requirements are an example. Or there may be deployment process con-
straints involving retraining of operations staff. However, even if we are planning
to release multiple Investments in a release, they should be developed in the order
of highest value.

We want to be “agile” by being able to replace lower value Investments with
higher value Investments at any time during the development cycle. With the
ability to assign income to increments of software development, we can finally
quantify the millions of dollars that are delayed because of the inability to deploy
individual Investments. This can be viewed as “the opportunity cost of not being
Agile.” Investments in software infrastructure and deployment processes to
release faster can now be justified.

Product managers may view Investments as conventional “initiatives” they
have traditionally used in planning. There is a key difference. Initiatives relate
to marketing programs of which R&D costs are only one component. Marketing
initiatives include all activities necessary to develop, market and profit from a
product. Investments defined in this book are based only on R&D cost so we can
prioritize work within constrained software development capacity to maximize
ROI. In effect, an R&D “Investment” is one component of an “initiative.”

Engineering may view “Investments” as the Minimum Marketable Feature Set
(MMFS) long advocated by Agile development. The comparison is valid for the
case where an MMFS is associated with a financial forecast. However, the MMFS
term is also used to describe an increment of functionality that adds any perceived

�

� �

�

Introduction xxv

“value” for the customer. An Investment can be an MMFS, but not every MMFS
is an Investment. The book will show, however, how the Investment approach
facilitates the MMFS because Investments with lower development cost are pri-
oritized higher. A Minimum Viable Product (MVP) may be created to validate the
perceived benefit of an increment of software without revenue expectations just to
obtain customer feedback. MVPs are Investments only if they generate income.

You may be questioning at this point how we can assign income forecasts at the
Investment level because it requires commitment from sales and/or operations
during the planning stage. Obtaining revenue and cost reduction commitments
prior to starting development has long been a goal of product managers. However,
release price bundling and the inability to forecast income at the feature-level have
made this impractical. Product management can now get income commitments on
an Investment before it can be prioritized within the Investment backlog. Methods
to collaboratively plan income impacts with sales and operations prior to develop-
ment are provided in this book.

Addressing Traditional Software Development
Challenges

Don Reinertsen introduced Cost of Delay and Weighted Shortest Job First (WSJF)
in his book Principles of Product Development Flow [1], but these calculations
have not been widely adopted. Reinertsen introduced “Weighted Shortest Job
First” (WSJF) as a project prioritization method. He showed that prioritization by
monthly income divided by cycle time always provides the optimal development
order of projects. He refers to monthly income as the “Cost of Delay.” Although
widely acknowledged as the optimal prioritization method, WSJF has posed a
challenge for the software industry. It’s not possible to prioritize software devel-
opment within a release because features typically don’t have income projections.
His WSJF based on Cost of Delay in terms of income can now be used to prioritize
Investments.

Inability to reduce technical debt has long been a point of frustration for
engineering. It’s not realistic to expect product managers to prioritize work with
nebulous financial value ahead of the feature demands of their stakeholders.
Engineering can now propose Investments for technical work that can be pri-
oritized against business investments. The catch is that engineering needs to
justify how these technical Investments improve financial results to offset their
development costs and the cost of delaying income from other Investments. This
book teaches engineering how to do that.

Investments also facilitate collaboration between product management and
engineering. Relationships between product management and engineering

�

� �

�

xxvi Introduction

departments have often been adversarial because they have conflicting objec-
tives. Product management pressures engineering to incorporate features into
releases under pressure from sales and operations. Engineering naturally avoids
commitment because they are the ones that end up being held accountable, espe-
cially when they know that additional work will come in without schedule relief.
Product managers and engineering can now share common goals with Investment
planning. Their shared objective is to define Investments with the lowest devel-
opment costs that maximize income. They also need to ensure that Investment
scope does not increase without offsetting income to maintain WSJF priority.
Product teams with common goals can now be formed around Investments.

Agile teams can be staffed on the basis of Investments. We want Agile teams
to be focused on value rather than functionality. By definition, Investments pro-
vide quantifiable value. Consider the higher motivation of an Agile team working
together to solve problems directly related to customer value, rather than imple-
menting pre-determined functionality. This achieves the original objective of Agile
development of delivering increments of true customer value.

Lastly, Investment planning addresses the role conflict between product man-
agers and product owners. I have observed product managers who still dwell on
the details of requirements definition, even down to User Interface (UI) layouts.
Investment planning elevates the role of product managers to focus on value rather
than functionality. Product managers can concentrate on identifying opportuni-
ties for customer value for which customers are willing to pay. Product owners
can focus on the functionality necessary to achieve that value. Investment plan-
ning provides complementary roles for product management and product owners
that facilitate collaboration and innovation.

Motivation and Innovation

I have included a chapter on each of these topics based on some amazing insight
and training I received early in my career. I felt that this book would be incomplete
without addressing the organizational cultural aspects necessary to fully realize
the potential of the Investment approach and Agile development.

Motivation must be established in your organization to adopt and use the
practices provided in this book. Most organizational change implementations
fail because they don’t provide the motivation to follow new practices. And can
you really change the divisive and confrontational relationship between product
management and engineering in your organization? Can product management
ever get sales to accept the MMFS instead of continual pressure for features
of little value? You’ll see that there are established principles of organizational
behavior that show how to align consequences with new practices to facilitate

�

� �

�

Introduction xxvii

sustained behavior change. These principles have been taken into account for all
the practices defined in this book. The practices themselves drive culture change.

Innovation is at the end of the Agile rainbow. However, the potential of Agile
to ignite innovation is rarely achieved. The Investment model described in this
book facilitates innovation by allowing engineering to contribute at the planning
stage. Investments convey the problem to solve instead of constraining engineers
with features and prescriptive requirements. However, even with new practices to
facilitate collaboration and innovation, it won’t happen unless you can create the
nebulous “culture of innovation.”

Culture is defined in terms of the organizational behavior model of motivation.
We will see that innovation is a product of behaviors that must be frequently rein-
forced in your organization. Presenting ideas or building a proof of concept on
one’s own time are examples of behaviors observed in companies with a “culture
of innovation.” Behaviors require motivation, hence the connection with the orga-
nizational behavior model. Chapter 14 tells you exactly what your organization
needs to do to reach the end of the Agile rainbow where product managers and
engineering collaborate to produce innovative products within short cycle times
that outdistance your competition.

Your Organization

This book provides everything you need in terms of practices, templates, and tools
for you to implement the Investment model in your organization. The final chapter
in this book provides a step-by-step guide, from gaining internal support to cre-
ating your first Agile Investment roadmap. It also tells you how to align conse-
quences in your organization to make lasting change. This book provides refer-
ences to downloadable spreadsheets to support Investment planning, including
Cost of Delay calculations. They can be accessed at: www.construx.com/product-
flow-optimization-calculators.

Reference

1 Reinertsen, D.G. (2009). The Principles of Product Development Flow: Second
Generation Lean Product Development. Celeritas Publishing.

http://www.construx.com/product-flow-optimization-calculators
http://www.construx.com/product-flow-optimization-calculators

