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Preface
One of the biggest lessons learned from the COVID-19
pandemic is that it has highlighted how vulnerable
humanity is with respect to potential threats that had been
predicted for decades and that we thought we were
prepared to resist. Another important lesson is that shelter-
in-place requirements mandated by governments around
the world showed the impact of human activity in air
quality and carbon emissions to the atmosphere. Clean
skies were seen in places where a thick layer of smog was a
common daily sight. The recent sixth assessment report
from the Intergovernmental Panel on Climate Change
concluded that widespread and rapid changes have
occurred unequivocally due to human influence in warming
the atmosphere, ocean, and land. As long as world leaders
do not take strong action to limit carbon emissions to the
atmosphere, we will continue to live in a world threatened
by climate change, which will end up exposing more
vulnerabilities of our society. Just in the United States, it is
estimated that around 1 billion dry tones of biomass per
year could be produced sustainably. This is in addition to
the already available biomass that decomposes releasing
methane and other pollutants to the atmosphere. The
conversion of biomass to useful forms of energy such as
electricity and heat, as well as the production of value-
added products such as biochar and activated carbon,
constitute a viable way to reduce biomass, generate
renewable energy, and sequester carbon in a stable form.
This book provides an overview of conventional biomass
processing techniques as well as a description of
technologies that utilize voltages and currents to enhance
processing capabilities. The term plasma processing of
biomass is usually associated with thermal plasma torches



used for gasification of organic material. This book not only
describes thermal plasma processing of biomass, but it also
presents applications where nonthermal plasma discharges
can be utilized in biomass processing plants, and
applications where Joule heating of carbonaceous materials
can be implemented. The book is intended for senior level
undergraduate students and first year graduate students,
who might not have a background in plasma, but are
familiar with concepts of calculus, differential equations,
and numerical algorithms. Chapter 1 provides a description
of relevant properties of biomass, biochar, and activated
carbon, while Chapter 2 gives a description of conventional
methods of processing biomass and biochar. Chapter 3
provides an introduction to plasmas for thermal and
nonthermal discharges, and Chapter 4 describes
technologies that are suitable for utilizing the effects of
applied voltages to enhance biomass processing. As
properties of biomass vary after thermochemical
decomposition, yielding a material with better electrical
properties, Chapter 5 focuses on the analysis of the effects
of applying voltages in processing of biochar. Thermal
runaway behavior can be obtained with heating rates not
achievable by conventional heating techniques. Chapter 6
provides an introduction of numerical simulation of
plasmas. Finally, the inherit variability and even chaotic
behavior of thermal arcs are analyzed in Chapter 7 in the
context of the development of control techniques that can
stabilize these discharges.

 
January 20, 2022

                                    Gerardo Diaz
Merced, California
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Introduction
It has become evident that over the past decades, the
impacts of climate change are increasing in severity and
frequency. This situation has surpassed the threshold of
affecting just our comfort level with higher average
temperatures, heat waves, and modified precipitation
patterns, but it is starting to threaten our livelihood.
Climate change has been considered by some researchers
as the biggest environmental challenge of our existence.
For instance, average ambient temperatures continue to
increase, severe drought conditions are occurring in
several areas of the world, and six out of ten of the most
extreme historical floods have taken place in the last 25
years. In addition, wildfire frequency and intensity are also
increasing, partly due to climate change, but also due to
outdated forest management practices and a large supply
of biomass. It is here where there is great potential to
utilize carbon-negative processes to reduce emissions and
sequester carbon in a stable way. Well-established biomass
processing techniques include combustion, gasification,
pyrolysis, hydrolysis and hydrothermal liquefaction, which
are suitable for a variety of applications that require steam,
process heat, electricity, biochar, fuel gases, or synthetic
liquid fuels. However, the utilization of voltage-driven
techniques for the processing of biomass and biochar has
been shown to have advantages for certain applications.
This book concentrates on voltage-enhanced processing of
carbonaceous materials, describing aspects related to
thermal and nonthermal plasmas as well as the effects of
Joule heating in the temperature distribution and
conversion rate. In certain cases, it is necessary that the
plasma discharge provides most of the energy required for
the conversion. For these cases, a brief description of



thermal plasma torches available is provided and
experimental results of the conversion utilizing steam
plasma are described. Results are compared against a
thermodynamic model that predicts synthesis gas
composition under the presence of a thermal plasma
discharge. Simulation results of Joule heating of biomass,
biochar and pyrolytic graphite are also provided. The
thermochemical conversion of carbonaceous materials can
also be enhanced with nonthermal plasma (NTP), in which
the presence of the discharge generates ionized and
excited species, radicals, etc., that are not present in
conventional conversion processes. The purpose of the
plasma in this case is not to provide the entire energy for
the process but to enhance conversion. The book provides a
description of the way that voltage is used to generate a
NTP discharge, which exhibits highly energetic electrons
with ions and neutral species at near-ambient temperature.
A description of the physics related to these discharges is
provided with experimental and simulation results of
biomass gasification and plasma activation. Results related
to tar breakdown are also provided as NTP is used to
reduce pollutant emissions and to increase the fraction of
hydrogen in synthesis gas by decomposing tars. An
introduction to numerical simulations of non-equilibrium
plasma discharges is provided and, a brief description of
the control of these discharges is provided in the last
chapter.



1
Carbonaceous Material
Characterization

1.1 Material Characterization
The thermochemical conversion of biomass by means of
processes such as torrefaction, pyrolysis, or gasification,
produces a char-like material with properties that differ
considerably from the original feedstock. Further
processing in the form of chemical or physical activation
continues to modify the properties of the carbonaceous
materials produced. The following Sections (1.1.1–1.1.4)
provide a description of the main properties needed to
characterize carbon-based materials for applications of
biochar production and energy conversion.

1.1.1 Thermophysical Properties
Thermophysical properties are directly related to the
structure and composition of the carbon-based materials.
There is a large volume of studies that have analyzed their
variation due to the effects of thermochemical conversion
processes (Balogun et al., 2018). These properties not only
have an impact in the operating conditions of processing
equipment but also affect transportation costs and
pollutant emissions. The thermal and physical properties
have a strong dependence on parameters such as moisture
content and temperature (James, 1975; Skaar, 1988;
Dietenberger et al., 1999; Zelinka et al., 2007); therefore,
various models have been developed to represent them as a
function of these factors. The most relevant properties
include thermal conductivity, density, and specific heat.


