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Preface

With carbon neutrality being raised as the high-priority mission for human society,
there is an urgent need for technological development in related fields. In particular,
the demand for energy storage and conversion applications, represented by batter-
ies, is increasing rapidly. Moreover, their development of energy-related applications
greatly boosted the requirements for new materials.

Among various new materials, graphene is undoubtedly the most popular one.
Since its discovery, graphene has become a star material due to its excellent mechan-
ical, electrical, and chemical properties. However, in energy-related fields such as
batteries, supercapacitors, and electrocatalysis, the demand for materials has a dif-
ferent focus. How to manufacture and improve the graphene-based materials to
meet different needs is a question worth exploring. Among the many strategies to
prepare graphene-based materials, the template method is one of the most popular
methods. The advantage of the template method is that it can effectively regulate the
microstructure of graphene. Also, such a method can introduce heteroatoms or other
phases in graphene by the interaction between the template and precursors during
the preparation process. There are more and more researchers recognizing the ben-
efits of the template method for graphene-based materials production. There has
been a rapid growth in research in this area and many promising applications have
emerged. Therefore, we think it is necessary to summarize and review the develop-
ment in this field, which is the main reason why we have written this book.

The framework of this book can be broadly divided into three parts. Firstly, we will
start with a basic introduction to graphene-based materials (Chapters 1 and 2); the
second part is the frontier of template methods for the preparation of graphene-based
materials (Chapters 3–5); the third part is the research progress of graphene-based
materials in different energy-related applications (Chapter 6–10).

Chapter 1 mainly introduces the basic knowledge of graphene, including its
history and physical properties. The purpose of this chapter is to give the reader a
background for the following chapters. Chapter 2 will give readers a grasp of the cur-
rent synthesis strategies for graphene. To this regard, the classification of graphene
preparations is described and some typical researches are introduced in this chapter.
Chapters 3 to 5 will focus on a brief overview of different kinds of template methods
for graphene production. The study of porous metals for graphene preparation
is presented in Chapter 3. Nanoporous graphene shows excellent physics and
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electrochemical performance in the fields of energy storage and conversion due
to its high-quality and unique interconnected structure. Chapter 3 presents an
overview of the recent research about the nanoporous graphene-based materials
using nanoporous metal as the substrates. Then, Chapter 4 focuses on how to
prepare graphene in large quantities, in particular. Considering the cost of graphene
preparation with the potential for a large number of applications, substantial efforts
have been devoted to developing a facile and versatile method, and several low-cost
template methods will be reviewed in this part. In Chapter 5, the strategy of powder
metallurgy and additive manufacturing procedures to prepare graphene materials
is highlighted, which is one of the current research interests of our group. Subse-
quent chapters will discuss the various applications of graphene-based materials,
such as lithium-ion batteries (Chapter 6), lithium-metal batteries (Chapter 7),
lithium-sulfur batteries (Chapter 8), supercapacitors (Chapter 9), electrocatalysis
(Chapter 10), and so on. Chapters 6 to 10 all follow a similar framework of discus-
sion. At first, we will give the background of these fields, such as the basic concepts
in energy applications and the physicochemical principles for different devices.
Then, the discussion of the current bottlenecks in materials encountered in these
applications will be presented. Consequently, we will describe why graphene-based
materials are promising in these fields and how graphene should be improved to
suit the different requirements. Meanwhile, we will review the specific applications
of graphene-based materials prepared by the template methods in these fields and
give the properties that can be achieved or the performance in practical cases. At the
end of each chapter, we will discuss the current challenges of these graphene-based
materials in each energy-related application, as well as possible improvement
strategies and directions.

In these chapters, relevant content includes both the authors’ studies and the
research of others. This content has been reorganized and reviewed to form system-
atic frameworks. It is my pleasure to write and edit this book on graphene-based
materials and their energy applications. It is hoped that the publication of this
book will be helpful to researchers in this field and provide guidelines for related
researches. Special thanks go to my students, colleagues, and the publisher’s editors
for their discussions and help.
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Graphene-Based Materials: Structure and Properties
Xiaoyang Deng1,2 and Yue Li1

1Tianjin University, School of Materials Science and Engineering and Tianjin Key Laboratory of Composites
and Functional Materials, 135 Yaguan Rd., Jinnan District, Tianjin 300350, P.R. China
2Taiyuan University of Technology, Institute of New Carbon Materials, School of Materials Science and
Engineering, P.R. China

1.1 Introduction to Carbon Materials

Carbon materials have played important role in human society due to their
extremely widespread applications, as shown in Figure 1.1. For example, while
carbon black was used as paint, charcoal was as a heat source according to historical
materials as early as the legend of Yao and Shun. Graphite is one of the most
important carbon materials with numerous functions, including as electrodes in
casting/stamping/pyrometallurgy processes, in powder form as pencil lead and
polishing powder, as high-quality blocks in nuclear reactors, and as refractory
materials for crucibles and molds. Diamond is the hardest three-dimensional
carbon material. The rare, natural form of diamond is usually used in jewelry,
while the synthetic form is used in cutting tools, infrared window materials, and
abradants. In addition, carbon black is an important reinforcement material for
tires in the development of automobiles. Conductive carbon black is important as a
conductive additive in electrode production. Carbon fibers have been a star material
in their use as additive-reinforcement materials in recent decades. For example,
carbon-fiber-reinforced composite materials are widely used in aircraft body parts
and aerospace field. In automobiles, carbon-fiber-reinforced carbon materials can
be used in brakes production, while the motor-body manufacture is a promising
application for carbon-fiber-based materials. In other fields, carbon-fiber-reinforced
materials can be used to fabricate fan blades for wind power generation and in sports
equipment. Some examples of applications of carbon materials are illustrated, but
listing every application is not possible here due to the innumerable fields where
they are used.

With the present rapidly rising world population and industrialization, energy
demand has led to rigorous energy-sources consumption and environmental
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Figure 1.1 Typical carbon materials, such as charcoals, pencil lead, diamond, and carbon
black–reinforced tires. Source: Pixabay.com. Reproduced with permission of Pixabay.

pollution problem. Hence, the development of sustainable and clean energy
technologies is a great challenge for human society, and the promising solutions are
exploring solar/wind/tidal energies. Although these energy sources are renewable
and clean, the highly intermittent feature makes them necessarily be coupled with
the energy storage systems. On the other hand, the coming electronic and infor-
mation age also requires high-performance energy storage equipment. Lithium-ion
batteries and supercapacitors are the most widely used energy storage devices in
industry and daily life – to name a few, electric vehicles, portable electronic equip-
ment, and power station. Active carbon and graphite are used as active materials in
the electrodes of supercapacitors and lithium-ion batteries, respectively; conductive
carbon black is a commonly used additive to enhance the electrical conductivity
of electrodes, while now carbon nanotube (CNT) and graphene are also used as
conductive additives in some products.

Carbon materials are predominantly composed of carbon atoms, and they have
diverse structures and properties. There are various methods for the classification
of carbon materials according to different bases – e.g. the chemical bonding modes
of the carbon–carbon atoms, the production process, micro/nano-texture, and
time of appearance. According to the chemical feature of carbon–carbon bonding
(Figure 1.2), various families of carbon materials have been defined: C—C bonds
based on the sp3 orbitals for the diamond family materials, C—C bonds based
on sp2 orbitals to construct graphite family, C—C bonds based on sp. orbitals for
carbynes, and C—C bonds with hybrid orbitals, such as graphdiyne constructed by

http://pixabay.com
http://pixabay
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Diamond: sp3 Graphite: sp2 Fullerene: sp2

Amorphous carbon: sp3 Carbon nanotube: sp2

Graphene: sp2 Graphdiyne: sp2 + sp

Figure 1.2 Carbon family based on carbon–carbon bonding. Source: Li et al. [1].
Reproduced with permission of Royal Society of Chemistry.

C—C bonds based on sp/sp2 hybrid orbitals [2–5]. The most commonly used carbon
materials in industry belong to the graphite family with a layered stack of carbon
hexagons. Such carbon layers have strong anisotropy due to the strong covalent
bonding based on sp2 orbitals in the layers and weak bonding of van der Waals force
of π electron clouds between stacked layers [4].

In the nanometer era, there have been many new members in the carbon family
since the discovery of carbon nanomaterials. In 1985, zero-dimensional (0D)
fullerene (C60) was first discovered with zero dimension by Smalley and coworkers
[6, 7]. In 1991, the CNTs, a new one-dimensional (1D) carbon allotrope, were
proposed by Iijima [8, 9]. The CNTs with various structures, i.e. thickness (single-,
double-, or multi-walled), diameter, and length, have been synthesized and some
types are produced on industrial scale [10]. When scaling down the thickness of
graphite into nanoscale, graphene can be obtained; in other words, the monolayer
graphene is the mono-unit of graphite. In 2004, graphene with two-dimensional
(2D) structure was first experimentally evidenced and characterized by Geim and
Novoselov, and it quickly became the most widely investigated material [11].
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Figure 1.3 Timeline of selected events in the history of the preparation, isolation, and characterization of graphene. Source: Dreyer et al. [14].
Reproduced with permission of John Wiley and Sons.
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1.2 History of Graphene

Despite a series of theoretical studies stating otherwise, as early as the 1940s, Wallace
had advised that graphite might possess extraordinary electronic characteristics if
its layer is isolated [12]. The term “graphene” was first proposed by Boehm et al.
in 1986, who recommended that the term “graphene layer” should be used for the
isolated graphitic structure constructed by only carbon atoms in one plane, which
means that graphene is the most basic structure of graphite [13]. Geim, Novoselov,
and coworkers used the mechanical approach to synthesize graphene in 2004, in
which the highly ordered pyrolytic graphite surface was pressed against a surface of
silicon wafer, and, when removed with a scotch tape, thin flakes of graphene were
detected and characterized [11] (Figure 1.3). This was the first time that the existence
of graphene was demonstrated through experimental evidence. In 2010, Geim and
Novoselov were awarded a Nobel Prize for “groundbreaking experiments regarding
the two-dimensional material graphene.”

“Graphene,” therefore, is defined as “an isolated single layer of carbon hexagons
with sp2-hybridized C—C bonding.” In other words, as a new two-dimensional (2D)
allotrope of carbon materials graphene has monoatomic thick honeycomb lattice
structure (Figure 1.4a) [2, 15–18]. Hence, it can be considered as the basic build-
ing block to construct other graphitic materials, e.g. wrapped up into 0D fullerenes,
rolled into 1D CNTs, and stacked to 3D graphite (Figure 1.4b) [15]. The distinctive
structure and physical properties of graphene make it important for applications
in technological field, such as polymer-based nanocomposites, energy storage and
conversion devices (e.g. lithium-ion batteries, supercapacitors, air batteries, and fuel
cells), flexible electronic and optical devices, and chemical sensors [2, 3, 19–22].

In general, some physical and chemical methods can be used to synthesize
graphene, e.g. mechanical exfoliation of graphene layers from pristine graphite;
chemical vapor deposition (CVD) of graphene layers on different crystals; thermal
decomposition of silicon carbide (SiC); lengthwise unzipping of CNTs; exfoliation

(a) (b)

Figure 1.4 (a) Graphene structure and (b) mother of all graphitic forms. Source: Geim and
Novoselov [15]. Reproduced with permission of Springer Nature.
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of graphite through its intercalation compound; reduction of graphene oxides
(GOs) and graphene fluoride; and organic synthesis processes [2, 23, 24]. But some
methods, such as mechanical exfoliation, synthesis on SiC, and organic synthesis,
exhibit difficulty in scalability and are expensive to produce, which restrict the
widespread use of graphene. CVD method is unsuitable for large-scale production
due to the high cost and rather low yield. The liquid-phase exfoliation process is
so highly scalable and low cost that it can produce graphene in large quantities.
Furthermore, although the reduced graphene oxide possesses low quality, it is still
suitable for mass production due to the high yield and low cost.

1.3 Structure of Graphene

As shown in Figure 1.5a, the honeycomb lattice of graphene consists of two
interpenetrating triangular sublattices, which are designated A and B. The sites
of one sublattice (A) are at the centers of triangles (B) with a carbon-to-carbon
interatomic length of 1.42 Å. Figure 1.5b shows the first Brillouin zone of graphene
containing the high-symmetry points M, K, and K′. Each carbon atom has one
s orbital and three p orbitals. The single s orbital is tied up with two in-plane
p orbitals in the strong covalent bonding of graphene, which do not contribute to
the conductivity. The remaining p orbital is oriented perpendicular to the molecular
plane. This odd p orbital is hybridized to form π (valence) and π* (conduction)
bands [27]. The π and π* bands touch at the K and K′ points (called Dirac points).
The linear bands derived from crystal symmetry of graphene are a hallmark of
graphene. This feature leads to many interesting physical properties, such as Berry’s
phase, half-integer quantum Hall effect (QHE), and Klein paradox. The energies of

(a)

A

B

ky

kx
kxky

K

BZ

K

M

Energy

Γ

K′
b2

b1

(b) (c)

Figure 1.5 Atomic and electronic structures of graphene. (a) Graphene lattice consists of
two interpenetrating triangular sublattices, each with different colors. The atoms at the
sites of one sub-lattice, (i.e. A) are at the centers of the triangles defined by the other lattice
(i.e. B), with a carbon-to-carbon interatomic length of 1.42 Å. Source: Rao et al. [25].
Reproduced with permission of John Wiley and Sons. (b) Reciprocal lattice of graphene. The
shaded hexagon is the first Brillouin zone. (c) π–π* band structure of graphene. The
three-dimensional first Brillouin zone is displayed in red and blue for the valence and
conduction p bands, respectively, above the planar projection of the valence band. The six
Dirac cones are positioned on a hexagonal lattice. Source: Soldano et al. [26]. Reproduced
with permission of Elsevier).
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the bands lie on the momentum of the charge carriers within the Brillouin zone.
The constant energy contours within the linear-band approximation are circles
around the K and K′ points [26]. As displayed in Figure 1.5c, the two bands meet
each other and then produce cone-shaped valleys in the low-energy regime of the
vicinity of the K and K′ points. In this low-energy limit, the dispersion relation of
energy–momentum is linear and the carriers are seen as zero-rest mass relativistic
particles. In the high-energy limit, the energy–momentum relation is changed
and the distorted bands lead to anisotropy, also known as trigonal warping [26].
In addition, with stacked layers on top of each other, the electronic dispersion of
graphene is changed. For example, the first-obtained bilayer graphene exhibits its
own specific properties [25].

1.4 Properties of Graphene

Intrinsic (undoped) graphene is a semimetal or a semiconductor with zero bandgap.
Pristine graphene possesses amazing properties, such as exceedingly high charge
carriers (electrons and holes) mobility = 230 000 cm2 V−1 s−1 at room temperature
and an intriguing thermal conductivity of 4.84× 103 to 5.30× 103 W m−1 K−1 at room
temperature [28]. Furthermore, graphene exhibits many mechanical properties, e.g.
the high mechanical stiffness of about 1 TPa [29]. In addition, graphene has an ultra-
high surface area of about 2630 m2 g−1, which is significantly higher than the CNT
and graphite counterparts. Besides these, we will now give a detailed account of
some properties of graphene.

The existence of massless Dirac quasiparticles in graphene may be verified
through the experimental observation, based on the code that the cyclotron mass
was dependent on the square root of the electronic density in graphene [30, 31].
Graphene can exhibit an ambipolar electric field effect due to the zero bandgap
semiconductor feature. The charge carriers in graphene can be tuned contin-
uously between electrons and holes with concentrations as high as 1013 cm−2,
and mobilities of up to 15 000 cm2 V−1 s−1 even under ambient conditions
(Figure 1.6) [15, 30, 31]. Moreover, the low dependence of mobilities of charge
carriers in graphene with temperature suggests that ultrahigh mobility would
be accomplished at room temperature [32]. More importantly, when minimizing
the influence of impurity scattering, mobilities in excess of 200 000 cm2 V−1 s−1

could be achieved in suspended graphene [33]. The mobilities in graphene can still
remain high even at a huge carrier concentration (>1012 cm−2) in both electrically
and chemically doped devices [34, 35]. Another measure of the electronic quality
of graphene is that the QHE can be directly observed even at room temperature,
which increases the temperature range for the QHE by a factor of 10 compared with
previous reports [36].

Based on the Wiedemann–Franz law, the contribution of electronics is negli-
gible for thermal conductivity in graphene; hence, the thermal conductivity (𝜅)
of graphene is just dependent on phonon transport, namely high-temperature
diffusive conduction and low-temperature ballistic conduction [37]. As early as
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Figure 1.6 Ambipolar electric field effect in single-layer graphene. The rapid decrease in
resistivity 𝜌 on adding charge carriers indicates their high mobility (in this case,
𝜇≈ 5000 cm2 V−1 s−1 and does not noticeably change with increasing temperature to
300 K). Source: Geim and Novoselov [15]. Reproduced with permission of Springer Nature.

2000, the thermal conductivity of suspended monolayer graphene was predicted
to be about 6000 W m−1 K−1 at room temperature, much higher than that of
graphitic carbon [38]. For a suspended monolayer graphene flake obtained from
mechanical exfoliation, a high thermal conductivity value of about 5000 W m−1 K−1

was observed through an optical measurement according to the shift of Raman
G band [28].

The mechanical properties, including Young’s modulus and fracture strength of
monolayer graphene, have been investigated by atomic force microscopy (AFM) and
numerical simulations (e.g. molecular dynamics) [39]. Particularly, the nanoinden-
tation technique was measured using AFM to detect elastic properties and intrinsic
breaking strength for free-standing monolayer graphene [29]. The results displayed
that Young’s modulus and fracture strength of defect-free graphene can reach 1.0 TPa
and 130 GPa, respectively. The mechanical properties of some graphene materials,
produced by reducing the graphene oxide, were investigated but exhibited decreased
properties compared with the defect-free monolayer graphene [40–42].

The measured white light absorbances of one- and two-layered suspended
graphene sheets are 2.3% and 4.6%, respectively. According to the experimental
observation, the transmittance was linearly decreased based on the number of layers
for n-layer graphene, and the strict linearity feature has been further demonstrated
up to five monolayers [43]. This macroscopic linear dependence between the
transmittance and the thickness of graphene films is intimately related to the
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two-dimensional gapless electronic structure of graphene. However, when the
energy of incident photons was lower than 0.5 eV, a deviation from the universal
linear behavior could be observed. This deviation can be attributed to the finite
temperature and chemical potential shift of the charge-neutrality (Dirac) point
induced by doping [44].

1.5 Structure Defects of Graphene

To adapt to different application fields, one of the research focuses on graphene is the
targeted control of its key physical and chemical properties. For this purpose, various
modification methods are developed. Among them, defect engineering is consid-
ered an efficient method that can tailor mechanical, electrical, chemical, and mag-
netic properties of graphene [45–47]. Structural defects of graphene can be divided
into two main categories. The first type is intrinsic defects, composed of non-sp2

orbit hybrid carbon atoms on graphene. The carbon atomic orbital hybrid forms of
change are usually caused by the absence of extra carbon atoms in the surround-
ing carbon six-membered rings. Therefore, obvious holes in non-six-membered car-
bon rings or even point or line domains can be observed in this graphene sheet at
atomic resolution. The second type is extrinsic defects, which are generated by for-
eign (non-carbon) atoms covalently bonded to graphene carbon atoms. The foreign
atoms (such as N, O, and B) strongly affect the charge distribution and properties of
graphene [48, 49].

Specifically, graphene intrinsic defects can be divided into five categories:
Stone–Wales defects, linear defects, single vacancies, multiple vacancies, and
carbon adatoms defects. Stone–Wales defect is caused by simply rotating the
C—C bonds to form different carbon polygon combinations (switching between
pentagons, hexagons, and heptagons) without adding or removing carbon atoms.
Figure 1.7 demonstrates typical Stone–Wales defects formed by rotating a C—C
bond by 90∘ (within four neighboring hexagons that transform to two pentagons
and two heptagons: C6,6,6,6 →C5,5 +C7,7) [50, 51]. Continuous rotation of C—C bond
can be extended to linear defects consisting of paired pentagons and heptagons,
as shown in Figure 1.7c. Such defects also require relatively large energy to form
(∼5 eV), so they can be produced by electron-beam bombardment or rapid cooling
at high temperatures [52]. The existence of Stone–Wales defects significantly affects
the electrical conductivity of graphene and enhances its electrochemical activity,
but its strength decreases significantly [53].

Single vacancies can be considered as the simplest defects, which are formed by a
missing carbon atom from continuous planar carbon six-membered ring. Similarly,
on the basis of single vacancies, a continued absence of carbon atoms leads to mul-
tiple vacancies. Figure 1.8 displays the TEM photographs and typical atomic struc-
tures of single vacancies and multiple vacancies. The absence of dangling bonds and
the steady rotation of C—C bonds make the V2(555-777) (7 eV) have lower formation
energy than V1(5-9) (7.5 eV) and V2(5-8-5) (8 eV), so the probability of the V2(555-777)
defect being observed by TEM is indeed greater [55, 56].



10 1 Graphene-Based Materials: Structure and Properties

(a) (b)

(c)

Zigzag
Zigzag

1 2 3 4 5

Figure 1.7 TEM image. (Source: Meyer et al. [50]. Reproduced with permission of American
Chemical Society) (a) and (b) atomic structure of Stone–Wales defect in graphene by
rotating a C—C bond by 90∘. Source: Terrones et al. [51] Reproduced with permission of
Elsevier. (c) Atomic structure of linear defect with a chain of paired rings (pentagons and
heptagons). Source: Terrones et al. [51] Reproduced with permission of Elsevier.

1.5.1 Carbon Adatoms Defects

Free carbon atoms interacting with the desirable planar graphene region may
destroy the original planar structure of graphene and cause sp3-hybridization
defects [57]. Figure 1.9 exhibits the spatial arrangement of carbon adatoms defects
and introduction positions of free carbon atoms. The existence of carbon adatoms
defects undoubtedly destroys the two-dimensional crystal structure of graphene.
In particular, some defects (as presented in Figure 1.9b) directly change the orbital
sp2-hybridization type to sp3-hybridization, which are bound to affect the electrical
properties of graphene. Indeed, making such defects manageable is a big challenge
for researchers.


