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Preface

Numerous fascinating and important breakthroughs in biotechnology have gen-
erated massive volumes of high throughput data with diverse types that demand
novel developments of efficient and appropriate tools in computational statistics
that are integrated with biological knowledge and computational algorithms. This
updated volume collects contributed chapters from leading researchers to survey
many recent active research topics that have developed since the previous edition of
the Handbook of Statistical Bioinformatics. This updated handbook is intended to
serve as both an introductory and reference monograph for students and researchers
who are interested in learning the state-of-the-art developments in computational
statistics as applied to computational biology.

This collection of articles, from the leading scholars in the field, is primarily a
monograph which will be of interest to the educational, academic, and professional
organizations related to statisticians, computer scientists, biological and biomedical
researchers with strong interests in computational biology. Although there are other
volumes available for computational statistics and bioinformatics on the market,
there are few books such as this that focus on the interface between computational
statistics and cutting-edge developments in computational biology. Seeing this need,
this completely updated collection is aimed to establish this bridge. This handbook
covers many significant up-to-date topics in probabilistic and statistical modeling
as well as the analysis of massive data sets generated from modern biotechnology.
These methods and technologies will change the perspectives of biology, healthcare,
and medicine in the twenty-first century! This collection is an extended version
of the previous edited handbook. The advanced research topics cover statistical
methods for single-cell analysis, network analysis, and systems biology.

During the editing process of this handbook, the world has been upended by
the massive influence of COVID-19 pandemic and other challenges. The editors
would like to thank the contributing authors, Springer management team members,

v



vi Preface

supporting colleagues and family members for their incredible support and patience
during this challenging time period in order for this handbook to be made available
to the related scholarly communities!

Hsinchu, Taiwan, ROC Henry Horng-Shing Lu
Tübingen, Germany Bernhard Schölkopf
Ithaca, NY, USA Martin T. Wells
New Haven, CT, USA Hongyu Zhao
May 8, 2022
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Computational and Statistical Methods
for Single-Cell RNA Sequencing Data

Zuoheng Wang and Xiting Yan

Abstract In recent years, advances in droplet-based technology have boosted
the popularity of using single-cell RNA sequencing (scRNA-seq) technology to
investigate transcriptomic and cell population composition changes in various
tissues and diseases. Despite the potential of these technologies in understanding
disease pathogenesis and developing novel personalized therapeutics, analyses
of the generated scRNA-seq data are challenging, mainly due to high noise
level, prevalent dropout events, heterogeneous sources of variation confounding
phenotype of interest, and so on. In this chapter, we introduce these challenges in
analyses of scRNA-seq data and the corresponding computational and statistical
methods developed to address them. The topics include data preprocessing, data
normalization, dropout imputation, and differential expression analysis.

1 Introduction

Gene expression profiling measures levels of mRNA to understand transcriptomic
changes due to disease, treatment, environment, time, and so on. Traditional bulk
RNA gene expression profiling using microarrays and RNA sequencing pools RNAs
from a large population of cells consisting of various and often unknown cell types.
It measures the average expression profile in mixed cell populations with unknown
contribution from different cells or cell types. Thus, bulk RNA gene expression
data is unable to precisely identify the cellular source of transcriptomic changes of
interest, especially when high cell-to-cell heterogeneity exists [1–5]. To investigate
transcriptomic changes at single-cell resolution, two major challenges exist includ-
ing (1) isolating cells from each other without strong perturbations to cells that
lead to systematic transcriptomic changes and (2) amplification of extremely low
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4 Z. Wang and X. Yan

amount of mRNAs from each cell. To address these challenges, multiple types and
generations of single-cell transcriptomic technology, including single-cell qPCR [6–
11], single-cell microarray [12–14], and single-cell RNA sequencing [15–18], have
been developed. Major differences between these technologies exist in the steps of
single-cell capturing, cDNA amplification, and cDNA profiling. There are mainly
five ways to capture single cell, including micropipetting micromanipulation, laser
capture microdissection, fluorescence-activated cell sorting (FACS), microfluidics,
and microdroplets [19]. The early-staged micropipetting micromanipulation and
laser capture microdissection that capture low number of cells are time consuming
and require microliter volumes of specimen. FACS and microfluidics can both
capture hundreds of cells and are fast although microfluidics requires nanoliter
volumes. Microdroplets, the most popular cell capturing method, can capture the
largest number of cells (currently from thousands to tens of thousands), are fast, and
require nanoliter volumes. After cells are captured at single-cell resolution, mRNAs
are reversed transcribed into cDNAs and further amplified using PCR, which may
have amplification bias leading to uneven amplification across different genes. Some
of the single-cell sequencing technologies reduce or remove this amplification bias
by in vitro transcription (IVT) or unique molecular identifier (UMI). The amplified
cDNAs will further be profiled using qPCR, microarrays, or RNA sequencing with
RNA sequencing being the most popular due to its unbiasedness in gene capturing
and the existence of nonspecific probe binding in microarrays. Taken together, the
single-cell transcriptomics field has moved from capturing a few targeted genes
in less than 100 cells by single-cell qPCR to whole-transcriptome profiling in
hundreds of thousands of cells in an unbiased style by droplet-based single-cell
RNA sequencing.

Instead of pooling RNAs from all cells together, droplet-based single-cell RNA
(scRNA-seq) sequencing technologies isolate cells in oil droplets and measure
transcriptome-wide mRNA expression levels in each single cell separately. Despite
differences in protocols, each scRNA-seq technology follows a similar basic
strategy. As an example, we demonstrate the workflow of 10x Genomics Chromium
Single Cell 3′ v3 assay in Fig. 1. First, organ or tissue samples are processed to
generate a single-cell suspension in which cells are separated. Most of the time, this
process involves usage of proteases to digest attachments between cells, especially
for solid tissues. Due to different perturbations the dissociation step could have on
different cell types, tissue dissociation needs to be optimized to balance between
releasing cell types that are difficult to dissociate and avoiding damage to fragile cell
types. Second, cells are co-encapsulated with distinctively barcoded microparticle
(bead) in oil droplet. Ideally, each droplet contains only one cell and one bead.
Cells are lysed in droplet. Third, mRNAs in each droplet are reverse transcribed into
full-length cDNAs, during which oligo primers on beads are ligated onto cDNAs.
Each oligo primer consists of sequencing primer, cell barcode, UMI, and poly(dT).
Cell barcode is the same across all oligo primers on the same bead but UMI is
distinctively unique. As a result, cell barcodes and UMIs can identify cell origin
and transcript origin of each cDNA, respectively. Finally, the full-length cDNAs
from different droplets are pooled, amplified, and fragmented into smaller cDNA
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Fig. 1 Workflow of 10x Genomics Chromium 3′ V3 chip. (a) Structure of the oligo primer on the
gel beads. (b) For each GEM, steps to capture mRNAs with poly(A) tails and reverse transcribe
them into cDNAs for amplification. (c) Steps to fragment the amplified cDNAs into small pieces
and ligating sample index, P5 and P7 for sequencing. (d) Structure of the final cDNA templates in
the library for sequencing. Read 1 and Read 2 are copies of cDNA template from the corresponding
location, representing the cell barcode+UMI and a small fragment of cDNA from the 3′ end of the
transcript. Created with BioRender.com

inserts for sequencing using enzymes. The fragmented inserts are cleaned up to only
keep those with oligo primers, which are from the 3′ end of cDNAs with polyA tails.
In each of these inserts, one end has oligo primer, and the other end has sequence
from the cDNA template. Both ends are sequenced using a pair of sequencing reads
(Read 1 and Read 2). Read 1 sequences cell barcode and UMI to determine the cell
origin and remove PCR duplication. Read 2 measures the sequence content of a
small fragment of the transcript close to the 3′ end, which can be mapped to human
genome to determine the gene origin of the mRNA. In this way, sequencing reads
can get demultiplexed into different cells and different transcripts to enable single-
cell transcriptome profiling and PCR amplification bias reduction.

To date, many on-market scRNA-seq platforms are mainly different in the total
number of captured cells, whether full-length cDNAs are profiled, and whether

http://biorender.com
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UMI or IVT is used to reduce PCR amplification bias. Applications of scRNA-
seq technologies in different human diseases and tissues have revealed potential
disease-associated rare cell types, cell population composition changes, and cell
type-specific transcriptomic changes [20–24]. These scRNA-seq datasets also have
the potential to provide information on disease-associated in vivo cell-to-cell
communication in different tissues. Moreover, scRNA-seq technology has also
served as a base for development of single-nucleus RNA sequencing (snRNA-
seq) and spatial single-cell transcriptomic technology. The snRNA-seq measures
transcriptome in single nucleus, and the spatial single-cell transcriptomics measure
single-cell transcriptome together with spatial location of each cell in intact tissue.
The extra information gained through these technologies has further boosted our
understanding of single-cell biology in challenging tissues, spatial structure of
tissues at single-cell resolution, and in vivo cell-to-cell communications.

2 Data Preprocessing

Raw scRNA-seq data are sequencing reads in FASTQ or BAM formatted files that
need to be preprocessed and quantified for downstream analysis. In this section,
we describe the preprocessing of scRNA-seq data from 10x Genomics Chromium
platform, which is currently the most popular scRNA-seq platform. Preprocessing
of data from other scRNA-seq technologies should follow the same principle with
small variations. Multiple tools have been developed to preprocess 10x Genomics
scRNA-seq data, including the Cell Ranger pipeline from 10x Genomics, STAR-
solo [25], Alevin/Alevin-fry [26], Kallisto-bustools [27], UMI-tools [28], and zUMI
[29]. Despite differences across these methods, key common steps in these methods
include (1) reads mapping, (2) cell barcodes demultiplexing with or without error
correction, (3) UMI deduplication with or without error correction, and (4) cell
barcodes selection. These methods have been previously reviewed and compared
[30, 31]. The output of data preprocessing is a matrix of counts, in which rows are
genes, columns are cells, and each entry is the number of UMIs of the corresponding
gene in the corresponding cell.

2.1 Reads Mapping

The first key preprocessing step is to map the reads from cDNA templates back to the
target genome or transcriptome to identify their transcript origin. There are mainly
two types of aligners used in the existing methods. One category maps reads back to
the genome. STAR [32] is the most popular method in this category due to its high
mapping accuracy and its capacity in identifying novel exons, constructing splice
junction libraries based on the data and providing the two-pass mapping option for
more accurate mapping results. Other aligners in this category used in the existing
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scRNA-seq data preprocessing pipelines include BWA [33], Tophat2 [34], Subread
[35], and Bowtie2 [36]. The other category maps reads to transcriptome instead
of genome, including RapMap [37] and kallisto [38] used in Alevin and Kallisto-
bustools, respectively. These mappers are lightweight and very efficient in both
memory usage and speed. However, the results strongly depend on the transcriptome
annotation. Potential incomplete annotation of exons and splicing junctions could
lead to inaccurate mapping results.

2.2 Cell Barcodes Demultiplexing

The second key step is to correct for sequencing errors in cell barcodes so that reads
with the same cell barcodes can be assigned to the same cell. For 10x Genomics
Chromium platform, a barcode whitelist is provided which contains all known
barcode sequences included in the assay kit. Under perfect scenario, all observed
cell barcodes can be compared to this list to split reads into different cells. However,
sequencing errors cause the observed cell barcodes to be slightly different from
the true cell barcodes. A common approach to correct these sequencing errors
is to consider cell barcodes within a given Hamming distance as the same cell
barcode. The Hamming distance-based approach completely relies on the number
of base differences between the observed cell barcodes and the whitelist barcodes,
which may be inaccurate due to varying sequencing quality of different bases in
the observed cell barcodes. To address this, the Cell Ranger pipeline estimates
the posterior probability of an observed cell barcode originating from a given
whitelisted cell barcode based on sequencing quality score and the number of reads
exactly matching the whitelist barcode. For technologies without a manufacturer
provided cell barcode whitelist, Alevin and STARsolo provide the option to run one
pass of the cell barcode without cell barcode correction and use the uncorrected cell
barcodes from the first pass as the “whitelist” for the second pass of demultiplexing
with correction.

2.3 UMI Collapsing

The third key preprocessing step is to deduplicate UMIs with or without error
correction. Ideally, reads with the same UMI and cell barcodes originate from the
same transcript and therefore should be counted as one single UMI. However, in real
data, sequencing errors (nucleotide substitutions, nucleotide miscalling, insertion,
deletion, and recombination) in both UMI and cDNA read cause reads originating
from the same transcript to have slightly different UMIs leading to overestimated
number of UMIs and to be mapped to different genes or transcripts leading to
multigene or multi-transcript UMIs. To correct for errors in UMIs, considering
that miscalling during sequencing is the most prevalent error, both zUMI and
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Cell Ranger pipeline correct errors in UMI by collapsing UMIs within a given
Hamming distance. UMI-tools [28] implemented two previously proposed methods,
unique and percentile, and developed three network-based UMI error correction
methods including cluster, adjacency, and directional. The directional method was
shown to have the highest accuracy and robustness in both simulated data and real
data. STARsolo provides both options to use Hamming distance and directional
method for UMI error correction. Kallisto-bustools reported low percentage of reads
recovered by UMI error correction (0.5 and 0.6% for 10-base-pair and 12-base-pair
UMIs, respectively) and therefore does not perform UMI error correction. Alevin
does not correct for errors in UMI either. To resolve the multigene UMIs, Alevin
utilizes transcript-level information and a parsimonious UMI graph (PUG) to find
a minimal set of transcripts to cover the PUG and split the multigene or multi-
transcript UMIs. Both STARsolo and Cell Ranger pipeline compare the number
of reads supporting the multiple genes a UMI is associated with and keep the
gene with the largest number of supporting reads. In addition, STARsolo provides
options to filter out all multigene UMIs, to uniformly distribute the multigene
UMIs to all genes, to distribute multigene UMIs among all genes using maximum
likelihood estimation (MLE) that consider other UMIs from the same cell, and to
distribute multigene UMIs to their gene set proportionally to the sum of the number
of unique-gene UMIs and uniformly distributed multigene UMIs in each gene.
Kallisto-bustools performs naïve collapsing based on its report of low percentage
of lost counts (0.4 and 0.17% for 10xv2 and 10xv3 dataset, respectively).

2.4 Cell Barcodes Selection

The previous key steps generate the raw gene × cell barcode count matrix, which
includes cell barcodes from empty droplets containing ambient RNAs as well as
target cells. Since usually the empty droplets have significant lower RNA content,
Cell Ranger pipeline v2.2 [17] simply kept cell barcodes with total number of
UMIs (nUMI) higher than 10% of the robust maximum count defined as the 99-th
percentile of the largest N UMI counts where N is the expected number of cells to be
captured in the experiment. This approach is similar to the knee-point thresholding
approach [18] that searches for an inflection point or “knee” in the cumulative
frequency of total nUMI per barcode and filters out barcodes with nUMI lower than
the identified knee point. The most recent and popular method is the EmptyDrops
approach [39]. It estimates the profile of cell barcodes containing ambient RNAs and
test each cell barcode for deviations from the estimated profile using a Dirichlet-
multinomial model of UMI count sampling. Barcodes with significant deviations
are considered as cells and included for downstream analysis. This approach
allows inclusion of cells with low total RNA content and thus small total nUMIs.
Different versions of Cell Ranger pipelines provide different cell barcode selection
approaches but covered all the three methods described above. STARsolo provides
options for both the Cell Ranger v2.2 approach and EmptyDrops. Alevin conducts
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the knee-based approach at the beginning of the pipeline and a naïve Bayes classifier
[40] to differentiate between high- and low-quality cells at the end of the pipeline.

2.5 Summary

In general, STARsolo provides the most comprehensive options to implement
different approaches for each key data preprocessing step and can be applied to
data generated by different platforms. STARsolo also provides the flexibility of
using exonic reads only (gene), exonic and intronic reads together (pre-mRNA),
or annotated and novel spliced junctions. All these options have made STARsolo
the most popularly used scRNA-seq data preprocessing pipeline in addition to Cell
Ranger pipelines so far.

3 Data Normalization and Visualization

3.1 Background

Preprocessing of scRNA-seq data generates a matrix of nUMIs, in which rows are
genes, columns are cells, and each entry is the number of UMIs of each gene in each
cell. The UMI count of the same gene from different cells is not directly comparable
due to cell-to-cell technical variations associated with different technical factors,
including sequencing depth, cell lysis, reverse transcription efficiency, molecular
sampling during sequencing, and so on. Although the utilization of UMI removes
variations associated with PCR amplification bias, there are still substantial techni-
cal variations in the UMI count data that need to be corrected before downstream
analysis. Therefore, normalization is critically important for scRNA-seq data
analysis to make the data from difference cells and samples comparable, which was
also shown to have the largest impact on performance of downstream analyses [41]
compared to data preprocessing and the choice of downstream analytical method.
Many different normalization methods have been developed, which can be roughly
divided into two groups: global scaling normalization approaches and probabilistic
model-based normalization approaches.

3.2 Global Scaling Normalization for UMI Data

The global scaling normalization methods estimate a global “size factor” to
represent the technical variation in each cell. The UMI count of all genes in each
cell is then divided by the estimated size factor for the same cell to scale the data
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for normalization. Note that nUMI of different genes in the same cell are scaled by
the same factor. Many normalization methods designed for bulk RNA sequencing
data normalization, including TPM, TMM, DESeq2, and edgeR, fit well into this
category and therefore have been used in some scRNA-seq studies. The other global
scaling methods designed for scRNA-seq data include library size normalization,
BASiCS [42], scran [43], census [44], and PsiNorm [45], among which BASiCS is
the only method requiring spike-in controls.

To better explain different normalization methods, we use the uniform notation
as follows. Suppose in total, there are q genes measured in n cells. Let Xij denote the
nUMI of gene i in cell j as a random variable and xij denote the observed realization
of Xij. The library size normalization scales the nUMI of all genes by dividing them
by the total number of UMIs

(
Lj =∑q

i=1Xij

)
in cell j. This approach is one of the

most used methods and is implemented in the Seurat R package [46].
BASiCS requires the data to have nonbiological spike-in genes, which are added

into the lysis buffer at known concentration levels and therefore present at the same
level in every cell. These spike-in genes provide information for BASiCS to quantify
technical variation and separate it from the biological variation in the data. Suppose
the first q0 (i = 1, · · · , q0) genes are biological genes and the remaining genes
(i = q0 + 1, · · · , q) are spike-in controls. BASiCS models the UMI counts in each
cell j using the following hierarchical model:

Xij | μi, vj ∼
{
Poisson

(
φjvjμiρij

)
, i = 1, · · · , q0

Poisson
(
vjμi

)
, i = q0 + 1, · · · , q (1)

with vj | sj , θ ∼ Gamma

(
1

θ
,

1

sj θ

)
, ρij | δi ∼ Gamma

(
1

δi
,

1

δi

)
,

where μi is the true normalized expression level of gene i in the cells, φj represents
the differences in total mRNA content of the cells, and vj and ρij are independent
random effects representing the cell-to-cell technical variability with a mean of sj
and variance of s2

j θ and the gene-specific biological cell-to-cell variability with a
mean of 1 and variance of δi, respectively. Because μq0+1, · · · , μq are known from
the spike-in genes’ experimental design, sj’s can be identified. δi’s and θ can also be
identified based on the variance of the biological and technical expression counts.
However, because the scale of φj’s is arbitrary, restriction is needed to make the
model identifiable. This can be done by assuming that n−1∑n

j=1φj = φ0 or by
reparametrizing the model in terms of κ1, · · · , κn so that

φj = φ0
eκj

∑n
l=1 e

κl
, κ1 = 0. (2)

All model parameters are assumed to have independent prior with a flat non-
informative prior for the normalized expression levels μ1, · · · , μq0 and conjugate
informative prior for all other model parameters including sj’s, θ ’s, δi’s, and κ j’s.
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Bayesian inference is implemented using an adaptive Metropolis (AM) within Gibbs
sampling (GS) algorithm. The estimations of φj and sj are eventually used to
calculate the scaling factor for cell j.

Scran first generates pools of cells to calculate the pool-based size factors,
which are then deconvoluted to yield the cell-based size factors to scale the data.
Scran assumes that E(Xij) = θ jλi0, where θ j describes cell-specific bias and λi0
is the expected UMI count of gene i. So θ j can serve as the scaling size factor
for cell j. Define Zij = Xij/tj, where tj is the library size of cell j. We have that
E(Zij) = θ jλi0/tj. Consider an arbitrary set of cells Sk. Define Vik = ∑j∈SkZij so

we have E (Vik) = λi0
∑

j∈Sk θj t
−1
j . Also define Ui = ∑n

j=1Zij /n so we have

E (Ui) = λi0
∑n

j=1θj t
−1
j /n. Define Rik = Vik/Ui so we have

E (Rik) ≈ E (Vik)

E (Ui)
=

∑
j∈Sk θj t

−1
j

n−1
∑n

j=1θj t
−1
j

=
∑

j∈Sk θj t
−1
j

C
(3)

whereC is a constant independent of genes, cells, or pool of cells Sk and can be set to
1 since it does not affect the differences in size factor θ j. Denote the realizations of
Vik, Ui, and Rik as vik, ui, and rik. Based on Eq. (3), we have that rik =∑j∈Sk θj t

−1
j

for each Sk. By constructing different pools of cells, we can have an overdetermined
system of linear equations in which θj t

−1
j for cell j is represented at least once. This

cell pool construction was achieved by ordering cells based on their total nUMI and
divide all cells into two groups with odd and even ranking, respectively. These cells
are arranged in a ring with odd ranking cells on the left and even ranking cells on
the right. Starting at the 12 o’clock on the ring, a sliding window of a given size
moves clockwise cell-by-cell across the ring so that each window contains the same
number of cells. Cells in each window will be used to define one pool Sk. This cell
pool construction strategy will obtain cell pools with similar library size to provide
robustness to estimation errors for small θj t

−1
j . Although the estimation steps of

scran seem to be circuitous, the summation across cells from the constructed pools
reduces the number of stochastic zeros that cause problems in some other existing
normalization methods.

Census considers the relative abundance of genes on the TPM scale. The
generative model of scRNA-seq predicts that when a small portion of transcripts
in a cell can be captured, the signal from most detectable genes will originate from
a single mRNA. Therefore, the TPMs of these genes will be very similar. Based on
this prediction, Census first identifies the TPM value x∗j defined by the mode of log-
transformed TPM distribution for cell j. Genes with detectable TPM smaller than
x∗i correspond to genes whose signal originates from a single transcript. Therefore,
the total number of mRNAs captured for cell j is calculated as

Mj = 1

θ
· nj

FXj

(
x∗j
)
− FXj (ε)

(4)
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where θ is the expected number of cDNA molecules generated from each RNA
molecule or simply the capture rate, FXj is the cumulative distribution function of
TPMs in cell j, ε is a TPM value below which no mRNA is believed to be present
(default ε = 0.1), and nj is the number of genes with TPM between ε and x∗j . The
capture rate θ is unknown a priori and it is highly protocol dependent and has little
dependence on cell type or state. Based on estimations from existing data with spike-
in controls, Census sets θ = 0.25 by default. Taken together, Mj is taken as the
scaling size factor for cell j and the Census normalized count for gene i in cell j is

Ŷij = T PMij · Mj

106 (5)

SCnorm does not model the cell-specific technical variations. It directly estimates
the relationship between the observed un-normalized UMI counts and sequencing
depth using quantile regression. Let Sj denote the sequencing depth of cell j and Yij
denote the log nonzero UMI count for gene i in cell j. SCnorm divides the genes into
K different groups with substantially different UMI count-depth relationship. Within
each group, the overall relationship between log un-normalized UMI count and log
sequencing depth for all genes is estimated via the following quantile regression:

Qτk,dk
(
Yj |Sj

) = β
τk
0 + β

τk
1 Sj + · · · + β

τk
dk
S
dk
j

where τ k and dk are chosen to minimize
∣
∣
∣η̂τk1 −modeg

(
β̂g,1

)∣∣
∣ in which η̂

τk
1

describes the UMI count-depth relationship between the predicted expression
values estimated by median quantile regression using a first-degree polynomial:

Q0.5
(
Ŷ
τk
j |Sj

)
= η

τk
0 + η

τk
1 Sj .The scaling factor for cell j is then defined as

SFj = e
Ŷ
τk,dk
j /eY

τk

where Y τk is the τ kth quantile of expression counts in the kth group of genes. The
normalized count of gene i in cell j is given by Y ′ij = Xij /SFj .

PsiNorm assumes that the UMI count follows the Pareto distribution, based on
which the PsiNorm normalized counts of cell j is

x̃j = xj · q
∑q

i=1 log
(
xij + 1

) .

In general, global scaling normalization methods are computational efficient and
highly scalable. However, it assumes that the technical variations are cell-specific
and uniform across different genes. Although UMI-based protocols in principle
remove PCR amplification biases and sequencing depth, the assumption is true
only if all the cDNAs are sequenced, namely, it reaches the sequencing saturation.
When the sequencing is not saturated, some UMI-tagged transcripts will be lost
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and systematic differences between nUMI of these lost transcripts will emerge. In
addition, the UMI tags were added onto the cDNAs during reverse transcription.
So, they cannot address the differences in capture efficiency before the reverse
transcription or differences in the amount of mRNA content.

3.3 Probabilistic Model-Based Normalization for UMI Data

Normalization methods in this section build probabilistic model for the observed
UMI count data, which adopt for gene-specific technical variations and high sparsity
of the scRNA-seq UMI count data. The most popular distribution used by these
methods is the negative binomial distribution, which can accommodate for the
overdispersion in the data. There are mainly two methods in this group: sctransform
[47] and ZINB-WaVE [48]. For notations, Xij denotes the observed nUMI of gene
i in cell j as a random variable and xij denotes the realization of Xij. In total, we
assume that there are q genes measured in n cells.

Sctransform assumes that the UMI counts of each gene follow a negative
binomial (NB) distribution NB(μi, θ i), for which the log-transformed mean is
decided by a linear function of the sequencing depth:

log (E (xi)) = β0i + β1i log(m)

where xi is the expression of gene i in all cells and m is the vector of sequencing
depth for all cells. Fitting this model for different gene separately results in over-
fitting. So after fitting this model, sctransform estimates the relationship between
the estimated model parameter values and the mean gene expression across all
genes using kernel regression. Based on the kernel regression curve, the model
parameter estimations are then regularized and re-estimated. Let β̂0, β̂1, and θ̂ be
the regularized estimation; the normalized UMI counts are calculated as

zij = xij − μ̂ij

σ̂ij
,

where μ̂ij = exp
(
β̂0i + β̂1i log

(
mj

))
and σ̂ij =

√
μ̂ij + μ̂2

ij /θ̂i .

Due to the low amount of RNAs in a single cell and the low sequencing depth per
cell, some genes, especially the lowly expressed genes, may fail to be detected even
if they are being expressed in the cell. This causes an excessive number of zeroes
in the UMI count data and challenges in removing unwanted technical variations
in the data. ZINB-WaVE [48] models the UMI count using a zero-inflated negative
binomial distribution:

fZINB
(
xij ;μij , θij , πij

) = πij δ0
(
xij
)+ (1− πij

)
fNB

(
xij ;μij , θij

)
, (6)
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where π is the probability of the observed count being 0 instead of the actual
count, δ0(x) is an indicator function of whether x is zero, and μ and θ are the
mean and dispersion of the negative binomial distribution describing the actual
count distribution. To consider various technical and biological effects, sctransform
considers the following regression models:

ln
(
μij
) =

(
Cμβμ +

(
V γμ

)T +Wαμ +Oμ

)T

ij
,

logit
(
πij
) =

(
Cπβπ + (V γπ)

T +Wαπ +Oπ

)T

ij
,

ln
(
θij
) = ζi,

where Cμ and Cπ are known n × M matrices representing M cell-level covariates,
Vμ and Vπ are known q × L matrices representing L gene-specific covariates, W
is an unobserved n × K matrix representing K unknown cell-level covariates, Oμ

and Oπ are known n × q matrices of offsets, and ζ i is the gene-specific dispersion.
The parameters of this model are inferred by maximizing the following penalized
likelihood function to reduce overfitting:

max
β,γ,W,α,ζ

{
l (β, γ,W, α, ζ )− εβ

2

∥
∥
∥β0

∥
∥
∥

2 − εγ

2

∥
∥
∥γ 0

∥
∥
∥

2

−εW
2
‖W‖2 − εα

2
‖α‖2 − εζ

2
var (ζ )

}
,

where l(β, γ ,W, α, ζ ) is the likelihood function of the model in Eq. (6), β0 contains
coefficients for columns in Cμ and Cπ that are not constant column of ones, and ‖·‖
is the Frobenius matrix norm.

3.4 Dimension Reduction and Cell Clustering

Normalized scRNA-seq data serve as basis for many downstream analyses. The first
two analyses, which are also the must to-do analyses, are dimension reduction and
unsupervised clustering of cells. Dimension reduction reduces noise level and helps
identify outliers and understand systematic differences and variations in the data.
Unsupervised clustering of cells helps identify groups of cells that are potentially
different cell types or even cell subtypes within a given cell type.

Principal component analysis (PCA) has been successfully and commonly used
for dimension reduction in microarray expression data, bulk RNA-seq data, and
genome-wide genotyping data. However, PCA was shown to have poor performance
when applied to scRNA-seq data by multiple studies [49, 50] possibly due to linear
nature of PCA, excessive number of zeroes, and high technical and biological
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variations in the data. Multiple methods have been developed and designed for
dimension reduction in scRNA-seq data, including canonical correlation analysis
(CCA) [51], independent components analysis (ICA) [52], Laplacian eigenmaps
[53, 54], t-distributed stochastic neighbor embedding (t-SNE) [18, 55, 56], and
uniform manifold approximation and projection (UMAP) [57–60]. Among these
methods, t-SNE and UMAP are the most popular methods with UMAP preserving
the global distances and t-SNE preserving local distances. Although distortions of
distance exist in both methods due to representing the data using low dimensions
(two to three dimensions) [61], in common practice, highly variable genes are
selected, and PCA is conducted on these genes to select the top PCs with significant
variations. Then t-SNE and UMAP are applied to the PCA pre-conditioned data
to reduce the dimension for data visualization. Note that dimension reduction
discussed here is only for data visualization and cell clustering. Many of the down-
stream analyses, including data imputation and differential expression analysis, are
still conducted on normalized data or even the un-normalized UMI count data with
their original dimensions.

Unsupervised clustering of cells is usually conducted on the reduced dimensional
space or by using highly variable genes. Different types of clustering methods
have been applied to scRNA-seq data, including the traditional k-means clustering
and hierarchical clustering. These traditional unsupervised clustering methods are
limited when applied to scRNA-seq data due to their poor scalability to the total
number of cells in terms of required computational time and memory, sensitivity to
outlying cells or cell clusters, and bias to identify equal-sized clusters mixing rare
cell types in a larger cluster [62, 63]. Other types of methods have been developed
to address these issues, including mixture model-based clustering, density-based
clustering, neural network clustering, and affinity propagation clustering [63].
Among these methods, the community detection-based approaches have gained the
most popularity due to their scalability and robustness to noise in the data. Instead of
clustering cells close to each other based on chosen distance, community detection
identifies groups of cells that are densely connected based on a k-nearest-neighbors
graph constructed using the PCA reduced dimensional space or highly variable
genes. The number of clusters is affected by the number of nearest neighbors in the
constructed k-nearest-neighbors graph and indirect resolution parameters. Although
the Louvain algorithm [46, 64, 65] is currently the most widely used approach
for scRNA-seq data, there are many other community detection approaches [66]
available, and some of them have demonstrated better performance in benchmarking
studies [67, 68].



16 Z. Wang and X. Yan

4 Dropout Imputation

4.1 Background

Analysis of scRNA-seq data can be challenging due to low library size, high
technical noise, and prevalent dropout events [49, 69, 70]. In scRNA-seq data, due to
the tiny amount of mRNAs in each cell, some mRNAs may be totally missed during
the reverse transcription and cDNA amplification step, thus cannot be detected in
the sequencing step. This phenomenon is referred to as dropout event for which
a given gene is observed at a moderate expression level in one cell but is not
detected in another cell of the same type from the same sample, thus generating
an increased sparsity in single-cell data, especially for genes with low or moderate
expression [71]. These observed zero values can be the biological variation in
actual expression levels among cells or the technical imperfect measure on small
numbers of molecules. Dropouts lead to inaccurate assessment of gene expression
levels that may mislead downstream analyses such as cell clustering and differential
expression analysis, and cell trajectory inference [72]. To alleviate the increased
sparsity observed in scRNA-seq data, many data imputation methods have been
developed and compared [73, 74]. They can be classified into four categories [75].

4.2 Cell-Cell Similarity-Based Imputation

The first category of methods evaluates cell-cell similarities and imputes dropouts
in each cell using information from cells that are similar to the cell to be imputed,
including kNN-smoothing [76], MAGIC [77], scImpute [78], drImpute [79], and
VIPER [80]. Specifically, kNN-smoothing imputes dropouts by aggregating infor-
mation from the k closest neighboring cells of each cell using the stepwise k-nearest
neighbors approach [76]. MAGIC constructs a cell-cell affinity matrix based on their
expression profiles across genes and diffuses the gene expression values in cells
with similar expression profiles for imputation [77]. scImpute infers dropout events
based on the dropout probability estimated from a Gamma-Gaussian mixture model
and only imputes these events by combining information from similar cells within
cell clusters identified by spectral clustering [78]. drImpute defines similar cells
using k-means clustering and performs imputation by averaging the gene expression
values in cells within the same cluster [79]. While improving the quality of scRNA-
seq data to some extent, the above methods were found to eliminate the natural
cell-to-cell stochasticity which is an important piece of information available in
scRNA-seq data compared to bulk RNA-seq data [80]. Instead, VIPER overcomes
this limitation through selecting a sparse set of neighboring cells for imputation to
preserve variation in gene expression across cells [80]. In general, the first category
of imputation methods that borrow information across similar cells tends to intensify
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subject variation in scRNA-seq datasets with multiple subjects, resulting in cells
from the same subject to be more similar than those from different subjects.

4.3 Gene-Gene Similarity-Based Imputation

The second category of methods relies on the gene-gene similarities for imputa-
tion, including SAVER [81], G2S3 [82], netNMF-sc [83], and netSmooth [84].
SAVER borrows information across similar genes instead of cells to impute gene
expression using a penalized regression model [81]. G2S3 recovers gene expression
by borrowing information from adjacent genes in a sparse gene graph learned
from gene expression profiles across cells using graph signal processing [82].
netNMF-sc uses network-regularized nonnegative matrix factorization to leverage
gene-gene interactions for imputation [83]. netSmooth smooths gene expression
values by incorporating protein-protein interaction networks [84]. Both netNMF-sc
and netSmooth require prior information on gene-gene interactions from RNA-seq
or microarray studies of bulk tissue.

4.4 Gene-Gene and Cell-Cell Similarity-Based Imputation

The third category of methods leverages information from both genes and cells.
For example, ALRA imputes gene expression using low-rank matrix approximation
[85], and scTSSR uses two-side sparse self-representation matrices to capture gene-
gene and cell-cell similarities for imputation [86].

4.5 Deep Neural Network-Based Imputation

The last category consists of machine learning-based methods, such as autoImpute
[87], DCA [88], deepImpute [89], and SAUCIE [90], that use deep neural network
to impute for dropout events. While computationally more efficient, these methods
were found to generate false-positive results in differential expression analyses [91].
Recently, an ensemble approach, EnImpute, was developed to integrate results from
multiple imputation methods using weighted trimmed mean [92].

4.6 G2S3

In this section, we give a detailed presentation on the imputation method G2S3
developed by our group. G2S3 uses graph signal processing to learn a sparse gene
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graph from scRNA-seq data and imputes dropouts by borrowing information from
nearby genes in the graph. G2S3 first constructs a sparse graph representation of
gene network under the assumption that expression values change smoothly between
closely connected genes. Suppose X = [x1, x2, . . . , xm] ∈ R

n × m is the observed
transcript counts of m genes in n cells, where the column xj ∈ R

n represents the
expression vector of gene j, for j = 1, . . . , m. We consider a weighted gene graph
G = (V,E), in which each vertex Vj represents gene j and the edge between genes j
and k is associated with a weight Wjk.

The gene graph is determined by the weighted adjacency matrix W ∈ R
m×m+ .

Assuming signals on the graph are smooth and sparse, G2S3 searches for an optimal
adjacency matrix W from the space W = {W ∈ R

m×m+ : W = WT , diag(W) = 0
}
.

To accomplish this, we optimize the objective function adapted from Kalofolias’s
model [93]:

min
W∈W

‖W ◦ Z‖1,1 − 1T log (W1)+ 1

2
‖W‖2

F , (7)

where Z ∈ R
m×m+ is the pairwise Euclidean distance matrix of genes, defined as

Zjk = ‖xj − xk‖2, 1 is a vector of ones, ‖·‖1, 1 is the elementwise L − 1 norm, ◦
is the Hadamard product, and ‖·‖F is the Frobenius norm. In Eq. (1), the first term
is equivalent to 2tr(XTLX) that quantifies how smooth the signals are on the graph,
where L is the graph Laplacian and tr(·) is the trace of a matrix. This term penalizes
edges between distant genes, so it favors a sparse set of edges between the nodes
with a small distance in Z. The second term represents the node degree such that
the degree of each gene is positive to improve the overall connectivity of the gene
graph. The third term controls graph sparsity to penalize large edges between genes.

Equation (1) can be optimized via primal dual techniques [94] by rewriting it as

min
w∈ω I{w≥0} + 2wT z− 1T log(d)+ ‖w‖2,where ω =

{
w ∈ R

m(m−1)
2+
}
, (8)

where w and z are vector forms of W and Z, respectively; I{·} is the indicator
function that takes value 0 when the condition in the brackets is satisfied, infinite
otherwise; d = Kw ∈ R

m; and K is the linear operator that satisfies W1 = Kw.
After obtaining the optimal W, a lazy random walk matrix can be constructed on
the graph as M = (D−1W + I)/2, where D is an m-dimensional diagonal matrix
with Djj =∑kWjk, the degree of gene j, and I is the identity matrix. We then obtain
the imputed count matrix Ximputed by taking a t-step random walk on the graph
XT

imputed = MtXT .
By default, G2S3 takes a one-step random walk (t = 1) to avoid over-

smoothing. Adapted from a diffusion-based imputation method [95], we also
implement hyperparameter tuning based on an objective function that minimizes
the mean squared error (MSE) between the imputed and observed data, i.e.,
t∗ = argmin

t

∥
∥MtXT −XT

∥
∥. A good imputation method is not expected to



Computational and Statistical Methods for Single-Cell RNA Sequencing Data 19

deviate too far away from the raw data structure in the process of denoising. This
criterion enables us to denoise the observed gene expression through attenuating
noise due to technical variation while preserving biological structure and variation.

Like other diffusion-based methods, G2S3 spreads out counts while keeping the
sum constant in the random walk step. This results in the average value of nonzero
matrix entry decreasing after imputation. To match the observed expression at the
gene level, we rescale the values in Ximputed so that the mean expression of each
gene in the imputed data matches that of the observed data. The pseudo-code for
G2S3 is given in Algorithm 1.

Algorithm 1: Pseudo-code of G2S3
1: Input: X
2: Result: Ximputed = G2S3(X)
3: Z = distance(X)
4: W = min

w∈Rm(m−1)/2
+

I{w≥0} + 2wT z− 1T log(d)+ ‖w‖2

5: D = degree(W)
6: M = (D−1W + I)/2
7: t∗ = argmin

t

∥
∥MtXT −XT

∥
∥

8: XT
imputed =Mt∗XT

9: Xrescaled = rescale(Ximputed )
10: Ximputed = Xrescaled

11: End

4.7 Methods Evaluation and Comparison

In this section, we evaluated and compared the performance of 11 imputation
methods, kNN-smoothing, MAGIC, scImpute, VIPER, SAVER, G2S3, ALRA,
scTSSR, DCA, SAUCIE, and EnImpute, in recovering gene expression using
three unique molecular identifier (UMI)-based datasets. The three datasets are the
Reyfman dataset from human lung tissue [21], the peripheral blood mononuclear
cell (PBMC) dataset from human peripheral blood [17], and the Zeisel dataset from
the mouse cortex and hippocampus [55]. In Reyfman, the raw data include 33,694
genes and 5437 cells. We selected cells with a total number of UMIs greater than
10,000 and genes that have nonzero expression in more than 20% of cells. This
resulted in 3918 genes and 2457 cells as the reference dataset. The PBMC dataset
was downloaded from 10x Genomics website (https://support.10xgenomics.com/
single-cell-gene-expression/datasets). The raw data include 33,538 genes and 7865
cells. We selected cells with a total number of UMIs greater than 5000 and genes
that have nonzero expression in more than 20% of cells. This resulted in 2308 genes
and 2081 cells as the reference dataset. In Zeisel, the raw data include 19,972 genes
and 3005 cells. We selected cells with a total number of UMIs greater than 10,000
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Fig. 2 Evaluation of expression data recovery of all imputation methods by down-sampling.
Performance of imputation methods measured by correlation with reference data from the first
category of datasets, using gene-wise (top) and cell-wise (bottom) correlation. Box plots show the
median (centerline), interquartile range (hinges), and 1.5 times the interquartile (whiskers)

and genes that have nonzero expression in more than 40% of cells. This resulted in
3529 genes and 1800 cells as the reference dataset.

In each of the three scRNA-seq datasets, the reference dataset was treated as the
true expression. Down-sampling was performed to generate benchmarking observed
datasets. We performed random binary masking of UMIs in the reference datasets
to mimic the inefficient capturing of transcripts in dropout events. The binary
masking process masked out each UMI independently with a given probability.
In each reference dataset, we randomly masked out 80% of UMIs to create the
down-sampled observed dataset. All imputation methods were applied to each
down-sampled dataset to generate imputed data separately. We performed library
size normalization on all imputed data. Figure 2 shows the gene-wise Pearson
correlation and cell-wise Spearman correlation between the imputed and reference
data from each dataset. The correlation between the observed data without imputa-
tion and reference data was set as a benchmark. In all datasets, G2S3 consistently
achieved the highest correlation with the reference data at both gene and cell levels;
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SAVER and scTSSR had slightly worse performance. EnImpute had comparable
performance to G2S3 based on the cell-wise correlation but performed worse than
G2S3, SAVER, and scTSSR based on the gene-wise correlation. VIPER performed
well in the Reyfman and PBMC datasets but not in the Zeisel dataset based on
the gene-wise correlation, although the cell-wise correlations were much lower
than G2S3, SAVER, scTSSR, and EnImpute in all datasets. The other methods,
kNN-smoothing, MAGIC, scImpute, ALRA and DCA, did not have comparable
performance, especially based on the gene-wise correlation. SAUCIE did not have
comparable performance to the other methods in all datasets. To quantify the
performance improvement of G2S3, one-sided t-test was applied to compare the
gene-wise and cell-wise correlations of G2S3 to those of the other methods. G2S3
had significantly higher correlations than all the other methods across three datasets
for both gene-wise and cell-wise correlations (p < 0.05, Table 1). Overall, G2S3
provided the most accurate recovery of gene expression levels.

5 Differential Expression Analysis

5.1 Background

Although aims vary widely across different scRNA-seq studies, one common task
is to identify disease−/phenotype-associated genes [96] within each identified cell
type, which provides a potential list of candidate genes for further therapeutic
development and a better understanding of the disease pathogenesis. However, this
task is challenging due to prevalent dropout events and substantial subject effect, or
so-called between-replicate variation [97], in scRNA-seq data. We have described
dropout events in Sect. 4. For subject effect, many studies have consistently shown
that within the same cell type, cells of the same subject cluster together but separate
well from cells of other subjects regardless of the phenotype of subjects [21, 98, 99].
For example, Fig. 3 shows a good separation between cells from the same subject
in both alveolar macrophages and nature killer cells from patients with idiopathic
pulmonary fibrosis (IPF) [98]. This suggests that the across-subject variation is
dominant and much higher than the within-subject variation across cells, possibly
due to heterogeneous genetic backgrounds or environmental exposures. DE analysis
of scRNA-seq data is severely confounded by this dominant subject effect because
the across-subject difference driving genes are likely to be significantly different
between two groups of subjects [97, 100, 101]. In summary, it is critical to dissect
subject effect from disease effect with considerations of dropout events in the DE
analysis of scRNA-seq data with multiple subjects.

Sometimes, subject effect can be easily confused with technical batch effect
because early-stage scRNA-seq datasets profiled freshly collected samples and
thus each sample forms a separate batch. Since transcriptomic data is known to
be sensitive to batches, one possible explanation for the observed large variation
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Fig. 3 UMAPs of the alveolar macrophages (top row) and nature killer cells (bottom row)
demonstrate a dominant subject effect in both cell types. In each row, figure on the left and the
right show UMAPs of cells colored by subjects and disease status, respectively

across subjects is batch effect. Recent advances in preserving cells using dimethyl
sulfoxide (DMSO) enabled processing multiple samples from different subjects in
the same batch [102]. In the scRNA-seq data of sputum samples from patients with
asthma (data unpublished), comparison of scRNA-seq data from the same sputum
sample with and without DMSO preservation showed no significant difference
between the fresh and DMSO data, but significant separation between different
subjects was still present. This confirmed that the dominant between-subjects
variation was a real biological subject effect instead of a technical batch effect.
Therefore, it is inadequate to remove the across-subjects variation using batch effect
adjustment tools. More importantly, removing the across-subject variations using
batch effect adjustment tools will also remove the disease effect of interest because
subject effect confounds with disease effect. Therefore, DE analysis of scRNA-seq
data does not use the data adjusted to remove batch effect using batch effect removal
tools including the integrated analysis in Seurat. All DE analysis of scRNA-seq data
methods use either the normalized UMI counts or the un-normalized UMI counts.

Many DE analysis methods have been developed and compared for scRNA-seq
data [103–105] although not all of them consider subject effects or dropout events.
There are mainly two categories of methods depending on whether subject effect is
considered.


