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Preface

This volume contains the proceedings of the 15th APCA International Conference
on Automatic Control and Soft Computing (CONTROLO’2022), to be held in
Caparica, Lisbon-Region, Portugal, from July 6 to 8, 2022. The aim of
CONTROLO’2022 is to provide an opportunity for presenting new research results
and to discuss the latest developments in the fields of control, automation, robotics,
and soft computing. In order to mitigate constraints associated with the still present
pandemic situation, CONTROLO’2022 is designed for the first time in the series to
be a hybrid conference accommodating in-person and remote participation.

This edition of the conference has been organized for the first time in Caparica,
Portugal, by members of the Electrical and Computer Engineering Department
of the NOVA School of Science and Technology of NOVA University Lisbon, and
Centre of Technology and Systems of UNINOVA.

The three days of the conference accommodate a rich technical program
including three keynote speakers, two panel discussions, and the presentation of
technical papers.

We are fortunate to benefit from having three outstanding invited keynote
speakers from academia:

– Prof. Davide Scaramuzza, from University of Zurich, Switzerland, offering a
talk on “Learning to Fly Agilely”;

– Prof. Carlos Balaguer, from University Carlos III of Madrid (UC3M), Spain,
delivering a talk entitled “Intelligent Humanoids: From Labs to Real World”;

– Prof. Rita Cunha, from Instituto Superior Te  cnico, University of Lisbon,
Portugal, presenting a talk entitled “Advances in Motion Control of Aerial
Vehicles”.

We received 102 submissions, and 69 were selected for presentation. At the end,
65 were included in the program and in this book of proceedings, structured in 14
oral technical sessions.
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We would like to thank all the authors for their contributions. We also wish to
acknowledge the contributions of all members of the Technical Program Committee
and Reviewers, coordinated by Prof. Bruno Guerreiro, Portugal, and Prof. Tarek
Hamel, France as Technical Program Chairs, who, providing 317 reviews of high
quality, greatly contributed to the improvement of the quality of the final works.
The program also greatly benefited from the initiative of Special Session Organizers
that promoted the launch of call for papers in focused topics.

The success of any conference depends on the quality of the program and
participation of people. We expect that this book will provide CONTROLO’2022
participants and readers with new and inspiring ideas and challenges.

Last but not the least, we would like to acknowledge the contribution of all
members of the several committees that contribute to putting together such an
exciting program, including the contributions from Steering Committee members
and APCA Directive Commission, as well as all technical co-sponsors, namely
IFAC—International Federation of Automatic Control, CEA—Comité Español de
Automática, SBA—Sociedade Brasileira de Automática, SPR—Sociedade
Portuguesa de Robótica, SPEE—Sociedade Portuguesa para a Educação em
Engenharia, and ISA—International Society of Automation, Portugal section.

We are also grateful to all members of the Local Organizing Committee who
generously has spent their time to help in the organization of the event.

Finally, we should like to acknowledge the excellent cooperation with Leontina
Di Cecco, of Springer-Verlag, and her colleagues in the preparation of this work.

Luís Brito PalmaMay 2022
Rui Neves-Silva

Luís Gomes
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Abstract. In this paper we address the merging problem for Autonomous Vehi-
cles (AVs) in presence of moving obstacles. The AV is required to follow a given
desired path with a nominal (path-dependent) velocity profile, while keeping a
desired safe distance with respect to moving obstacles. By using a new set of
coordinates and a Virtual Target Vehicle (VTV) perspective, we propose a trajec-
tory generation strategy to compute the (local) optimal collision-free trajectory
that best approximates the desired one. In the proposed strategy, we exploit the
extra degree of freedom of the VTV in order to generate a time parametrized
reference, which helps to find the right space-time gap to perform a safe merging
maneuver. We show the efficacy of the proposed strategy through a set of numeri-
cal computations and highlighting the main features of the generated trajectories.

Keywords: Autonomous vehicles · Trajectory optimization · Nonlinear optimal
control

1 Introduction

In the last years, Autonomous Vehicles (AVs) started to run on public roads and a grow-
ing number of transport companies have started to give fully driverless rides to a limited
group of people and at limited hours. This progress has led to scenarios where the inter-
action between the AV and human-driven vehicles must be carefully taken into account.
For example, when approaching a busy intersection, the AV needs to sense the surround-
ing vehicles, predict their future intentions, and find the right space-time gap in order to
pass before, after, or among other vehicles. Such a space-time requirement makes the
analysis and design of the planning strategies particularly challenging.

Many approaches have been proposed in the literature to address this problem on
different road layouts. Starting from the lane change along straight lanes, [1], different
environment complexity can be taken into the problem formulation as the intersec-
tion with turning maneuvers, [2], merging into a roundabout [3]. However, all these
approaches exploit inter-vehicle communications. In order to deal with the partially or
fully disconnected scenarios, in [4], the authors propose a Model Predictive Control
(MPC) scheme for the merging problem in a specific motorway scenario. The longitu-
dinal motion of the merging vehicle is optimized in order to generate smooth accelera-
tion/deceleration profiles, while the motion of the main lane vehicle (i.e., the obstacle
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Brito Palma et al. (Eds.): CONTROLO 2022, LNEE 930, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-10047-5_1
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from the merging vehicle perspective) is used to build a penalty function for collision
avoidance. Recently, the coordination of (fixed-order crossing) AVs at intersections
was investigated in [5]. The proposed algorithm, based on a suitable formulation of
a constrained optimal control problem, handles nonlinear dynamics, economic objec-
tive functions, and scenarios with turning vehicles. The fixed-order crossing and the
collision avoidance are taken into account by introducing conflict zones and ensuring
that each vehicle can occupy each conflict zone in a mutually exclusive fashion. The
inter-vehicles communication assumption can be relaxed by modeling non-cooperative
agents as uncertain systems and by adding suitable constraints into the optimization
problem, as described in previous works of the same authors, [6] and [7].

In this paper, the merging problem is addressed from a different perspective.
We assume there is no inter-vehicle communication, and we focus on the trajectory
generation of the AV: we propose an optimization-based strategy in order to com-
pute collision-free merging trajectories with the right trade-off between trajectory-
tracking and maneuver-regulation behaviors (see [8–10] for a discussion on these two
approaches). Specifically, given the nominal road geometry, the vehicle kinematics is
initially described in terms of longitudinal and lateral coordinates. Then, based on the
idea detailed in [11], we introduce the use of a Virtual Target Vehicle (VTV) that is
constrained to move along the lane into which the ego vehicle have to merge. Finally,
we set up a constrained optimal control problem in terms of the longitudinal and lat-
eral coordinates and the kinematic position error between the ego vehicle and the VTV.
Moreover, based on the obstacles’ predictions, we enforce suitable kinematic coordi-
nates constraints to generate collision-free trajectories. We highlight that in [11], the
weighting term associated with the VTV’s velocity can be used to “morph” between
trajectory-tracking and maneuver-regulation features. In contrast to the previous app-
roach, in this paper, we embed such a morphing feature into the optimization process
by proposing a suitable cost function.

The rest of the paper is organized as follows. In Sect. 2, we describe the merging
problem, the car model, and introduce the VTV approach. In Sect. 3, we formulate the
optimal control problem. In Sect. 4, we provide numerical computations highlighting
some interesting features captured by the proposed strategy.

2 Problem Formulation

In this section, we introduce the merging scenario, briefly describe the car model, and
define a new set of coordinates.

2.1 The Motivating Scenario

Let us consider the merging scenario represented in Fig. 1. The intersection is composed
of two incoming lanes, called the “ego lane” and the “target lane”, and a crossing zone,
i.e., the merging zone.

The ego vehicle is traveling along the ego lane and is supposed to merge into the
target lane while performing a right turn. Moreover, the ego vehicle must yield the right-
of-way to (human-driven) vehicles traveling along the target lane. From now on, we call
“obstacles” the (human-driven) vehicles.
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Target Lane
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Fig. 1. The merging scenario. The ego vehicle is approaching an intersection where it has to yield
the right-of-way to the obstacles. Travel directions are indicated by blue arrows.

We assume that i) the obstacles do not cooperate so that the ego vehicle has to
find the right space-time gap to cross safely the intersection without cutting off any
obstacles, and ii) the actual state (position and velocity) and the future positions of the
obstacles are given (such information is usually provided by a motion forecasting mod-
ule). In such a scenario, we are interested in generating a feasible trajectory for the ego
vehicle that best approximates a desired one with road boundary, collision avoidance,
and input control constraints. It is worth noting that, in a typical hierarchical motion
planner framework, the generated trajectory can be used as a reference trajectory for a
low-level controller.

2.2 Constrained Ego-Vehicle Model

For the sake of presentation, we focus on the case of vehicles moving on a planar road.
The equations of motion are based on the well-known kinematic bicycle model and are
given by

ẋ = v cosψ

ẏ = v sinψ

ψ̇ = vκ

κ̇ = uκ

v̇ = a

(1)

where (x, y) are the longitudinal and lateral coordinates with respect to the inertial
frame, ψ is the heading angle, v is the velocity, and κ is the curvature. The control
inputs are the acceleration a and the curvature rate uκ. It is worth noting that we con-
sider such a simple vehicle model for the following reasons. First, this model has no
parameters, thus allowing to focus on the trajectory generation approach. Second, for
urban autonomous driving, the kinematic bicycle model has comparable accuracy with a
dynamic one, [12], especially for low acceleration values. For such reasons, we impose
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state and input constraints on (1). In particular, the velocity is bounded by two constants
vmin, vmax, i.e.,

vmin ≤ v ≤ vmax . (2)

The curvature and its rate are bounded in module as follows,

|κ| ≤ κmax , |uκ| ≤ uκmax
(3)

Finally, in order to take into account the passenger comfort, the longitudinal accelera-
tion a and the lateral acceleration, v2κ, are coupled by the ellipse constraint, [2],

(
a − (amax + amin)/2
(amax − amin)/2

)2

+
(

v2κ

alatmax

)2

≤ 1 . (4)

2.3 Longitudinal and Transverse Coordinates and Virtual Target Vehicle

Given a geometric path for the ego lane, we define a new set of coordinates based on
the longitudinal and lateral coordinates (sel, w), see Fig. 2. The longitudinal coordinate
sel represents the position along the center-line of the ego lane, whereas the lateral
coordinate w denotes the displacement transverse to the center-line. We assume that
the ego lane has a reasonably smooth (at least C2) arc-length parametrized center-line,
(x̄el(sel), ȳel(sel)). The course heading ψ̄el(sel) and the curvature κ̄el(sel) are related
by differentiation:

dx̄el(sel)
dsel

= cos ψ̄el(sel) ,

dȳel(sel)
dsel

= sin ψ̄el(sel) ,

dψ̄el(sel)
dsel

= κ̄el(sel) .

(5)

Using the arc-length parametrization, the coordinates of the ego vehicle can be defined
as follows: [

x
y

]
=

[
x̄el(sel)
ȳel(sel)

]
+ Rz(ψ̄el(sel))

[
0
w

]
, (6)

where

Rz(ψ̄el(sel)) =
[
cos ψ̄el(sel) − sin ψ̄el(sel)
sin ψ̄el(sel) cos ψ̄el(sel)

]

is the rotation matrix transforming vectors from the velocity frame into the inertial
frame.

Next, we describe the ego vehicle position with respect to the (sel, w) coordinates.
Following the calculations in [13], we differentiate (6) with respect to time and, by
using Eqs. (1) and (5), we have

ṡel =
v cosμ

1 − wκ̄el(sel)
,

ẇ = v sinμ ,

μ̇ = vκ − κ̄el(sel)ṡel ,

(7)
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Fig. 2. Local coordinates around the ego and target path. The bold triangle and the empty triangle
indicate the ego vehicle and the VTV, respectively. The solid lines indicate the center-line of the
ego and target lane.

where μ = ψ − ψ̄el is the local heading error. It is worth noting that the inverse of the
map (sel, w) �→ (x, y) is well-defined when the ego vehicle position is inside a tube
around the center-line of the ego lane, i.e., for 1 − wκ̄el(sel) > 0.

We now introduce the VTV that should be tracked by the ego vehicle when
approaching the target lane. By assuming that also the target lane has a smooth arc-
length parametrized center-line, (x̄tl(stl), ȳtl(stl)), we constrain the VTV to move
along the center-line of the target lane, see Fig. 2, so that the VTV’s position can be
described by simply integrating its velocity vvtv, i.e., ṡtl = vvtv . For the sake of pre-
sentation, we restrict our attention to the case of straight target lane, as the one depicted
in Fig. 1.

Given the VTV’s position along the target lane, stl, we can now describe the ego
vehicle position as follows,

[
x
y

]
=

[
x̄tl(stl)
ȳtl(stl)

]
+ Rz(ψtl)

[
ex

ey

]
, (8)

where ex and ey are the longitudinal and lateral error coordinates, respectively, and
Rz(ψtl) is the rotation matrix transforming vectors from the error frame into the inertial
frame. Now, we differentiate (8) with respect to the time t and by using the kinematic
of the ego vehicle (1) we get the expression of ėx and ėy as

ėx = v cos eψ − vvtv ,

ėy = v sin eψ ,
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where eψ = ψ − ψ̄tl is the heading error. Finally, we re-write the nonlinear system (1)
with respect to the new sets of coordinates as follows,

ṡel =
v cosμ

1 − wκ̄el(sel)
ẇ = v sinμ

μ̇ = vκ − κ̄el(sel)ṡel

κ̇ = uκ

v̇ = a

ṡtl = vvtv

ėx = v cos eψ − vvtv

ėy = v sin eψ

(9)

where x = [sel, w, μ, κ, v, stl, ex, ey] and u = [uκ, a, vvtv] are the state and control
vectors.

3 Optimal Control Problem Formulation

In order to formulate the optimal control problem, in this section we specify additional
state-input constraints and define the cost function to be optimized. We start defining
two additional constraints.

First, the ego vehicle is required to satisfy the road boundaries. With respect to the
new set of coordinates, this constraint assumes a very simple form: the lateral displace-
ment w is bounded in module as follows,

|w| ≤ wmax . (10)

Second, to generate a collision-free trajectory, we impose that, at any time t, the ego
vehicle must be at a distance greater than dcollision from any obstacles. Such a distance
takes into account the safety distance between the ego vehicle and the obstacles, and an
additional distance to model the right-of-way of obstacles (as required in the merging
problem, Sect. 2.1). This constraint can be formulated by defining a circle centered at
the obstacle front axes, with radius dcollision. Specifically, given the front axis position
of the i-th obstacle and its future predictions, (xi

obs(t), y
i
obs(t)), we impose that the

constraint1

(x(t) − xi
obs(t))

2 + (y(t) − yi
obs(t))

2 ≥ d2collision , (11)

is satisfied for all times t. In order to include this constraint in the new proposed for-
mulation, we re-write (11) with respect to the new set of coordinates obtaining the
following equivalent form:

(sel(t) − si
obs(t))

2 + (w − wi
obs)

2 ≥ d2collision . (12)

1 For sake of presentation, we consider only circular boundary shapes, although other shapes
can be taken into account.
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Now we are ready to define the cost function. We start giving an informal idea of the
proposed strategy, which is based on the following two observations. First, when the
ego vehicle is far away from the merging zone, we are interested to follow a desired
path (i.e., the center-line of the ego lane) with a desired velocity assigned to it (i.e., a
space-varying velocity). Such a behavior can be captured by minimizing the following
cost,

Jel(x(t)) = q1w
2 + q2μ

2 + q3κ
2 + q4(v − vd(sel))2

where q1, q2, q3, q4 ≥ 0.
Second, when the ego vehicle is approaching the merging zone, we are interested

to track a time parameterized path (i.e., the center-line of the target lane) defined by
a desired velocity vd(stl). Here, we employ a quadratic cost term with respect to the
kinematic position error between the ego vehicle and the VTV, and the velocity of the
VTV with respect to the desired one

Jtl(x(t),u(t)) = q5e
2
x + q6e

2
y + r1(vvtv − vd

vtv(stl))2

where q5, q6 ≥ 0, and r1 > 0.
We define the cost function as a convex combination of the previous function terms

and an additional quadratic term in order to take into account the control effort:

J(x(t),u(t)) = (1 − α)Jel(x(t)) + αJtl(x(t)) + r2u
2
k + r3a

2 , (13)

where α ∈ [0, 1] is a switch cost function based on the distance between the ego vehicle
and the VTV. In particular, we use a sigmoid function α(ex, ey) = 1

1+exp(
√

e2
x+e2

y−γ) ,

where γ is a given parameter that specifies the distance from the merging zone.
We are ready to formulate the optimal control problem as follows

min
x(·),u(·)

∫ tf

0

J(x(τ),u(τ)) dτ + m(x(tf ))

s.t. ẋ(t) = f(x(t),u(t)) , x(0) = x0
h(x(t),u(t)) ≤ 0

(14)

where tf > 0 is fixed, ẋ(t) = f(x(t),u(t)) describes the nonlinear equations (9),
h(x(t),u(t)) are the state/input constraints (2), (3), (4), (10), (12) and m(x(tf )) is the
Mayer term (a quadratic cost term). We highlight that the obstacle avoidance collision
constraint (12) makes the optimization problem nonconvex and computationally chal-
lenging. In particular, we solve (14) by using the ACADO toolkit, [14]. The multiple-
shooting discretization is employed with a Runge-Kutta integrator of order 4 and a
sampling time of 0.2 s. The underlying Quadratic Programs (QP) are condensed and
solved using an online active set strategy implemented in the software qpOASES, [15].

4 Numerical Computations

In this section we provide numerical computations showing the effectiveness of the pro-
posed approach. We start with a relatively simple scenario: the ego vehicle is traveling
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along the ego lane and is approaching the target lane, where an obstacle is moving.
Then, as a more challenging scenario, we increase the number of obstacles. The ego
lane is modeled as a 90◦ right turn with a radius of 20 m. The space-varying desired
velocity is equal to 7.2 m/s along the two straight sections and 5.2 m/s along the turn.
The desired VTV velocity is constant along the entire target lane and equal to 7.2 m/s.
The constraints parameters are based on [12] and on driving experience: vmin = 0m/s,
vmax = 10 m/s, amin = −1.5 m/s2, amax = 1 m/s2, alatmax

= 2 m/s2,
κmax = 0.2 m−1, wmax = 1.5 m and dcollision = 10 m. We use a planning hori-
zon of 20 s which allows the ego vehicle to perform a merging maneuver for the entire
set of numerical computations. We encourage the reader to refer to the video attachment
related to the 2D plane trajectories of the numerical computations presented below, [16].

4.1 Merging with One Obstacle

The ego vehicle initial position is (x0, y0) = (0, 0), with heading ψ0 = 0, and velocity
v0 = 26 km/h (i.e., almost 7.2 m/s). The obstacle is in position (xobs(0), yobs(0) =
(35,−10) and is traveling along the target lane with a constant velocity of vobs =
10 km/h (2.78 m/s). We solve the optimization problem (14) by setting the following
weighting cost terms (obtained after a trial and error process combined with our experi-
ence in the nonlinear system (9)): q1 = 5.0, q2 = 0.1, q3 = 0.5, q4 = 10.0, q5 = 0.01,
q6 = 0.01, r1 = 0.01, r2 = 1.0, and r3 = 0.1. The optimal trajectory is shown in
Fig. 3. Next, we analyze some interesting features of the generated trajectory. At first
glance, we can identify a “pass after” behavior. Basically, the ego vehicle decelerates,
thus giving the way to the obstacle (see Fig. 3f). In the generated optimal trajectory, we
can identify three phases. First, at the beginning, the ego vehicle is far away from the
merging area and the cost Jel is minimized: the ego vehicle is following the center-line
(the lateral displacement is almost zero), and decreases its velocity to face the right turn.
Second, at about t = 5 s, the ego vehicle is close to the VTV and the cost Jtl is mini-
mized: the ego vehicle applies a positive curvature and moves toward the outside edge
of the right-turn to minimize the kinematic error with respect to the VTV. Moreover,
a stronger deceleration is applied (satisfying the ellipse constraint, see Fig. 3e), thus
giving the way to the obstacle. Finally, we analyze the (local) optimal VTV velocity
profile, see Fig. 3d. In the beginning, the VTV has zero velocity, which means that the
VTV is “waiting” the ego vehicle while is traveling along the ego lane. As the ego vehi-
cle approaches the target lane, the VTV accelerates and its velocity reaches the value of
2.78 m/s, which is exactly the velocity of the obstacle. Consequently, the ego vehicle
“tracks” the VTV position, because the Jtl is minimized.

It is interesting to investigate how the initial obstacle position affects the generated
trajectory. We set (xobs(0), yobs(0) = (35,−15) and solve the optimization problem.
The optimal trajectory is shown in Fig. 4. In the beginning, the ego vehicle follows the
ego lane path with the desired velocity. When approaching the target lane, the optimizer
finds enough time-space gap to perform a “pass before” the obstacle. The VTV velocity
increases with a sharp acceleration, and the ego vehicle starts to track the VTV: first, it
moves toward the inside edge of the turn (the so-called apex point is almost reached) in
order to minimize the curvature and satisfy the acceleration constraint and, second, it
accelerates in a smooth fashion.


