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A New Trial Stress for Newton’s Iteration
Based on Plastic Strain Rate Potential

Seung-Yong Yang and Wei Tong

Abstract It is known that Newton’s iteration can be divergent for highly anisotropic
yield functions with a large strain increment in finite element analysis of plastic
deformation. One of the reasons of the divergence is inaccurate estimation of the
initial stress by elastic trial stress. The line search strategy cannot completely remove
the problem.Anewmethod to predict the trial stress byplastic strain rate potentialwas
proposed in this work. The newmethod was applied to Hill’s quadratic yield function
and Hershey-Hosford yield function. It was shown that the number of iterations can
be reduced significantly for plane stress biaxial loading, and computation time can
be saved for 3-dimensional finite element simulation.

Keywords Newton iteration · Plasticity potentials · Trial stress

Introduction

Finite element analysis of plastic deformation requires constitutive update of the
stress and plastic strain of thematerial along the loading path, and the new state of the
structure will be found by solving a system of equations for the nodal displacements
in the main program. The constitutive equations of plastic materials are nonlinear,
and a numerical solution of the equations for the stress and plastic strain needs an
iterative process in the material routine. Newton’s method is widely used for the
iterative solution procedure.

If the material exhibits highly anisotropic behavior in the plastic deformation and
the load increment is large, Newton’s iteration can diverge and more sophisticated
methods are necessary to obtain a converged solution. It was reported that Newton’s
iteration can be divergent for a highly anisotropic yield function or a higher value of
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the exponent in the Hershey-Hosford yield when a large strain increment is imposed
[1]. Line search method was proposed to resolve this issue and enhance the con-
vergence property of the Newton method [1, 2]. In these methods, they assumed an
elastic trial stress with vanishing plastic strain increment, and then the line search
method was applied to choose an appropriate plastic strain increment to reduce error
in the iteration. However, the line search method cannot provide a complete solution
to the problem, and the iteration still can be divergent. One of the main reasons
for the problem seems that the elastic trial stress is overwhelmingly large when the
strain increment is large. Manik [3] proposed a radial return method to improve the
convergence of Newton iteration and saved computation time for Hill’s quadratic
and Yld2004-18p yield functions.

In this paper, a plastic trial stress was proposed to replace the conventional elastic
trial stress for the Newton iteration. The new trial stress is based on dual plastic
strain rate potential which is a function of plastic strain rate and dual to the yield
function. If a plastic strain rate is assumed approximately, then a stress state on the
yield surface can be obtain by using the orthogonality condition to the dual plastic
strain rate potential and the stress will be closer to the actual stress than the elastic
prediction. This yield stresswas used as the initial trial stress for theNewton iteration.
The effectiveness of the new plastic trial stress in the iterative procedure and finite
element analysis was presented in comparison to the conventional elastic trial stress.
A review of Newton’s method and the proposal of the plastic trial stress will be
presented in the framework of the associated flow rule in next sections, and the
plastic strain rate potentials for Hill’s quadratic yield function and Hershey-Hosford
yield function will be described in the following section. The proposed algorithm
was implemented in ABAQUS user material subroutine (UMAT) and its numerical
superiority will be displayed in comparison for simple biaxial loadings and a general
3-D loading.

Newton’s Method and Plastic Trial Stress

Newton Iteration

Stress-based yield potentials are useful in elasto-plastic deformation analyses. New-
ton’s iteration based on the yield function f (σσσ)will be described in this section. That
is, the yield condition will be applied and the plastic strain increment should satisfy
the normality rule to the yield surface. Suppose we are given a stress and equivalent
plastic strain at the current time t and a strain incrementΔεεε for the next time t + Δt .
If the corresponding yield function to the elastic trial stress is large enough to satisfy
the current yield condition, the material will undergo plastic deformation. Then the
new yield condition and the normality rule should be satisfied at the new time t + Δt ,
i.e.,
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r = f (σσσ(t) + Δσσσ)) − σ f (ε̄
p(t) + Δε̄ p) = 0 (1)

R = (
Δεεε − C−1Δσσσ

) − Δε̄ p ∂ f

∂σσσ
(σσσ(t) + Δσσσ) = 0 (2)

where Δε̄ p is the increment of the equivalent plastic strain during Δt . The small
deformation assumption was used, so that the total strain increment is the sum of
the elastic and plastic parts in Eq. (2). The flow potential is the same as the yield
function in the associated plasticity. The solution of the above two equations areΔε̄ p

and Δσσσ . If a trial value is assumed for Δε̄ p in Eq. (2) and the Taylor expansion is
considered, then Eq. (2) will give Δσσσ . These trial Δε̄ p and Δσσσ are substituted in
Eq. (1) to check whether the equation is satisfied. If not, some modification on the
assumed Δε̄ p is made until the yield condition is satisfied. This procedure can be
formulated in the framework of Newton’s method to give a systematic modification
on the increments of the equivalent plastic strain and stress. That is, the following
variations can be derived.

δΔε̄ p = r + n : LR
n : Ln + h

(3)

δΔσσσ = L
(
R − δΔε̄ pn

)
(4)

where r and R are the current residuals and n, L and h are defined in Eqs. (5)–(7).
Modified new increments are to be given by the sum of the old increments and the
variations of (3) and (4).

Δε̄ p (new) = Δε̄ p (old) + δΔε̄ p

Δσσσ (new) = Δσσσ (old) + δΔσσσ .

Newton’s iteration will continue until these Δε̄ p (new) and Δσσσ (new) satisfy Eqs. (1)
and (2) with enough accuracy (that it, the residuals r and R are small enough). The
following variables need to be updated during the iteration.

n = ∂

∂σσσ
f (σσσ(t) + Δσσσ) (5)

h = ∂

∂Δε̄ p
σ f (ε̄

p + Δε̄ p) (6)

L =
(
C−1 + Δε̄ p ∂2

∂σσσ 2
f (σσσ(t) + Δσσσ)

)−1

(7)

To initiate Newton’s iteration described above, Δε̄ p and Δσσσ need to be assumed
first. The number of iterations will depend on howmuch accurately the initial guesses
were made close to the true solution. This entails the concept of the plastic trial stress
described in the next section.
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Plastic Trial Stress

In conventional numerical procedure for plasticity, the elastic trial stress is assumed
byΔσσσ = CΔεεε and vanishing plastic strain increment (Δε̄ p = 0) is used as the initial
value for Newton’s iteration. These trial values seem straightforward, but they can
be inaccurate if the strain increment is large, and many iterations can be caused or
the iteration can be divergent for highly anisotropic materials. To obtain better trial
increments, plastic stress which is based on the plastic strain rate potential will be
considered as the new trial stress in place of the elastic trial stress.

Yield stress state can be given by the orthogonality condition to the plastic strain
rate in the theory of dual plastic potentials [4].

σσσ(t + Δt) = ν
∂

∂Δεεε p
q(Δεεε p) (8)

where the parameter ν is equal to the yield strength along the rolling direction,
ν = σ f (ε̄

p(t) + Δε̄ p) in the associated plasticity. There canbemanypossible options
for the plastic strain incrementΔεεε p andΔε̄ p.One simpleway is to assumeΔεεε p = Δεεε

and Δε̄ p = q(Δεεε p). These assumptions can define a plastic trial stress by Eq.(8).
Another more sophisticated approach is to take only a fraction of the full strain
increment for the plastic strain increment in reference to Manik’s paper [3]. He
proposed a radial projection of the elastically predicted stress σσσ tr on the current
yield surface as

f
(
(1 − αy)σσσ

tr
) = σ f (ε̄

p(t))

where αy ∈ [0, 1] is the solution of the above equation. Then (1 − αy)εεε will be the
corresponding total elastic strain, and the remaining αyεεε will be the plastic strain
increment. Hence Δεεε p = αyεεε was chosen as the trial plastic strain increment to
define the equivalent plastic strain increment and equivalent stress as follows

Δε̄ p = q
(
αyεεε

)

σ̄ = σ f (ε̄
p(t) + Δε̄ p)

These equations will be combined with Eq. (8) to give the plastic trial stress. Then
Δε̄ p and σσσ(t + Δt) will be used as the initial guess of the plastic strain increment
and stress, and Newton’s iteration will continue until an accurate enough numerical
solution is obtained. The error of the iteration is defined based on the scalar and
tensor residuals r and R as

E =
(

r

2μ

)2

+ R : R (9)
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where μ is the shear modulus. If the error is small enough during the iteration,
for example E < 10−10, then the approximate solution was regarded as being close
enough to the true solution, and the iteration is terminated.

Yield Functions and Their Plastic Strain Rate Potentials

Hill’s Quadratic Yield Function

Hill’s quadratic yield function f (σσσ) is defined by [5]

2 f 2(σσσ) = F(σyy − σzz)
2 + G(σzz − σxx )

2 + H(σxx − σyy)
2

+2Lτ 2
yz + 2Mτ 2

zx + 2Nτ 2
xy

= 2A1(σxx − σzz)
2 + 2A2(σxx − σzz)(σyy − σzz)

+2A3(σyy − σzz)
2 + 2A4τ

2
xy + 2A5τ

2
yz + 2A6τ

2
zx (10)

where the following identities hold.

2A1 = G + H, 2A2 = −2H, 2A3 = F + H,

A4 = N , A5 = L , A6 = M

The dual plastic strain rate function is assumed in the similar form as

q2(ε̇εε p) = B1(ε̇
p
x )2 + B2ε̇

p
x ε̇ p

y + B3(ε̇
p
y )2 + B4(γ̇

p
xy)

2 + B5(γ̇
p
yz)

2 + B6(γ̇
p
zx )

2 (11)

Under these assumptions, relations between the yield function and the dual plastic
strain rate potential can be derived analytically. That it, one can use the property
that the plastic strain rates should have the same value of the equivalent plastic strain
rate, q(ε̇εε p(σσσ)) = ˙̄ε p, whereas the stresses are on a given yield surface. The following
relations should hold between Ai and Bi .

B1 = 4A3

4A1A3 − A2
2

, B2 = − 4A2

4A1A3 − A2
2

B3 = 4A1

4A1A3 − A2
2

, B4 = 1

A4
, B5 = 1

A5
, B6 = 1

A6

Hershey-Hosford Yield Function

Hershey-Hosford yield function is a non-quadratic isotropic yield function. It gen-
eralizes von Mises yield function and approaches to Tresca model as the exponent
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increases. Hence the flow direction can vary rapidly at the corners of the yield locus
for a big exponent a.

f a(σσσ) = |σ1 − σ2|a + |σ2 − σ3|a + |σ3 − σ1|a
2

(12)

where σi are the principal stresses. For the exact dual potential cannot be derived
analytically, the following approximate dual plastic strain rate potentialwas assumed.

qb(ε̇εε p) = |ε̇ p
1 |b + |ε̇ p

2 |b + |ε̇ p
3 |b

1 + 21−b
= |ε̇ p

1 |b + |ε̇ p
2 |b + |ε̇ p

1 + ε̇
p
2 |b

1 + 21−b
(13)

The value of b can be obtained by the least square method to minimize the deviation
from a set of discrete plastic strain rates computed from the yield function [6]. For
example, one can obtain b =1.51523 for a = 6, and b = 1.34194 for a = 8.

Numerical Results

To test the convergence behavior of Newton’s method, Hill’s quadratic yield function
and Hershey-Hosford yield function were considered. In this section, we will make
use of numerical tests similar to Scherzinger’s in [1] to show the superiority of the
proposed plastic trial stress for the convergence of Newton’s iteration.

The material parameters of Hill’s quadratic yield function were given as

A1 = 1.0, A2 = −1.0513, A3 = 1.0908,

A4 = A5 = A6 = 2.9926.

The quadratic yield function inEq. (10)with these parameters characterizesAA6111-
T4 sheet metal [7]. The exponent a = 8 was used for the Hershey-Hosford yield
function in Eq. (12). The Swift power law was used for the hardening as

σ f (ε̄
p) = 462.79

(
0.007961 + ε̄ p

)0.2
MPa

Young’s modulus is 69 GPa and Poisson’s ratio is 0.3.
First, the on-axis plane stress biaxial loading condition was considered to find

howmany iterations are needed to achieve convergence for the elastic trial stress and
plastic trial stress, respectively. The stress state and the plastic strain were assumed
zero at time t = 0, and a large enough strain increment was applied during time
step Δt so that the yield condition is satisfied and the plastic deformation occurs.
Procedures in reference [8] was used to impose the plane stress condition on the
material technically. The applied plane stress condition can be represented as a point
on the biaxial stress plane when the shear stress vanishes. 3200 trial cases which are
beyond the initial yield locus and less than 40 times the initial yield stress σ0 along the
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Fig. 1 Error in Eq. (9) by the trial state in the case of a elastic trial stress, and b plastic trial stress.
(Hill’s YLD)

rolling direction were examined to test the convergence behavior. The initial residual
error in Eq. (9) caused by the trial state before the initiation of the Newton iteration
was plotted in Fig. 1a, b for the elastic and plastic trial stresses, respectively, and
the number of iterations was plotted for the corresponding trial stresses as shown in
Fig. 2. The horizontal axis is the elastic trial stress incrementΔσxx normalized by the
initial yield stress σ0, and the vertical axis isΔσyy normalized by σ0. The normalized
elastic stresses were used to represent the strain increments. The initial error is quite
large for the elastic trial stress compared to that of the plastic trial stress as shown
in Fig. 1. The number of iterations increased as the elastic trial stress is used even
though the line search method was used. Meanwhile, the iteration converged in 1
or 2 iterations without the line search strategy, if the plastic trial stress was used as
presented in Fig. 2b. Similar behavior was observed for the Hershey-Hosford model
as shown in Figs. 3 and 4. If the elastic trial stress was used then the initial error was
huge and the iteration diverged for large loading increments as shown in Fig. 4a (if
the number of iterations is greater than 20, then the iteration was regarded as being
divergent) although the line search method was applied. Newton’s iteration with the
plastic trial stress converged very quickly as exhibited in Fig. 4b. These results prove
the excellent convergence property of the plastic trial stress.

While it has been shown that the plastic trial stress requiresmuch less iterations for
the convergence in the on-axis plane stress biaxial loading, it is necessary to examine
if the plastic trial stress actually can reduce the computation time in finite element
simulation. ABAQUS/Standard FEA analysis was utilized to compare the computa-
tion times for a tensile specimen shown in Fig. 5 which was used by Manik [3]. The
specimen has notches and some thickness, so that more general stress conditions can
be imposed on the material points. Tensile displacement boundary condition was
applied at the end of the specimen along the rolling direction. The constitutive equa-
tions were implemented in ABAQUS UMAT subroutine. It is known that the time
increment should be reduced to achieve a converged solution in FEA, if the mate-
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Fig. 2 The number of iterations for the convergence in the case of a elastic trial stress, and b plastic
trial stress. (Hill’s YLD)

Fig. 3 Error in Eq. (9) by the trial state in the case of a elastic trial stress, and b plastic trial stress.
(Hershey-Hosford YLD with a = 8 and b = 1.34194)

rial’s behavior deviates significantly from the isotropic von Mises plasticity. There
are two-time increment options in ABAQUS/Standard, i.e., fixed and automatic. If
the time increment is small enough, then the computations have converged for both
elastic trial stress and plastic trial stress and the computation times were almost the
same. But the time increment is large, then the time increment was automatically
controlled and reduced to obtain a converged solution by the ABAQUS main solver.
It was observed that the elastic trial stress required a smaller time step for conver-
gence, and more computation time was spent to complete the job as shown in Table 1
for Hill’s yield function. The total tensile strain was about 0.06 in the gage section of
the specimen. The typical strain increment in the gage section was about 0.0001 for
the elastic trial stress, which is smaller than 0.00018 for the plastic trial stress. These
strain increments turned out to be much smaller than strain increments for conver-
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Fig. 4 The number of iterations for the convergence in the case of a elastic trial stress, and b plastic
trial stress. (Hershey-Hosford YLD with a = 8 and b = 1.34194)

Fig. 5 Tensile specimen [3]

gence in the simple on-axis biaxial loading conditions Δσ/μ shown in Figs. 2 and
4. Complicated loading condition in the 3-dimensional specimen seems to restrict
the strain increment to the smaller values. ABAQUS intrinsic material library pro-
vides Hill’s quadratic anisotropic yield function, and the total computation time was
more or less similar to the time used in the case of the plastic trial stress, which is
significantly less than the time of the elastic trial stress. The line search method was
not implemented for the case of the plastic trial stress. If the convergence norm is
reduced, then the elastic trial stress and the plastic trial stress required a similar time
increment and the total computation times were about the same. ABAQUS does not
provide Hershey-Hosford material model, so comparison was made only between
the elastic and plastic trial stresses in terms of UMAT as shown in Table2. The strain
increment was about 6×10−5 for the elastic trial stress, and the strain increment was
1.4×10−4 for the plastic trial stress. Computation time was saved significantly by
the usage of the plastic trial stress in Hershey-Hosford model as well.
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Table 1 Comparison of computation times of ABAQUS Hill’s model and UMATs

Hill CPU time (s)

ABAQUS Intrinsic material 291.9

Elastic trial stress (UMAT) 652.0

Plastic trial stress (UMAT) 285.0

Table 2 Comparison of computation times of Hershey-Hosford model by UMATs

H-H CPU time (s)

Elastic trial stress (UMAT) 1508.1

Plastic trial stress (UMAT) 487.8

Discussion and Conclusions

The concept of plastic trial stress was applied to develop an efficient trial stress in
Newton’s iteration.Hill’s quadratic yield andHershey-Hosford yieldwere considered
for the application and evaluation of the new trial stress. As can be shown by the
residual error in biaxial plane stress loading, the plastic trial stress was closer to
the true solution than the conventional elastic trial stress, and much less number of
iterations was necessary to make convergence in the tests. The plastic trial stress was
implemented in ABAQUS/UMAT and 3-dimensional finite element simulation of a
tensile test showed that the computation time can be saved by the usage of the plastic
trial stress in the material routine without invoking line search strategy.

Only associated flow rule has been assumed and the yield surface was identical
to the flow surface in this work. If non-associated flow rule is used, then the flow
function will be different to the yield function in general. The concept of the dual
plasticity potentials can be applied to non-associated plasticity as well. In that case,
the plastic strain rate potential and the flow potential will be in the dual relation as
pointed out in [6]. A similar yield potential-based elasto-plastic numerical scheme
can be developed in terms of Newton’s method, and the concept of the plastic trial
stress can be adopted in the non-associated framework. Our future effort will be
made on the verification of the numerical efficiency of the plastic trial stress in the
non-associated plasticity model.
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Anisotropic Time-Dependent Continuum
Damage-Coupled Plasticity Model
for Predicting Ductile Fracture of 6xxx
Series Aluminum Alloys

Mustapha Makki, Georges Ayoub, Andrey Ilinich, and Ghassan Kridli

Abstract An accurate prediction of the fracture strain under different stress states is
essential for designing metal formed structures. General stress states may be charac-
terized by two independent parameters; the stress triaxiality ratio and the Lode angle.
When both parameters remain constant throughout the strain history, the loading is
said to be proportional. In this work, the mechanical and damage behavior of ductile
metal was captured using an anisotropic time-dependent continuum damage model
coupled plasticity. The model was implemented in a finite element simulation code
using an implicit time integration scheme. A hybrid method combining experimental
(proportional loading) and finite element simulations was used for the model calibra-
tion. The predictive capability of the model with embedded cumulative damage law
was validated on proportional loading tests conducted on a 6xxx series aluminum
alloy sheets.

Keywords Continuum damage mechanics · Anisotropic damage · Anisotropic
plasticity · Proportional loading

Introduction

Stamping operations are used for producing a large number of structural compo-
nents for the automotive, aerospace, electronics, and telecommunications industries.
More specifically, sheet metal forming is of high interest for the automotive industry
prompted by the need to produce fuel-efficient vehicles and therefore manufac-
ture intricate shape structural parts at higher rate and lower cost. Furthermore, with
the increasing use of lightweight materials for stamping processes new challenges
emerged. Aluminum alloys are high specific strength structural metals widely used
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by the aerospace and automotive industries. The fracture is an important failuremode
limiting the design space feasible for manufacturing and in-service use. Aluminum
alloy sheets generally exhibit an anisotropic plastic and fracture behaviors. In this
work we propose a novel fracture prediction model that can be used in stamping
feasibility assessment.

A considerable number ofmodelswere proposed to capture the ductile behavior of
metals associated with their mechanical properties degradation. The ductile fracture
behavior is characterized by a sequence of degradation mechanisms induced by the
plastic deformation, namely; void nucleation, growth, and coalescence [1, 2]. In the
literature, we can differentiate among three different types of fracture models. First,
the “Gurson type” models explicitly formulate macroscopic yield criterion based on
homogenization theories for spherical and cylindrical voids [3–7]. The second type
is the phenomenological “uncoupled damage” fracture models formulated without
accounting for the damage evolution directly in the elastic and plastic properties
[8]. These models make use of damage indicator functions to accumulate damage.
The damage increment is proportional to the increment of the effective plastic strain
weighted by severity of the stress state. The weighting is a function of two stress
state parameters; the stress triaxiality (ratio of the hydrostatic stress to von Mises
stress) and Lode angle (third stress invariant) [9–14]. Finally, the “continuumdamage
mechanics/coupled damage” models are derived from a thermodynamic dissipation
potential and account for the damage evolution directly in the elastic and plastic
properties [15]. Kachanov first introduced the formulation of the damage variable
to predict creep induced fracture in metals [16]. Originally, the effect of damage
was quantified using a continuity scalar variable ranging from zero for defect free
material to unity for a failed material. Later, the loss of the material’s load bearing
capability was explained by defining the damage parameter as the ratio between the
material’s damaged surface and the total surface [17]. Based on that definition, the
concept of effective stress linking the damage configuration to a fictitious defect free
configuration was proposed [18, 19]. Initially, the continuum damage mechanics
model assumed metal to be isotropic [20–22]. After, a multitude of experimental
investigations on the ductile fracture of metallic materials reported that the damage
is anisotropic, an anisotropic model was developed in which damage is a tensorial
variable [23]. The theoretical formulation of the coupled anisotropic damage with
plasticity was achieved by replacing the nominal stress with its effective value in the
plastic potential function [24].

In this work, the mechanical and damage behavior of a 6xxx aluminum alloy is
captured using an anisotropic time-dependent continuum damage-coupled plasticity
model. The model was implemented in Abaqus/Standard as a user subroutine, and
the parameters were calibrated on the experimental data. A hybridmethod combining
experimental andFEMsimulationswas used for themodel calibration. The predictive
capability of the model with embedded damage cumulative law was validated on
proportional loading tests.
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Experiments

In this section, the experimental procedure is detailed. Notched tensile specimens
with a notch radius of 10 mm (NR10) were tested using a uniaxial tensile testing
machine combined with a digital image correlation system (DIC). The material used
in this study is a 6xxx aluminum alloy sheet of 1 mm thickness, widely used for
stampingouter vehicle bodypanels. Thenominal chemical compositionof the studied
6xxx series aluminum alloy is given in Table 1. Thematerial was studied in T4 temper
after a substantial amount of natural aging.

AnMTS servo-hydraulicmachinewas used to conduct the experimental tests. The
test specimens were machined from a 1 mm Al 6xxx sheet using a wire electrical
discharge machine (EDM). The specimens were extracted with their major axis
being aligned with either of the rolling direction (RD), diagonal direction (DD), or
transverse direction (TD) as shown in Fig. 1.

The test was repeated three times in each direction and the average force vs.
displacement is presented in Fig. 1. It was observed that the tested specimens exhib-
ited the same elastic, yield (1.38 kN) and hardening behavior. However, the fracture
point was different for the different tested directions. The DD direction exhibited the
highest displacement to fracture (2.18 mm).

Table 1 Chemical composition

Element Si Mg Fe Cu Mn Cr Zn Ti Other

Wt% 0.5–1 0.4–0.8 0.3 0.2 0.15 0.1 0.1 0.1 0.15
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Fig. 1 NR10 specimen geometry and dimensions (in mm), force versus displacement response of
specimens extracted from three different material orientations, the inset shows the test specimens’
directions: Rolling Direction (RD), Diagonal Direction (DD), and Transversal Direction (TD)
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Constitutive Model

In this section, the framework of the anisotropic time-dependent continuum damage-
coupled plasticity model is presented. The framework of finite strains was used for
developing the model. A detailed description of the model was provided by Kassar
et al. [25]. The currentworkbuilds upon thepreviously developedmodel andproposes
the use of damage effect tensor described in the local material coordinate system
and not in the principal coordinate system of the damage. We start by providing
a brief description of the kinematic variables. The deformation gradient is defined
as F = ∇x(X, t), with x is the coordinates of a material point in the deformed
configuration while X is the coordinate of the material point in the undeformed
configuration. The deformation gradient can be written as F = FeF p with Fe is
the elastic part and F p is the plastic part. The velocity gradient can be written as
L = ḞF−1 = D + W , where W is the spin component (skew-symmetric part) and
D is the total rate of deformation (symmetric part). The total rate of deformation
can be additively decomposed into elastic and plastic rate for finite deformation
D = De + D p.

The physical nature of damage induced by the initiation, growth, and coales-
cence of micro-cracks was quantified by measuring the geometric deterioration of
the material’s microstructure [26, 27]. For an isotropic case, the damage variable
D = (A − Ã)/A is expressed as function of A is the material’s total area, and Ã is
the material’s total area excluding micro-voids. For the anisotropic case, the effec-

tive stress is described as
∼
σ= M : σ , where M(D) is the fourth-rank linear operator

termed damage effect tensor. The damage effect tensor links the damaged material
configuration to its fictitious undamaged configuration. For the present investiga-
tion, the damage effect tensor was expressed in the local material coordinate system
[28]. The elastic energy for a representative volume element under applied stress is
expressed as

We(S) = 1

2
σi jC

−1
i jklσkl (1)

where C−1
i jkl is the elastic compliance tensor. The elastic energy of the damaged

material can be determined by substituting the stress with the effective stress such

that We(σ , D �= 0) = We(
∼
σ , D = 0). Hence, the expression of the effective elastic

compliance tensor is defined as

C̃−1
i jop = Mi jklC

−1
klmnMmnop (2)

The visco-plastic constitutive coupled damage equations were developed by
replacing the stress tensor with the effective stress tensor in the plastic potential
of the undamaged material [29]. Accordingly, the effective Hill equivalent plastic
stress is expressed as follows:
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σ̃eq =
(
1

2
σ̃ : H : σ̃

)1/2

(3)

where the stress σ is integrated from the following stress rate expression σ̇ = ∼
C

[D− D p] And C̃i jop = M−1
i jklCklmnM−1

mnop, and H is the symmetric fourth-order Hill
tensor [30]. The plastic rate of deformation D p is expressed as follows:

Dp
i j = λp

2S̃eq
Hi jkl S̃kl (4)

where λp is the plasticmultiplier approximated by the cumulative plastic strain rate ṗ
quantified using a visco-plastic strain sensitive power law:

ṗ = γ p

(
S̃eq

s

) 1
m

(5)

where γ p is the initial plastic rate, m is the strain rate sensitivity parameter and s is
the shear strength resistance evolving according to [31].

The damage evolution rate was developed by assuming a dissipative damage
potential f d :

Ḋd
i j = − λd

2Y eq
Ld
i jklYkl (6)

where λd is the Lagrange multiplier term approximated by the cumulative plastic
damage rate q̇ . Ld is a fourth-order plastic damage characteristic tensor. The
cumulative plastic damage rate is

λd ≈ q̇ = γ d

(
Y eq

Y 0

) 1
n

(7)

where γ d is the initial damage rate, Y 0 is a damage strengthening resistance, and n
is a rate sensitive parameter. The damage strain energy rate is defined as

Yi j = −Si j

{
C−1
i jkl Mklmn

∂Mmnop

∂Dqr

}s

Sqr (8)

where “s” denotes taking the symmetric part within the curly brackets. Finally, the
effective equivalent energy release rate is defined as


